V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.10, 2008.
DOI : 10.1088/1742-5468/2008/10/P10008

URL : https://hal.archives-ouvertes.fr/hal-01146070

B. H. Bloom, Space/time trade-offs in hash coding with allowable errors, Communications of the ACM, vol.13, issue.7, pp.422-426, 1970.
DOI : 10.1145/362686.362692

L. Carter, R. Floyd, J. Gill, G. Markowsky, and M. Wegman, Exact and approximate membership testers, Proceedings of the tenth annual ACM symposium on Theory of computing , STOC '78, pp.59-65, 1978.
DOI : 10.1145/800133.804332

Y. Chen and H. Lin, Feature-aware label space dimension reduction for multi-label classification, NIPS, pp.1538-1546, 2012.

W. Cheng and E. Hüllermeier, Combining instance-based learning and logistic regression for multilabel classification, Machine Learning, pp.211-225, 2009.
DOI : 10.1007/978-3-642-04180-8_6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Christensen, A. Roginsky, and M. Jimeno, A new analysis of the false positive rate of a Bloom filter, Information Processing Letters, vol.110, issue.21, pp.944-949, 2010.
DOI : 10.1016/j.ipl.2010.07.024

O. Dekel and O. Shamir, Multiclass-multilabel classification with more classes than examples, pp.137-144, 2010.

K. Dembczynski, W. Cheng, and E. Hüllermeier, Bayes optimal multilabel classification via probabilistic classifier chains, ICML, pp.279-286, 2010.

K. Dembczynski, W. Waegeman, W. Cheng, and E. Hüllermeier, On label dependence and loss minimization in multi-label classification, Machine Learning, pp.5-45, 2012.
DOI : 10.1007/s10994-012-5285-8

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, Liblinear: A library for large linear classification, J. Mach. Learn. Res, vol.9, pp.1871-1874, 2008.

B. Hariharan, S. V. Vishwanathan, and M. Varma, Large Scale Max-Margin Multi-Label Classification with Prior Knowledge about Densely Correlated Labels, Proceedings of International Conference on Machine Learning, 2010.

D. Hsu, S. Kakade, J. Langford, and T. Zhang, Multi-label prediction via compressed sensing, NIPS, pp.772-780, 2009.

J. Read, B. Pfah-ringer, G. Holmes, and E. Frank, Classifier chains for multi-label classification, Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part II, ECML PKDD '09, pp.254-269, 2009.
DOI : 10.1007/978-3-642-04174-7_17

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Tai and H. Lin, Multilabel Classification with Principal Label Space Transformation, Neural Computation, vol.6, issue.9, pp.2508-2542, 2012.
DOI : 10.1016/j.patcog.2006.12.019

G. Tsoumakas, I. Katakis, and I. Vlahavas, A Review of Multi-Label Classification Methods, Proceedings of the 2nd ADBIS Workshop on Data Mining and Knowledge Discovery, pp.99-109, 2006.