
HAL Id: hal-00941123
https://hal.archives-ouvertes.fr/hal-00941123

Submitted on 15 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tracking Code Patterns over Multiple Software Versions
with Herodotos

Nicolas Palix, Julia Lawall, Gilles Muller

To cite this version:
Nicolas Palix, Julia Lawall, Gilles Muller. Tracking Code Patterns over Multiple Software Versions
with Herodotos. AOSD’10 - ACM International Conference on Aspect-Oriented Software Devel-
opment, Mar 2010, Rennes and Saint Malo, France. pp.169-180, �10.1145/1739230.1739250�. �hal-
00941123�

https://hal.archives-ouvertes.fr/hal-00941123
https://hal.archives-ouvertes.fr

Tracking Code Patterns over
Multiple Software Versions with Herodotos

Nicolas Palix
DIKU

University of Copenhagen
Denmark

npalix@diku.dk

Julia Lawall
DIKU, University of Copenhagen

INRIA-Regal
Denmark/France
julia@diku.dk

Gilles Muller
INRIA-Regal

LIP6
France

Gilles.Muller@inria.fr

ABSTRACT
An important element of understanding a software code base
is to identify the repetitive patterns of code it contains and
how these evolve over time. Some patterns are useful to the
software, and may be modularized. Others are detrimental to
the software, such as patterns that represent defects. In this
case, it is useful to study the occurrences of such patterns, to
identify properties such as when and why they are introduced,
how long they persist, and the reasons why they are corrected.

To enable studying pattern occurrences over time, we pro-
pose a tool, Herodotos, that semi-automatically tracks pat-
tern occurrences over multiple versions of a software project,
independent of other changes in the source files. Guided
by a user-provided configuration file, Herodotos builds vari-
ous graphs showing the evolution of the pattern occurrences
and computes some statistics. We have evaluated this ap-
proach on the history of a representative range of open source
projects over the last three years. For each project, we track
several kinds of defects that have been found by pattern
matching. This tracking is done automatically in 99% of the
occurrences. The results allow us to compare the evolution
of the selected projects and defect kinds over time.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics,
Product metrics; D.3.2 [Programming Languages]: Lan-
guage Classification—Specialized application languages, HCL,
SmPL; D.3.3 [Programming Languages]: Language Con-
structs and Features—Patterns

General Terms
Measurement, Languages, Reliability

Keywords
History of pattern occurrences, bug tracking, Herodotos

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’10 March 15–19, Rennes and St. Malo, France
Copyright 2010 ACM 978-1-60558-958-9/10/03 ...$10.00.

1. INTRODUCTION
Patterns have been found to be useful in finding various

types of defects or“bad smells” in software source code. Tools
such as Coverity [9, 12], Flawfinder [35], and Coccinelle [22]
use pattern-based techniques to find defects such as derefer-
ences of NULL pointers, checks whether an unsigned value
is less than zero, and memory leaks. These tools have been
applied to widely used infrastructure software projects such
as the Linux operating system, where safety and security are
critical, to find significant bugs. Nevertheless, these tools do
not fully realize the potential of patterns for understanding
the robustness of a software system, because they consider
only one version of the software at a time. Studying occur-
rences of defects over time can provide information about
software quality by identifying long-running or frequently
occurring trouble spots and aid in understanding the software
development process by clarifying the origins and evolution
of certain kinds of defective code patterns.

Tracking pattern occurrences across the history of a large
software project is, however, a daunting task. First, it is
necessary to identify the relevant code fragments. Second,
these code fragments must be correlated across software
versions, even in the presence of changes in the source code
that may affect the same file, the same function, or even
the same line as a pattern occurrence. Finally, it must be
possible to manage the collected information, to easily mine
it for specific facts and trends.

In this paper, we propose a language-independent approach,
illustrated in Figure 1, for mining and tracking code pattern
occurrences across a software history. Our approach includes
a tool, Herodotos, which relies on the Emacs org mode [30]
as an input format for reporting pattern occurrences, and
diff [26] for inferring code modifications across versions.
Based on this information, Herodotos correlates reported
pattern occurrences across multiple versions of a software
project and thus tracks each pattern occurrence to discover
its history. It also allows the user to intervene to identify
the reports that are false positives in order to improve the
precision of the results. Finally, Herodotos provides a domain-
specific configuration language for manipulating the collected
information, enabling the user to study the history of the
occurrences of a pattern in a variety of output formats.

In our experiments, we have instantiated Herodotos with
the Coccinelle pattern matching tool [6, 31], which allows
searching for user-specified code patterns in C code. We
have evaluated Herodotos on patterns representing software
defects on a representative range of open-source infrastruc-
ture software: the Linux operating system kernel, the Wine

Tracking environment Project repository p'

Version
i

Version
i+1

Version
n

HerodotosHerodotos

HerodotosHerodotos

Pattern
occurrence

reports
Code

changes

StatisticsGraphs

Hand-edited
correlations

Manually checked
correlated

occurrences

Configuration
file

5

4

3

Diff
tool
Diff
tool

Pattern
matching tool

Pattern
matching tool

Project repository p

Version
i

Version
i+1

Version
n

code
patterncode

pattern

HerodotosHerodotos

2

1

Figure 1: Overview of Herodotos

OS API, the OpenSSL security library, and the VLC mul-
timedia client. This kind of software underlies most of the
computing in a modern desktop environment, and can be
security-sensitive. Thus, it is critical not only to find code
defects, but also to understand their lifecycle, to help develop
priorities for the ongoing software development process.

The contributions of this paper are as follows:

• We propose an approach and a tool, Herodotos, for
tracking code pattern occurrences over multiple soft-
ware versions. This tracking reconstructs the history
of the occurrences in a software project.

• We propose the Herodotos Configuration Language
(HCL) to help the user manage the process of search-
ing for and visualizing pattern occurrences. The user
writes an HCL file describing the experimental environ-
ment and the information of interest. Guided by this
file, Herodotos then generates a variety of graphs and
statistics.

• We formalize the strategy used by Herodotos for corre-
lating code pattern occurrences over multiple versions
of software, even in the presence of other changes in the
file. This strategy allows for user intervention, but in
practice we have found that such intervention is rarely
needed. For the patterns and projects considered in
Section 4, fewer than 1% of the correlations must be
considered by hand.

• We show that the information collected by Herodotos
can give insights into the robustness and stability of
software projects. In particular, we find that large
projects such as Linux and Wine tend to have more
defect kinds than smaller ones such as VLC or OpenSSL,
and that the developers of the OpenSSL security library

are so conservative that the number of defects is very
stable as compared to other projects.

The rest of this paper is organized as follows. Section 2
describes the steps of our approach. Section 3 presents the
two key points of Herodotos: the configuration language and
the automatic correlation of occurrences. Section 4 describes
our experiments on selected software projects and evaluates
our approach based on these experiments. Finally, Section 5
presents related work and Section 6 concludes.

2. APPROACH
Our approach for obtaining a pattern occurrence history in

a software project is based on the following steps, illustrated
in Figure 1: 1) set up a tracking environment, 2) identify the
pattern occurrences in the software, 3) identify the changes
that have occurred from one version to the next, 4) correlate
pattern occurrences across multiple versions, modulo the
identified changes, and 5) generate graphs and statistics
representing various aspects of the history of the pattern
occurrences. This process is guided by a configuration file
that describes the patterns of interest, the software project
versions, and the desired kinds of graphs and statistics.

Setting up a tracking environment.
The user must initially choose a pattern matching tool,

create the code patterns of interest according to the notation
of the chosen tool, and collect the software versions to study,
grouped by project. He then declares the means of invoking
the pattern matching tool and the location of the patterns
and the projects in the configuration file. Finally, he invokes
Herodotos with this configuration file to create the tracking
environment.

Finding pattern occurrences.
Although Herodotos is independent of the pattern match-

ing tool, it must still be able to interpret the output of this
tool, to find the file names and the positions of the pat-
tern occurrences. Herodotos expects this information to be
presented using the hyperlink notation of the Emacs “org
mode” [30], which makes it possible to generate links from
the pattern occurrence reports to the project source code,
for easy validation of the collected information.

Based on the information provided in the configuration file,
Herodotos applies each of the pattern matching rules listed in
the configuration file to every version of each software project
and collects the results. This step can be time-consuming,
and thus it can be performed offline and the results cached
for later processing.

Computing version modifications.
When a pattern occurrence is not removed by a software

developer, it will appear in, and thus be reported for, multiple
versions. If the pattern occurrences remain on the same line,
with the same surrounding context, they are easy to correlate.
But this is unlikely, as unrelated changes may occur elsewhere
in the same file. To be able to correlate pattern occurrences
across versions, we thus need to know what other changes
have taken place in the same file. For each file for which
there is at least one pattern report in successive versions,
Herodotos uses the GNU diff tool to compute the set of
changes between these two versions.

Correlating and validating occurrences.
Once the pattern occurrences and the version modifications

in the affected files have been identified, Herodotos uses this
information to correlate the pattern occurrences across the
versions of each project. The result is a report containing
one entry for each correlated pattern occurrence. Each entry
consists of a set of links to the position of the given pattern
occurrence in each version of the file in which it occurs. In
some cases, Herodotos is not able to perform the correlation
automatically. In such cases, it proposes a set of possible
correlations to the user, who can accept or reject them.

Pattern matching tools that are based on static analysis,
without information about the code paths that are actually
executed at run time, are subject to false positives, i.e.,
code fragments that match the provided pattern, but for
some reason are not relevant to the property of interest.
Herodotos thus enables the user to intervene at this point,
to designate reports as false positives. Such reports are
discarded in subsequent processing. By integrating this step
into Herodotos, the user only has to check one instance of
each pattern occurrence, rather than every instance in every
version in which the pattern occurs.

Generating graphs and statistics.
Based on the validated occurrences and various information

about the software projects such as the number of lines
of code in each file/project, and the lifetime of each file,
Herodotos can generate a variety of graphs and statistics,
guided by the configuration file. Information is presented at
the level of a specific pattern occurrence or as a summary of
the properties of the occurrences of a given pattern across
multiple projects. The number of pattern occurrences can
be presented directly, or it can be correlated with other
information, such as the size of each file, the number of
changes in each file, and the point of creation and deletion
of each file. These graphs and statistics can help understand
whether pattern occurrences typically are introduced when a
file first appears, are removed when a file is deleted, or are
introduced or removed for other reasons. They also show
trends in pattern occurrences across a project’s history, and
permit comparisons between projects.

3. HERODOTOS IN DETAIL
The key technical contributions in the design of Herodotos

are the configuration language, which exposes Herodotos’
features to the user, and the strategy for correlating pattern
occurrences across multiple versions.

3.1 Herodotos Configuration Language (HCL)
When studying pattern occurrences in one or more large

software projects, the amount of information to manipulate
can quickly becoming overwhelming. To assist the user in
managing this information, Herodotos provides HCL, defined
in Figure 2. HCL allows the user to specify how to set up
the tracking environment and how the history derived from
the collected information should be presented.

Concretely, an HCL configuration file specifies four main
kinds of information: general configuration parameters, the
set of projects, the set of code patterns, and the desired set of
graphs and statistics. Each kind of information is described
by a set of attributes, i.e., a key/value pair, as defined by the
various “attr” rules of the grammar. Figure 3 gives an excerpt
of the HCL file used for the study presented in Section 4.

config ::= globattr∗ project∗ pattern∗ graph∗

globattr ::= prefix = string | projects = string
| patterns = string | results = string
| findcmd = string | flags = string

project ::= project id {prjattr∗}
pattern ::= pattern id {patattr∗}
graph ::= graph filepath {grphattr∗ curve∗}
prjattr ::= flags = string | dir = string

| styleattr
| versions = {((string,date,int))∗}

patattr ::= flags = string | file = string
| styleattr

curve ::= curve project id ({layoutattr∗})?

| curve pattern id ({layoutattr∗})?

| curve project id pattern id {layoutattr∗}
grphattr ::= xaxis = xtype | yaxis = ytype

| xlegend = string | ylegend = string
| pattern = id | project = id
| layoutattr

xtype ::= version | date
ytype ::= occurrences | sum | density | cumul

| size | sizepct | birth | death
| birthfile | deathfile | avglifespan

layoutattr ::= nooccurcolor = float float float
| notexistcolor = float float float
| filename = boolean
| ratio = boolean | factor = int
| styleattr

styleattr ::= color = float float float
| linestyle = id | marktype = id
| legend = string

Figure 2: HCL grammar

The first kind of information, in lines 1 to 9, gives the values
of some global configuration parameters. These describe the
layout of relevant files within the file system and some default
parameters for the pattern matching tool.

The second kind of information describes the set of projects
in which to track pattern occurrences, as illustrated in lines 11
to 20. A project is characterized by the directory (dir)
containing its source code, by various attributes describing
how the project should be represented in graphs, and by
the set of studied versions. A version is specified as a tuple,
giving the version name, the date when the version was
released and the size of the project at that time, expressed
in lines of code. Herodotos orders the given versions by date
in order to define a successor relation between them.

The third kind of information is the set of code patterns,
as illustrated in lines 22 to 28. A pattern is characterized by
the name of the file defining the pattern (line 23), some flags
to be passed to the pattern matching tool (line 24), and the
same set of attributes as in the case of project descriptions
to describe how the pattern should be represented in graphs.

The final kind of information is the set of desired graphs.
Each graph is described by the name of the file in which
to create the graph, a set of attributes and a set of curves.
The xaxis attribute (lines 31, 46 and 59) defines whether
the data is presented by project version (version), or by
a linear time scale (date). The yaxis attribute (lines 33,
48 and 61) defines the type of graph to draw. Depending
on the type of graph, the user may provide some specific
attributes to control its appearance. For instance, factor
(line 63) may be used with size or density graphs to change
the ordinate scale. Finally, the user gives the set of curves to
plot. Each curve is defined by a project, a pattern and a set

1 prefix ="tst -config" #output directory
2 projects ="tst -config/projects" #project directory
3 patterns ="tst -config/cocci" #pattern directory
4 # directory for makefiles
5 results ="tst -config/results"
6 # pattern finding command
7 findcmd =" spatch %f -sp_file %p -dir %d > %o"
8 # pattern finding command flags
9 flags="-timeout 60 -use_glimpse"

10

11 project Linux {
12 dir = "linux"
13 color = 1 0 0
14 linestyle = solid
15 marktype = circle
16 versions = {
17 ("linux -2.6.13" , 08/28/2005 , 4289406)
18 [...]
19 }
20 }
21 [...]
22 pattern unsigned {
23 file = "find_unsigned.cocci"
24 flags = "-all_includes"
25 color = 0 1 0
26 marktype = circle
27 linestyle = solid
28 }
29

30 graph gr/hist/vlc -null_ref.jgr {
31 xaxis = version
32 xlegend = "Versions"
33 yaxis = occurrences
34 ylegend = "Defects"
35

36 curve project VLC pattern null_ref {
37 notexistcolor = 0 0 0
38 nooccurcolor = 1 1 1
39 color = 0 1 1
40 filename = true
41 ratio = true
42 }
43 }
44

45 graph gr/evol/linux.jgr {
46 xaxis = date
47 xlegend = "Linux"
48 yaxis = sum
49 ylegend = "Number of defects"
50 legend = "defaults fontsize 8 left"
51 project = Linux
52

53 curve pattern unsigned
54 curve pattern null_ref
55 [...]
56 }
57

58 graph gr/evol/code -size.jgr {
59 xaxis = date
60 xlegend = ""
61 yaxis = size
62 ylegend = "Code size\nin MLOC"
63 factor = 1000000 # MLOC
64 legend = "defaults fontsize 6 x 800 y 3.4"
65

66 curve project Linux
67 curve project Wine
68 curve project VLC
69 curve project OpenSSL
70 }

Figure 3: Herodotos configuration file

of attributes. The project or the pattern may be explicitly
given or inherited from the default attributes of the graph.

3.2 Correlating pattern occurrences
Once the pattern occurrences are found in each version

of each project using the pattern matching tool, Herodotos
correlates identical occurrences across multiple versions. The
key challenge in this occurs when changes have been made in
the file. The cornerstone of our approach is to compute, for
the position of each occurrence in each version, a prediction of
the position in the successor version. This prediction is com-
puted using the code changes given by diff, then compared
to what was observed by the pattern matching tool in the
successor version. This process automatically correlates most
of the pattern occurrences, while the missed correlations are
corrected by the user. To ensure the completeness of the
correlations, Herodotos proposes a set of possible correlations
for the user to annotate.

3.2.1 Automatic correlation
To compute the prediction, Herodotos first uses the GNU

diff tool to find the differences between a version n and its
successor version n+ 1. For a pair of files, diff produces a
sequence of hunks, which are contiguous sequences of lines
that are removed from or added to the first file to produce
the second one. diff furthermore annotates each hunk with
its position. For the ith hunk hin in version n, the position
is represented by the tuple (Li−n , δi−n , Li+n , δ

i+
n) where Li−n

is the starting line number of the hunk i in version n, δi−n
is the number of lines removed by the hunk in version n,
Li+n is the starting line number of the hunk in the successor
version n+ 1, and δi+n is the number of lines added by the
hunk in the successor version.1 To simplify the prediction
computation, due to a peculiarity of the GNU diff tool, we
adjust some components of the position tuple as specified by
Equations (1) and (2).

if δi−n = 0, Li−n := Li−n + 1 (1)

if δi+n = 0, Li+n := Li+n + 1 (2)

We next observe that each pattern occurrence o has a
position pon in version n, beginning at line lpo

n
. For each

position pon, Herodotos computes the index i for which the
hunk i is the last one whose starting line is at or before the line
containing a given occurrence. In that case, either Equation
(3) or (4) holds, denoting an occurrence inside the hunk or
after the hunk, respectively. If Equation (3) holds, then the
pattern occurs within the lines of code removed by the hunk,
and Herodotos considers that the pattern occurrence has
been removed. Pattern occurrences that appear in added
lines are considered as new. In that case, Herodotos relies
on the user to define a possible correlation if there exists at
least one uncorrelated occurrence of the pattern in version
n+ 1 of the same file.

Li−n ≤ lpo
n
< Li−n + δi−n (3)

Li−n + δi−n ≤ lpo
n
< L(i+1)−

n (4)

1We describe here the information generated by the unified
mode of diff without context, which is provided by the
-U0 option. However, the standard mode of diff provides
equivalent information.

Figure 4: Description of the correlation process

On the other hand, if Equation (4) holds, then the pat-
tern occurrence is after the end of the hunk (if there is no

subsequent hunk, L
(i+1)−
n is considered to be the line after

the end of the file). In this case, the same code is present in
both versions of the file. However this code has been shifted
by all the modifications performed by the hunks before it.
Equation (5) then computes the line lπo

n
of the predicted

position πon. This equation first computes the offset between
the starting line numbers Li+n and Li−n of the hunk, which
represents a cumulative view of the effects of all the previous
hunks, and then computes the difference between the num-
ber of lines added and removed by the hunk, δi+n and δi−n ,
which represents the local modification of the hunk. Finally,
this offset and difference are added to the position of the
occurrence in the current version.

lπo
n

:= lpo
n

+ (Li+n − Li−n) + (δi+n − δi−n) (5)

If a predicted position πon of pon in version n+ 1 is equal

to a position po
′
n+1 reported by the pattern matching tool,

then o and o′ are considered to be the same occurrence and
are correlated across versions n and n + 1. If no report is
found, i.e., the code is unchanged but is no longer considered
to be an occurrence, it typically means that some other
adjustment to the source code has changed it in such a way
that the new code does not match the pattern anymore. For
example, when a pattern searches for type errors in the use
of a variable, an error may be fixed by adjusting the type of
the variable, leaving the reference unchanged.

The correlation process is illustrated by Figure 4 for an
arbitrary version n and its successor. In this example, lines 10,
20 and 30 are affected by a common defect, i.e., a nonsensical
bit-and operation (&).2 Two changes occur in creating the
next version: the defect originally on line 30 is fixed and
an unrelated change is performed in line 15. To study such
nonsensical operations, we wrote a pattern that detects them.
Applying it reports the defects D1, D2 and D3, in version n
and defects D1′ and D2′ in version n+ 1. For each report,
Herodotos identifies the relevant hunk using the information
provided by diff: for D1, there is no preceding hunk; for
D2, the first hunk implies that lines after line 15 now have
an offset of +2; for D3, the second hunk implies that the

2The C operator ! binds more tightly than &, implying that
if e.g., C is even in Figure 4, then the result is always 0.

Figure 5: Aiding to provide user correlation hints

occurrence may have disappeared. Herodotos then computes
a prediction for each report in version n+1. In this prediction,
D1 is still at line 10, and D2 is now at lines 22. By comparing
the prediction with the real report of version n+1, Herodotos
infers that D1 and D2 are still present with names D1′ and
D2′ respectively, and D3 has been fixed, as there is no report
in that version. If another uncorrelated report were present
anywhere in that version, e.g., if constant E were changed
but parentheses were not added at line 30, Herodotos would
have proposed a correlation to the user in the manual phase
of the correlation process (phase 4 of Figure 1) described
below.

3.2.2 Manual correlation
When there is a modification within a line containing a

pattern occurrence, Herodotos cannot perform the correlation
automatically because the occurrence is considered to be part
of the code removed in some hunk, even if the occurrence
is still present in the file. In this case, Herodotos infers
that the occurrence disappears in one version and another
occurrence appears in the next one. In this situation, the
user must complete the occurrence history. To help the user
specify which occurrences should be correlated, Herodotos
generates a list of possible correlations consisting of all pairs
of possibly related occurrences within a given file. This list,
as illustrated in Figure 5, is in the Emacs Org mode format
with hyper-links to the source code. In this list, each pair of
possibly related occurrences is annotated with a state, either
TODO, SAME or UNRELATED, indicating respectively a pair to
check, a correlated pair of occurrences, or an unrelated pair.
Initially, all pairs have the state TODO. For each TODO pair,
the user can follow the hyperlinks to check the reported
occurrences in a version and the next one. If it appears that
both occurrences in a TODO pair are the same, at possibly
different positions, the user changes the state from TODO to
SAME. If the reported occurrences are unrelated, the user
changes the state to UNRELATED.

As Herodotos proposes a correlation for each pair of oc-
currences within a given file that are possibly related, the
number of proposed correlations is potentially quadratic.

Each occurrence, however, can only be correlated with at
most one other. Thus, Herodotos supports an iterative pro-
cess in which the user annotates some correlations as valid,
and then rereuns Herodotos to automatically eliminate other
correlations that are no longer possible. During this iterative
process, Herodotos takes as input not only an occurrence
report and a set of code changes, but also a partial set of
correlations, and produces a new set of possible correlations
for the user to validate. A fixed point is reached when the
user has identified all proposed possible correlations as SAME

or UNRELATED.

4. EVALUATION
We have applied our approach on four open source software

projects. In these experiments, we have used the Coccinelle
pattern matching tool [6, 31], and a collection of patterns
that represent a variety of software defects. These patterns
and our results are available at the web site listed at the end
of the paper. In our evaluation, we consider both the ease of
use of Herodotos and the information that it can give about
the defect history of the software projects.

4.1 Selected software
To conduct our evaluation, we have selected four soft-

ware projects with different profiles: Linux [24], Wine [36],
VLC [34] and OpenSSL [29]. These cover aspects rang-
ing from a full operating system kernel (Linux), to an OS
user interface (Wine), to a user-level multimedia application
component (VLC). OpenSSL was selected to compare these
aspects against security concerns.

Of these software projects, Linux has the most stable
release model, with a new release occurring roughly every
three months. Thus, we have selected Linux as the reference
project. For Linux, we have studied every release from v2.6.13
(August 2005) to v2.6.28 (December 2008), inclusive. For the
other projects, we have selected releases occurring at about
the same time as the Linux releases, when available. The
releases for the other projects are given in Table 1. There
are fewer versions for OpenSSL, because this software was
released less often in the considered time period.

Wine (August 2005 – December 2008)

20050830 0.9 0.9.5 0.9.10 0.9.16 0.9.21 0.9.26 0.9.30
0.9.36 0.9.41 0.9.47 0.9.54 0.9.60 1.1.1 1.1.6 1.1.11

VLC (June 2005 – December 2008)

0.8.2 0.8.4 0.8.4b 0.8.5 0.8.6 0.8.6a 0.8.6b 0.8.6c 0.8.6d
0.8.6e 0.8.6f 0.8.6g 0.8.6h 0.8.6i 0.9.0 0.9.4 0.9.8a

OpenSSL (July 2005 – September 2008)

0.9.8 0.9.8a 0.9.8b 0.9.8c 0.9.8d 0.9.8e
0.9.8f 0.9.8g 0.9.8h 0.9.8i 0.9.8j

Table 1: List of versions used

Figure 6(a) shows the number of lines of C code in each
software project across the different versions. This graph
was generated by Herodotos, based on the specification in
lines 58 to 70 of Figure 3, using the yaxis attribute size.
Linux is the largest software project, with 4 to 6 million
lines of C code in the considered time period. Wine is the
next largest, with 1 to 1.5 million, and OpenSSL and VLC
are the smallest, with 200,000 to 330,000 lines of C code.
The sizepct graph in Figure 6(b) shows the increase in the
number of lines of C code in each software project across the

2006 2007 2008 2009
0

2

4

6

C
od

e
si

ze
in

 M
L

O
C Linux

Wine
VLC
OpenSSL

(a) Absolute size

2006 2007 2008 2009
0

10

20

30

40

50

P
er

ce
nt

ag
e

in
cr

ea
se

Linux
Wine
VLC
OpenSSL

(b) Relative size

Figure 6: Code sizes of the software versions re-
leased between 6/25/2005 and 02/13/2009

Defect kinds CWE

Resource management
Memory 742, 401, 476

File 404
S

tr
u

ct
u
re

Useless code No effect code 563
Insecure code Coding style 547

Erroneous code
Bad use of
operators

596
682

Table 2: Defect classes

different versions, as compared to the first considered version.
Within the considered time period, Linux, Wine, and VLC
have increased in size by around 50%, while OpenSSL has
only increased in size by around 16%. For VLC, the code size
remained essentially the same for a long period, and then
spiked, while for the other software projects, the increase has
been more linear.

4.2 Selected patterns
To obtain a representative view of how and why defects

have been introduced into a software project, it is necessary to
have a representative view of these defects. Defects have been
studied and classified many times [7, 23, 27]. A widely cited
reference is the Common Weakness Enumeration (CWE) [27]
where each weakness is explained and detailed with examples.
Table 2 describes a number of entries in the CWE, relating
to resource management and code structure.

We have developed patterns to find a range of kinds of
defects in the classes shown in Table 2. To allow comparison
between the projects, the patterns are project independent.
The defect kinds are as follows: 1) A file descriptor is acquired,
but not released (open), 2) memory is allocated, but not freed
(malloc),3 3) a NULL pointer is dereferenced (isnull), 4)
a value is dereferenced and subsequently checked for NULL
(null_ref), 5) a pointer is checked for NULL, when it is
already known that it is not NULL (notnull), 6) a constant

3This rule checks for kmalloc and kfree for Linux, and
malloc and free for the other projects.

1 // notand.cocci
2 @r@ expression E ; constant C ; position p; @@
3 !@p E & C
4
5 @script:python@ p << r.p; @@
6 cocci.print main("",p)

1 // unsigned.cocci
2 @u@ type T ; unsigned T i; position p; @@
3 i@p < 0
4
5 @script:python@ p << u.p; @@
6 cocci.print main("",p)

Figure 7: The notand and unsigned patterns

is assigned to a variable, but the variable’s value is never
used (unused), 7) a pointer is compared to 0, rather than
NULL (badzero), 8) boolean and bit operations are misused
(notand), and 9) an unsigned value is checked to be less than
0 (unsigned).

Examples of these patterns are shown in Figure 7, for
notand and unsigned, which are two of the simpler cases.
A pattern consists of a sequence of rules, which may be
expressed in either the Coccinelle semantic patch language,
SmPL, or in Python. Each rule consists of the declaration
of a collection of metavariables, e.g. E and C, in the case of
the first notand rule, followed by either a pattern, expressed
using an extension of C code, or code to execute, expressed
in Python. Besides metavariables bound to e.g., arbitrary
expressions and constants, patterns may also contain position
metavariables, which are bound to information about the
position of the token to which they are attached. In our
examples, SmPL code matches a defect occurrence and then
Python prints information about the position of each defect
occurrence in Emacs org mode format, using appropriate
Coccinelle Python library functions.

Some of the considered defects can cause a crash or memory
leak (e.g., isnull and malloc). Others do not intrinsically
cause incorrect runtime behavior, but can be a symptom of
some other bug. For example, in our experiments, we have
found code where a second redundant NULL test (notnull)
should have been a test on a different value. Others simply
make the code more difficult to understand. For example,
comparing the result of a pointer typed expression to 0
rather than NULL (badzero) suggests that the value of the
expression is an integer.

4.3 Experiments
We have performed our experiments on a HP ProLiant

server with two 3 GHz quad-core Xeon processors and 16 GB
memory. The combined size of the software projects is 8 GB.
Running Coccinelle on this code base for the defect kinds
described in Section 4.2 took a couple of days, with most of
the time spent on processing Linux code. Once the results
were generated by Coccinelle, diff computes the changes
in less three minutes and we used Herodotos to correlate
the 22,077 reported defects in about fifteen seconds. We
then checked the correlated defects for false positives, and
used Herodotos to build the graphical representations and
compute the corresponding statistics. This last phase of
Herodotos takes less than ten seconds. In the rest of this
section, we discuss the usability of Herodotos, present a
synthesis of the computed statistics, and finally discuss some

0.8.2
0.8.4

0.8.4b

0.8.5
0.8.6

0.8.6a

0.8.6b

0.8.6c

0.8.6d

0.8.6e

0.8.6f

0.8.6g

0.8.6h

0.8.6i

0.9.0
0.9.4

0.9.8a

next

Versions

src/audio_output/dec.c
modules/visualization/xosd.c
modules/codec/dvbsub.c
modules/codec/dvbsub.c
modules/access/cdda/info.c
modules/access/vcdx/vcdplayer.c
src/misc/httpd.c
src/misc/httpd.c
src/network/httpd.c
src/network/httpd.c
modules/misc/svg.c
src/input/input.c
src/playlist/engine.c
src/playlist/engine.c
src/playlist/engine.c
modules/video_filter/motiondetect.c
modules/misc/notify/xosd.c

88%

46%
13%4%

0.1%

20%

11%

24%

Figure 8: NULL reference defect evolution in VLC

threats to the validity of our results.

4.3.1 Usability
Once the pattern occurrences have been generated, there

are two points in the execution of Herodotos where the user
should intervene: first to provide additional correlations
and second to identify false positives. We now consider the
amount of work associated with these operations for the
patterns and projects in our experiments.

For Linux, Wine, VLC and OpenSSL and the given defect-
finding patterns, Coccinelle reports over 22,000 defects for
a period of over 3 years. As shown by Table 3, Herodotos
automatically infers more than 99% of the correlations (pairs
of correlated occurrences) between them. 19,371 correlations
are performed automatically, while only 282 are proposed
to the user for review. Based on this set, and using the
iterative process, the user needs to explicitly annotate only
182 correlations; the others are eliminated by Herodotos. Of
the manual correlations, 163 of the correlations are annotated
as SAME, while the remaining 19 are annotated as UNRELATED.
Herodotos finally generates 2,543 occurrence histories based
on the automatic and manual correlations.

Table 3 shows that the correlation process reduces by
almost 89% the number of defect reports that have to be
checked for false positives. Table 4 compares the number
of confirmed defects to the number of reported defects, for
each pattern and each project. Except for OpenSSL, the
rate of confirmed defects per project is always over 90%. For
OpenSSL the rate is 82%, but there are far fewer reports for
this project than for the others. The effort required to check
the false positives depends on the properties of the kind of
defect being detected, and is independent of Herodotos. For
example, notand, which was illustrated in Figure 4, requires
only checking the local code structure, while malloc requires
checking multiple lines of code to ensure that the control-flow
path that is detected as missing a free is feasible during
execution.

4.3.2 Graphs and statistics
Figures 8, 9, and 10 illustrate the graphs produced by

Herodotos. When generating these graphs, Herodotos also
prints the calculated values on the standard output, allowing
other forms of processing of the same information. Figure 8
shows an occurrences graph, illustrating the evolution of
the matches of a specific pattern, null_ref, in a specific
project, VLC. Figure 9 shows various bar graphs, repre-
senting the number of occurrences of each kind of defect at
any point in the considered time period for each software

Reports
Automatic
correlations

Missing
correlations

Correlations
proposed to the user

User provided
correlation annotations

Occurrence
histories

Linux 16,103 14,050 121 176 130 0.92% 1,932
Wine 4,281 3,864 22 79 27 0.69% 400
VLC 1,337 1,175 3 3 3 0.25% 159
OpenSSL 356 282 17 24 22 7.24% 52

Total 22,077 19,371 163 282 182 0.93% 2,543

Table 3: Correlation effectiveness

Software projects
Defect kinds Linux Wine VLC OpenSSL

C. / R. C. / R. C. / R. C. / R.

Resource File descriptor not released (open) 3 / 4 0 / 0 0 / 0 0 / 1
Memory not released (malloc) 42 / 44 2 / 2 2 / 2 0 / 0
Dereference after NULL (isnull) 42 / 92 2 / 5 3 / 5 3 / 4
Dereference before checking NULL (null_ref) 276 / 309 23 / 33 19 / 22 10 / 13

Useless Double check a pointer with NULL (notnull) 48 / 69 30 / 30 4 / 4 8 / 10
code Assign a constant to an unused variable (unused) 267 / 286 42 / 49 8 / 9 15 / 17
Insecure code Compare with zero instead of NULL (badzero) 852 / 863 257 / 264 115 / 115 5 / 5
Erroneous Wrong use of ! with & (notand) 72 / 76 16 / 16 2 / 2 0 / 0
code Check if an unsigned value is less than 0 (unsigned) 188 / 189 1 / 1 0 / 0 2 / 2

Total 1,790 / 1,932 373 / 400 153 / 159 43 / 52

Table 4: Confirmed (C.) and reported (R.) defects by defect category

open
malloc

isnull
null_ref

notnull

unused

badzero

notand

unsigned

0

200

400

600

800 Linux
Wine
VLC
OpenSSL

(a) Number of defects

open
malloc

isnull
null_ref

notnull

unused

badzero

notand

unsigned

1 yr

2 yrs

3 yrs

4 yrs

(b) Average defect lifespan

open
malloc

isnull
null_ref

notnull

unused

badzero

notand

unsigned

0

50

100

150

200

(c) Defects that are introduced with a file

open
malloc

isnull
null_ref

notnull

unused

badzero

notand

unsigned

0

50

100

150

200

(d) Defects that are deleted with a file

Figure 9: Generated statistics for each defect kind and each software project

project (cumulsum), the average lifetime of each such defect
(avglifespan), the number of such defects that have been
introduced when adding a new file, and the number that
have been removed when deleting a file. Finally, the sum

graphs in Figure 10 show the evolution in the number of
defects throughout the studied period.

We now present these results from several points of view:
in terms of a particular pattern and project, in terms of
the projects, in terms of the patterns, and in terms of the
evolution of the defects through the project history.

Per pattern and project.
Figure 8 represents the occurrences graph, defined by

lines 30 to 43 of Figure 3, for the VLC project and the
null_ref defect pattern. This kind of graph shows the
lifetime of each defect, the lifetime of the file in which it
occurs and the percentage of the lines of code that change
when the defect is introduced and removed. Determining
the lifetime of each defect requires the correlation of defect
reports over multiple versions, as performed by Herodotos.
For a given pattern and project, there is a light blue/grey
bar (Figure 3, line 39) running from the version in which the
pattern was introduced to the version in which it disappeared.
A black bar (line 37) indicates the range of versions in which
the file does not exist, either because it has not yet been
added or because it has been removed. For example, in
Figure 8, the first defect was introduced when its containing

2006 2007 2008 2009

Linux

0

50

100

150

N
um

be
r

of
 d

ef
ec

tsopen
malloc
isnull
null_ref
notnull
unused
notand
unsigned

2006 2007 2008 2009

Wine

0

5

10

15

20

25

N
um

be
r

of
 d

ef
ec

ts

2006 2007 2008 2009

badzero

0

200

400

600

N
um

be
r

of
 d

ef
ec

ts

Linux
Wine
VLC
OpenSSL

2006 2007 2008 2009

VLC

0

5

10

N
um

be
r

of
 d

ef
ec

ts

2006 2007 2008 2009

OpenSSL

0

5

10

15

N
um

be
r

of
 d

ef
ec

ts

Figure 10: Generated graphs representing each defect evolution for each software project

file was added to the software project, while the second defect
was the result of a modification in the existing code. In this
case, the file was substantially rewritten, by more than 80%.
In the seventh line, the defect was introduced when adding
a missing feature to existing code in version 0.8.5 and it was
corrected in version 0.8.6. Finally, the second-to-last defect
disappeared because its file was removed.

When studying defective code patterns, the occurrences

information can help in determining the possible conditions
that lead to defects. Indeed, popular wisdom has it that
introducing new code and new features also introduces new
defects. This theory is substantiated for VLC for the given
defect type, where the versions that introduce defects also
typically contain many changes.

Based on the same information, Herodotos can also gener-
ate birthfile and deathfile graphs (not shown), showing
how many occurrences are introduced or removed with the
file to which they belong, at each version. These kinds of
graphs illustrate the code quality of new and obsolete services,
when they are respectively added and removed.

Per software project.
As shown in Table 4, Linux, which is the largest software

project we have studied, tends to have the highest number
of defects and has at least one defect for every defect-finding
rule. Wine has many similarities with Linux. As shown in
Figure 6(b), both projects have been growing at a similar
rate. Wine also has at least one occurrence of each defect
kind, except open, unlike OpenSSL and VLC. VLC does not
distinguish itself from the others with an extreme value. Its
number of defects is relatively low but three times higher than
that of OpenSSL, which is comparable in terms of code size.
Finally, OpenSSL confirms its position as stable security
software. Indeed, as shown in Table 4, it has the lowest
number of confirmed defects. The developers of OpenSSL
are also very conservative, which leads to long defect lifetimes,
as shown in Figure 9(b).

Per defect category.
Figure 9 presents the statistics computed by Herodotos:

the number of defects, the average lifespan, and the number

of defects introduced and removed at the same time as the file
they belong to. Of these statistics, calculating the number
of defects and the average lifespan relies on the correlation
of defect reports over multiple versions, as performed by
Herodotos. The defect kinds are presented in the same order
as in Table 4.

Despite the fact that many static and dynamic analysis
tools have considered defects related to the release of allo-
cated memory, Figure 9(a) shows that many such errors still
exist, particularly in Linux code, where user-space tools such
as Valgrind [28] cannot be used. These defects, however,
tend to have a shorter lifespan, as shown in Figure 9(b),
particularly for malloc in Wine and isnull in VLC.

OpenSSL defects tend to have a long lifespan in general.
Depending on the project, other defects may have a long
lifespan such as deferencing of a NULL value (isnull, in
Wine), redundant NULL tests (notnull, in VLC), and com-
paring a pointer to zero (badzero, in Wine). Of these, only
isnull directly leads to a program crash, although notnull

may represent a test of the wrong value, which can lead to
a crash in the access to some other data. Except for Linux,
in which such defects have a relatively short lifespan, the
number of such defects is small. The remaining defects tend
to have a lifetime between a year and a half, and two years.

The defect of comparing a pointer to zero is common
in newly added files (Figure 9(c)) and has a long lifespan
(Figure 9(b)), with the defect often being either still present
or removed only when the file disappears (Figure 9(d)).

Evolution through the project history.
Figure 10 shows the sum graphs generated by Herodotos.

For each project and each kind of defect, a line gives the evo-
lution of the number of defects. The lines related to badzero

are plotted in a separate graph to improve readability.
For Linux, we observe that the reported defects about

misuse of boolean and bit operators (notand) and comparison
of unsigned with zero (unsigned) have declined dramatically
since early 2008. As we have been using Coccinelle for finding
and fixing bugs in the Linux kernel since around this time,
it could explain in part the trend we observe on the later
studied versions. However, we still find some defects and it

would be interesting to learn why they have not been fixed.
Has a patch already been submitted? If so, why it is not
incorporated? Has it been lost or rejected? Finally, we do
not observe a similar trend for the other kinds of defects.

Wine is the second largest project studied in this paper.
It has many unused variables, many of which have been
cleaned up in 2008. We also note that misuse of boolean
and bit operators (notand) has declined significantly. This
improvement began in 2007.

VLC, which is less critical than the other selected projects,
distinguishes itself by a poor coding style with a relative high
rate of comparisons of pointers to 0 and unused variables,
with respect to its size. However, unused variables have
recently been cleaned up. We also note that after a decrease
in NULL dereferences (isnull and null_ref) in mid 2008,
the number of this kind of defect has increased in the last
three studied releases, suggesting that developers should
focus on these defects, and should keep these issues in mind
when adding new code. Other kinds of defects are stable
over time.

Defects in OpenSSL are stable, suggesting that little effort
has been made to fix them. The number of unused variable
defects has even risen recently. However, OpenSSL is also
the project with the lowest rate of growth, around 16%
(Figure 6(b)), which suggests that its development is not
very active even though it is widely used.

4.4 Threats to validity
To assess the threats to the validity of the study, we

consider issues related to the correlations performed by
Herodotos, and then issues related to the choice of projects
and the pattern matching process.

Correlations.
We currently have a fairly restrictive notion of identical

occurrences across versions. Our approach does not deal
with variable, file and directory renaming, which may lead
to an artificially high occurrence turnover, i.e., occurrences
removed in one version and added to the next one. To
address this issue, we can define a more general definition of
identical occurrences. Nevertheless, the best definition might
be specific to the pattern studied and the scale, i.e., variable,
file or directory renaming. Defining what is an identical
occurrence across versions thus remains an open question.

We have not systematically checked the automatic cor-
relations for false positives, as the large number of reports
makes this infeasible. Nevertheless, the automatic corre-
lations by definition refer to blocks of code that have not
changed between the two versions, and thus we believe that
false positives are unlikely.

Representativeness of the software projects.
We have chosen the four aforementioned projects for their

heterogeneity, with the goal of comparing a wide variety of
code. Nevertheless, due to time constraints and the large
volume of code and defects involved, it has only been possible
to consider one project in each category. A chosen project
may not be representative of its category.

The nine patterns used are project independent. Generic
defects may, however, not be representative of all of a project’s
defects. Mechanisms to infer software-specific defects [21, 22]
can allow studying software-specific defect histories.

To prevent biased results, the user must carefully choose

the program matching tool, the projects and the occurrence
patterns. The manual verification of the defects found in the
occurrence histories may suggest to the user that the choice
of tool or pattern is inappropriate, if there are many false
positives.

Static pattern matching.
The use of pattern matching against the source code rather

than information collected at run time means we may have
some false positives in the defect reports when the pattern
involves disjoint code fragments that may turn out not be
connected by any actual execution path. We have tried to
remove these false positives, but some may remain. Moreover,
the defects we are looking for must match the provided
patterns. In some cases, such as malloc, the pattern is
fairly restrictive, to prevent false positives. This strategy
may nevertheless lead to false negatives. Finally, we have
primarily relied on our own expertise to distinguish true
defects from false positives, although for each defect type,
we have submitted and had accepted a number of patches to
the Linux kernel or noted patches related to the defect type
that have been submitted by others.

5. RELATED WORK
Previous work has considered either static code analysis

to find defects [3, 7, 8, 9, 35] or defect history based on bug
trackers [13, 25], but little has been done to build tools to
track defects over time in the presence of code modifications.
Chou et al. [7] made a detailed study of the history of 12 kinds
of bugs in Linux code up to 2001. Their study involves the
automatic propagation of reported defects across successive
versions but no explanation was given as to how this was
done and no tool was released. More recently, Li et al. [23]
have conducted an empirical study on open source software.
However, no tool to automatically or semi-automatically
build defect histories was mentioned and the bugs considered
came from a bug tracker system.

Other work [9, 22, 35] based on static code analysis has
been used for finding defects in upcoming or recent releases,
but without consideration of a long period of time to build a
defect history. Defect history has, however, been studied by
coupling a source code management (SCM) system, generally
CVS, with a bug tracking system. DynaMine [25] applies
data mining techniques to the data collected by an SCM
system to find frequent application-specific coding patterns
that can be used to check for bugs. ROSE [37] uses the same
technique to suggest modification sites during software evo-
lution. Finally, iBUGS [10] explores information contained
in an SCM system to infer bugs and associated tests in order
to build a benchmark for defect searching tools. However
none of these approaches uses pattern matching against the
source code.

Recent work has also considered the automatic correlation
of defects, or warnings. Spacco et al. [33] use the warning
message from a bug finding tool as an identifier with which
to compute a hashcode. Identical defects are assumed to
have the same hashcode, allowing them to construct a defect
history. The problem is that according to the elements
taken into account, “identical” defects may greatly vary. In
contrast, our approach is based on the exact position in the
file, and its evolution. Kim and Ernst [20] and Śliwerski et
al. [32] rely on the log messages developers provide in an
SCM system to identify defects. These approaches require

access to the SCM system and assume that developers use
a consistent set of keywords to characterize each commit.
In the former approach, every line modified by a commit
has the same status as the others, whether or not it is bug-
related. Extraneous modifications, such as removal of trailing
spaces, may thus cause a line to be incorrectly annotated as
a bug fix. This incorrect annotation is then back ported to
the previous versions. Finally, the authors do not explain
how the line status is propagated beyond the first previous
revision, when other changes have to be taken into account.
The latter approach suffers from the same problem when a
syntactic modification does not change the semantics of the
program. Boogerd and Moonen [5] use a history collecting
mechanism based on that of Spacco and of Kim and Ernst.
Their approach thus suffers from the same strong dependency
on the SCM system.

Tracking occurrences has also been applied to the study
of code clones. Duala-Ekoko and Robillard [11] propose a
similar approach to ours for tracking clones. It is based on
a clone detector and an abstract representation of clone oc-
currences. But their tool is tightly coupled with a particular
clone detector. Moreover, they relax the definition of clone
position with heuristics to improve clone detection, which
weakens the tracking possibility. Kim et al. [19] study clone
genealogies using a clone detector and a location tracker.
Their tool identifies multiple correlations when there is ambi-
guity between multiple clones, when one has a more similar
structure but the other is located at a more expected place.
We instead allow the user to provide additional information,
and provide assistance for this task.

In our experiments, we have used the standard GNU diff

tool [26], as it is widely available. However, the Patience diff
algorithm [1, 4] or some other element matching tool [16]
may lead to a better correlation. We will investigate this in
future work.

Interesting patterns to study can be discovered with tools
that infer structural changes, such as spdiff [2] for C code,
or LSdiff [17, 18] for Java code. These tools infer abstract
descriptions of changes, while Herodotos tracks persistent
pattern occurrences. However, they may be used in conjunc-
tion with a pattern finder to generate input for Herodotos.

6. CONCLUSION
In this paper, we have presented Herodotos, which tracks

pattern occurrences across software versions, builds a graphi-
cal representation of the history of these pattern occurrences,
and computes some statistics. This process leverages existing
tools to infer code modifications and the positions of pattern
occurrences. It then automatically builds the history of each
pattern occurrence. To overcome the inherent imprecision of
the tools on which it relies, Herodotos enables the user to
intervene in the process. The user can provide information
to improve the correlation between versions and to elimi-
nate false positives reported by the pattern matching tool.
Herodotos assists the user in the former by proposing some
possible correlations based on heuristics.

In future work, we are considering how to exploit more in-
formation from SCM systems and word-based diff to improve
the automatic correlation process. For instance, Herodotos
is currently not able to correlate pattern occurrences when a
file is renamed or moved to another directory. The git SCM
system [15] tracks the repository content as a whole, and it
is thus able to infer file and directory renaming. wdiff [14]

works at the granularity of words, rather than lines, and
could be used for in-hunk occurrences. Using the informa-
tion provided by these tools could help Herodotos infer more
correlations. In the specific case of defects, tightly coupling
Herodotos with a SCM system, and further extending it with
an interface to a bug tracking system, will make it possible
to determine why and how defects have been found and fixed.
Finally, the Coccinelle pattern matching tool allows the user
to define software-specific patterns [22]. We plan to exploit
this feature to study software-specific defects and look for
new defect categories from a software-specific point of view.

In the evaluation of Herodotos, we have shown that on
the four studied projects, the number of defects tends to
be either stable or increasing. In the case of Linux, the
result of using Coccinelle, for bug detection and fixing, has
shown some visible effects. A more systematic use of both
Coccinelle and Herodotos would thus be desirable, to aid
software developers in fixing defects and in understanding
the overall improvement.

Availability: The Herodotos tool and data from this paper
are available at http://www.diku.dk/~npalix/herodotos/

Acknowledgements: We would like to thank the AOSD
reviewers and especially Erik Ernst for helpful feedback on
this paper. This work has been supported in part by the
Danish Research Council (grant 274-08-0214), and the French
ANR blanc project NT09 487593.

7. REFERENCES
[1] Alfedenzo. Patience diff, a brief summary.

http://alfedenzo.livejournal.com/170301.html,
fev 2008.

[2] J. Andersen and J. Lawall. Generic patch inference. In
23rd IEEE/ACM International Conference on
Automated Software Engineering, pages 337–346,
L’Aquila, Italy, Sept. 2008.

[3] T. Ball, E. Bounimova, B. Cook, V. Levin,
J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K.
Rajamani, and A. Ustuner. Thorough static analysis of
device drivers. In The first ACM SIGOPS EuroSys
conference (EuroSys 2006), pages 73–85, Leuven,
Belgium, Apr. 2006.

[4] S. Bespamyatnikh and M. Segal. Enumerating longest
increasing subsequences and patience sorting.
Information Processing Letters, 76(1-2):7–13, Nov.
2000.

[5] C. Boogerd and L. Moonen. Assessing the value of
coding standards: An empirical study. In IEEE
International Conference on Software Maintenance,
2008. ICSM 2008, pages 277–286, Beijing, China, Sept.
2008.

[6] J. Brunel, D. Doligez, R. R. Hansen, J. Lawall, and
G. Muller. A foundation for flow-based program
matching using temporal logic and model checking. In
The 36th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages
114–126, Savannah, GA, USA, Jan. 2009.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors. In
Proceedings of the 18th ACM Symposium on Operating
System Principles, pages 73–88, Banff, Canada, Oct.
2001.

[8] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne,

http://www.diku.dk/~npalix/herodotos/
http://alfedenzo.livejournal.com/170301.html

D. Monniaux, and X. Rival. Varieties of static
analyzers: A comparison with ASTRÉE. In First Joint
IEEE/IFIP Symposium on Theoretical Aspects of
Software Engineering, pages 3–20, Shanghai, China,
June 2007.

[9] Static source code analysis, static analysis, software
quality tools by Coverity Inc.
http://www.coverity.com/, 2008.

[10] V. Dallmeier and T. Zimmermann. Extraction of bug
localization benchmarks from history. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering, pages 433–436, Atlanta, GA, USA, Nov.
2007.

[11] E. Duala-Ekoko and M. P. Robillard. Tracking code
clones in evolving software. In ICSE ’07: Proceedings of
the 29th international conference on Software
Engineering, pages 158–167, Minneapolis, USA, May
2007.

[12] D. R. Engler, B. Chelf, A. Chou, and S. Hallem.
Checking system rules using system-specific,
programmer-written compiler extensions. In Fourth
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–16, San Diego, CA,
Oct. 2000.

[13] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In Software Maintenance, 2003.
ICSM 2003. Proceedings. International Conference on,
pages 23–32, Amsterdam, The Netherlands, Sept. 2003.

[14] Free Software Foundation Inc. wdiff: comparing files on
a word per word basis.
http://www.gnu.org/software/wdiff/.

[15] Git: The fast version control system.
http://git-scm.com/.

[16] M. Kim and D. Notkin. Program element matching for
multi-version program analyses. In MSR ’06:
Proceedings of the 2006 international workshop on
Mining software repositories, pages 58–64, Shanghai,
China, May 2006.

[17] M. Kim and D. Notkin. Discovering and representing
systematic code changes. In ICSE ’09: Proceedings of
the 2009 IEEE 31st International Conference on
Software Engineering, pages 309–319, Vancouver,
Canada, 2009. IEEE Computer Society.

[18] M. Kim, D. Notkin, and D. Grossman. Automatic
inference of structural changes for matching across
program versions. In ICSE ’07: Proceedings of the 29th
international conference on Software Engineering,
pages 333–343, Minneapolis, MN, USA, 2007. IEEE
Computer Society.

[19] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In
ESEC/FSE-13: Proceedings of the 10th European
software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on
Foundations of software engineering, pages 187–196,
Lisbon, Portugal, Sept. 2005.

[20] S. Kim and M. D. Ernst. Which warnings should I fix
first? In Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software

engineering, pages 45–54, Dubrovnik, Croatia, Sept.
2007.

[21] J. Lawall, G. Muller, and N. Palix. Enforcing the use of
API functions in Linux code. In 8th Workshop on
Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS ’09), pages 7–11, Charlottesville,
VA, USA, Mar. 2009.

[22] J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart,
G. Muller, and N. Palix. WYSIWIB: A declarative
approach to finding protocols and bugs in Linux code.
In The 39th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks,
(DSN 2009), pages 43–52, Estoril, Portugal, June 2009.

[23] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai.
Have things changed now?: an empirical study of bug
characteristics in modern open source software. In
Proceedings of the 1st workshop on Architectural and
system support for improving software dependability,
pages 25–33, San Jose, CA, USA, 2006.

[24] Linux kernel. http://kernel.org/.

[25] B. Livshits and T. Zimmermann. DynaMine: finding
common error patterns by mining software revision
histories. In Proceedings of the 10th European software
engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of
software engineering, pages 296–305, Lisbon, Portugal,
Sept. 2005.

[26] D. MacKenzie, P. Eggert, and R. Stallman. Comparing
and Merging Files With Gnu Diff and Patch. Network
Theory Ltd, Jan. 2003.

[27] Mitre. Common Weakness Enumeration.
http://cwe.mitre.org/.

[28] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In PLDI
’07: Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation,
pages 89–100, San Diego, CA, USA, 2007.

[29] OpenSSL. http://www.openssl.org/.

[30] Org-mode homepage. http://orgmode.org/.

[31] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
Linux device drivers. In EuroSys 2008, pages 247–260,
Glasgow, Scotland, Mar. 2008.

[32] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR ’05: Proceedings of the
2005 international workshop on Mining software
repositories, pages 1–5, Saint Louis, MO, USA, May
2005.

[33] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking
defect warnings across versions. In Proceedings of the
2006 international workshop on Mining software
repositories, pages 133–136, Shanghai, China, May
2006.

[34] VLC media player. http://www.videolan.org/vlc/.

[35] D. Wheeler. Flawfinder home page. Web page:
http://www.dwheeler.com/flawfinder/, Oct. 2006.

[36] Wine Is Not a Emulator. http://www.winehq.org/.

[37] T. Zimmermann, A. Zeller, P. Weissgerber, and
S. Diehl. Mining version histories to guide software
changes. IEEE Transactions on Software Engineering,
31(6):429–445, 2005.

http://www.gnu.org/software/wdiff/
http://git-scm.com/
http://kernel.org/
http://cwe.mitre.org/
http://www.openssl.org/
http://orgmode.org/
http://www.videolan.org/vlc/
http://www.dwheeler.com/flawfinder/
http://www.winehq.org/

	Introduction
	Approach
	Herodotos in Detail
	Herodotos Configuration Language (HCL)
	Correlating pattern occurrences
	Automatic correlation
	Manual correlation

	Evaluation
	Selected software
	Selected patterns
	Experiments
	Usability
	Graphs and statistics

	Threats to validity

	Related work
	Conclusion
	References

