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Abstract. Conservation laws of the form ∂tu+∂xf(x; u) = 0 with space-discontinuous
flux f(x; ·) = fl(·)1x<0 + fr(·)1x>0 were deeply investigated in the last ten years, with
a particular emphasis in the case where the fluxes are “bell-shaped”. In this paper,
we introduce and exploit the idea of transmission maps for the interface condition at
the discontinuity, leading to the well-posedness for the Cauchy problem with general

shape of fl,r . The design and the convergence of monotone Finite Volume schemes based
on one-sided approximate Riemann solvers is then assessed. We conclude the paper by
illustrating our approach by several examples coming from real-life applications.
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1. Presentation of the problem

Scalar conservation laws of the form

∂tu+ ∂xf(u;x) = 0 (1.1)

with Lipschitz in u, piecewise regular and jump-discontinuous in x flux function

f appear in applications such as sedimentation, two-phase flows in porous media,

road or pedestrian traffic, and others. The equation should be considered subject

to an initial condition and (in the case of a bounded domain) with some boundary

conditions. Due to the finite speed of propagation typical for hyperbolic equations,

and because the influence of boundary conditions is rather well studied (at least in
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the Dirichlet case, see [21]; see [25] and [16,17] for the Neumann case and for more

general boundary conditions), we will focus on the Cauchy initial-value problem.

The case of x-independent or regular (Lipschitz continuous in x also) flux func-

tion f is a classical one; then, the central concept for equation (1.1) are Kruzhkov

entropy inequalities and the associated notion of entropy solution ([57]). In partic-

ular, it is known that typical entropy solutions u are piecewise regular, and jumps

in u obey some admissibility conditions deduced from the weak (distributional)

formulation of equation (1.1) and also from the entropy inequalities.

The discontinuous-flux case we are interested in has been studied for more than

twenty years (see in particular [50,68,4,56,67,2,3,19,20,49,45,14,62,1], see also the

references of paper [14]), and its theory is still not complete although much progress

in understanding the problem has been achieved. A basic goal of a mathematical

theory for equation (1.1) is to formulate an adequate notion of admissible solution

(generally based on some adapted entropy inequalities), and then to prove existence

and uniqueness of solutions subject to an initial condition and (in the case of a

bounded domain) with some boundary conditions. The convergence of numerical

approximation is also often addressed.

Understanding of these problems can easily be reduced to understanding of the

model case considered in most of the mathematical studies of the subject:

f(·;x) = fl(·)1x<0 + fr(·)1x>0. (1.2)

Here, fl,r are x-independent nonlinearities, so that x 7→ f(u;x) experiences a jump

across the hypersurface

Σ := {(x, t) ∈ R× R+ | x = 0}

called interface in the sequel.

In what follows, we assume that there exist time-independent real values ul,r
and ul,r, such that ul,r ≤ ul,r, and such that the piecewise constant functions

u(x) = ul1x<0 + ur1x>0 and u(x) = ul1x<0 + ur1x>0 (1.3)

are steady solutions to the problem (1.1) (we refer to [14, Prop. 3.20 and §6] to

highlight the role and the importance of this kind of assumptions for the existence

theory). In particular, the Rankine-Hugoniot condition across the interface Σ for

the solutions u and u enforces the compatibility conditions

fl(ul) = fr(ur), and fl(ul) = fr(ur). (1.4)

Moreover, the flux functions fl,r are assumed to be Lipschitz continuous on the

intervals Ul,r, where

Ul = [ul, ul], and Ur = [ur, ur].

In what follows, we denote by Ll,r the (smallest) Lipschitz constant for fl,r.

More generally, the flux functions fl,r can be assumed time-dependent, which is

needed, e.g., in the hyperbolic Buckley-Leverett model(see, e.g., [7]) or for modeling
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lights in traffic flows (see [41,11]). We refer to [11] for techniques specific for such

time-dependent cases.

The initial datum u0 ∈ L∞(R) is assumed to be bounded between u and u, i.e.

u(x) ≤ u0(x) ≤ u(x), for a.e. x ∈ R. (1.5)

In what follows, we will focus on the Cauchy problem (1.1) with fluxes (1.2),(1.4)

and initial datum (1.5).

Due to assumption (1.2), the main delicate point in order to construct a well-

posedness theory for the above Cauchy problem is to fix a notion of admissibility

of jumps in u across the interface Σ where f(u; ·) experiences a jump. Indeed, it

was established in [3] that there may exist infinitely many different, equally mathe-

matically consistent ways to define admissibility of solutions at the interface; then,

it was understood that different solution notions actually correspond to different

physical models. This means in particular that some additional information, not

contained in the nonlinearities fl,r, may be needed in each concrete application in

order to single out the solution relevant for this application.

The method we propose in this paper goes back to the idea introduced in [39]

consisting in solving two scalar conservation laws on half-space coupled by an ad

hoc transmission condition at the interface. With the notation

Ωl := {x < 0} and Ωr := {x > 0},

we require u|Ωl,r×R+
to be the entropy solutions of




∂tu+ ∂xfl,r(u) = 0 in Ωl,r × R+,

u|t=0
= u0 in Ωl,r,

u|x=0
= ũl,r on Σ.

(1.6)

In the problem (1.6), the functions t 7→ ũl,r(t) ∈ L∞(R+;Ul,r) are unspecified

for the moment. Recall that the notion of entropy solution to Cauchy-Dirichlet

problems (1.6) first requires that

u(·, 0) = u0 and the functions u|Ωl,r×R+
are Kruzhkov entropy solutions of

conservation laws ∂tu+ ∂xfl,r(u) = 0 in domains Ωl,r × R+, respectively.
(1.7)

Observe that, without loss of generality, one can assume that u ∈

C([0,+∞);L1
loc(R)) (see, e.g., [34]). This gives pointwise strong sense to the ini-

tial condition in (1.7) and thus in (1.6). Furthermore, in order to write explicitly

the boundary conditions in (1.6), in this introduction let us assume for a moment

that we deal with solutions u ∈ L∞(R × R+) of the local entropy formulations

(1.7) that have strong interface tracesa. More precisely, we work with u that admits

a This is true for any u ∈ L∞(R × R+) solution of (1.7) provided fl,r have non-zero derivative
on any nontrivial subinterval of Ul,r , see [65]. Without any additional assumption on the fluxes,
this is true for any self-similar solution (which is important because this applies to solutions of
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strong one-sided traces on the interface Σ:

ul(t) = lim
h→0

∫ 0

−h

u(x, t)dx, ur(t) = lim
h→0

∫ h

0

u(x, t)dx, for a.e. t ≥ 0. (1.8)

It is well known since the work of Bardos, Leroux and Nédélec [21] that the one-

sided boundary condition ul,r = ũl,r formally imposed in (1.6) should be understood

“up to a converged boundary layer”. Namely, the boundary conditions in (1.6) are

enforced in the sense of [21], which we express as follows (see [47] for a closely

related approach in the system case). Defining by Gl,r : Ul × Ur → R the Godunov

solvers associated to fl,r, i.e.,

Gl,r(a, b) =

{
mins∈[a,b] fl,r(s) if a ≤ b,

maxs∈[b,a] fl,r(s) if a ≥ b,
(1.9)

we require

fl(ul(t)) = Gl(ul(t), ũl(t)), Gr(ũr(t), ur(t)) = fr(ur(t)) for a.e. t ∈ R+. (1.10)

Now, in order to determine the couple of functions t 7→ (ũl(t), ũr(t)) appearing as

the boundary values in (1.6), we impose two transmission conditions across the

interface Σ:

a) the mass conservativity condition, i.e.,

fl(ul(t)) = fr(ur(t)), for a.e. t > 0;

b) the additional condition that for a.e. t > 0, the couple (ũl(t), ũr(t)) belong

to a given, model-dependent subset β of Ul × Ur.

In this contribution, we focus on the case of a monotone transmission, in which case

β is assumed to be a maximal monotone graph in Ul × Ur.

Definition 1.1. In the context of assumptions (1.2),(1.4), a maximal monotone

graph β in Ul × Ur is called transmission map for (1.1).

We will show that different transmission maps used in b) may lead to different

admissibility notions for the Cauchy problem (1.1),(1.2),(1.4),(1.5), which contains

in particular the different solutions discovered in [3]. Let us stress that in concrete

examples, the transmission map to be used in b) can be determined from some

mesoscale information relevant for the underlying application context (see §4). As an

example, we point out that the vanishing viscosity limits (see [45,13] and references

therein) in the case Ul = Ur can be obtained with β = Id, which was also the

choice of [39]. Notice that due to condition a), we focus on the case of conservative

the Riemann problem).

The simplifying assumption of existence of traces of u can be easily bypassed in the arguments
we develop, keeping in mind that traces of fl,r(u) and those of the associated Godunov fluxes
Gl,r(u, κ) exist (see the arguments in [16,14] that make explicit the result contained in [65]).
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coupling; yet, adaptation to non-conservative coupling is possible (see the example

of § 4.6, which provides a new interpretation of the results of [18]).

We will show that the maximal monotonicity assumption on β guarantees that

there exists a unique function t 7→ (ũl(t), ũr(t)) such that one has

fl(ul) = Gl(ul, ũl) = Gr(ũr, ur) = fr(ur) with (ũl, ũr) ∈ β (1.11)

pointwise for a.e. t ∈ R+, where ul,r are the traces in the sense (1.8) of a solution u

to the Cauchy-Dirichlet problems (1.6). Observe that condition (1.11) summarizes

both transmission conditions a) and b), as well as the form (1.10) of the boundary

conditions in (1.6).

According to the above analysis, by admissible solution associated with a given

transmission map β we will mean a function u ∈ L∞(R × R+) satisfying (1.7),

such that its one-sided traces on the interface Σ fulfill the transmission condition

(1.11). Let us explain how well-posedness for the above interpretation (1.7),(1.11)

is established. First, we observe that if (1.11) holds, the one-sided traces ul,r of u

have to take their values in the set

G(β) = {(ul, ur) ∈ Ul × Ur | there exists (ũl, ũr) such that (1.11) holds}. (1.12)

Next, we interpret the set G(β) in (1.12) within the framework of the general theory

of L1-dissipative solvers for (1.1),(1.2),(1.5) developed in [14], by establishing that

the solution is admissible in the above sense if and only if it is a G(β)-entropy

solution of (1.1),(1.2),(1.5) in the sense of [14]. This claim follows readily from the

analysis of §2.2 that shows that G(β) is a complete maximal L1-dissipative germ

in the sense of [14]. Yet our results consist not only in a reduction to the setting

of G(β)-entropy solutions. Indeed, due to the generality of the setting of [14], the

only generic convergent finite volume scheme is the Godunov scheme which makes

appeal to a Godunov solver at the interface; in general, this Godunov solver can

be quite intricate. In §2.2, following [37] we describe the interface Godunov solver

obtained for a given transmission map β. Furthermore, in §3 we show that the

structure (1.6),(1.11) of the particular solutions associated to transmission maps

permits to design and analyze reasonably cheap convergent finite volume schemes

for G(β)-entropy solutions. The key ingredient here is a rather natural discretization

of the β-dependent transmission condition (1.11). In the last section of the paper,

namely §4, we extend the notion of optimal entropy solution introduced in [3] for

bell-shaped fluxes to the case of general fluxes. We finally show how several problems

coming from clarifier-thickener unit modeling, porous media flow modeling, traffic

flow modeling or pedestrian flow modeling enter the transmission map framework

we propose in this paper.

2. L
1-dissipative germs and transmission maps

We briefly recall the main definitions and results given in the work [14] of Karlsen,

Risebro and the first author. Then we establish relations between L1-dissipative
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germs and transmission maps, and analyze the Riemann problem for β-admissible

solution. As a consequence, we infer well-posedness and convergence of the Godunov

numerical scheme for β-admissible solutions of (1.1),(1.2).

2.1. Germs formalism and general well-posedness results

Consider problem (1.1),(1.2) with fluxes fl,r defined on the intervalsb Ul,r =

[ul,r, ul,r]. In this setting, the following definitions and results are given in [14].

Definition 2.1. A subset G of Ul × Ur is called L1-dissipative germ (L1D germ,

for short) if for all (ul, ur) ∈ G there holds fl(ul) = fr(ur), and moreover, for all

(ul, ur), (vl, vr) ∈ G

ql(ul, vl)− qr(ur, vr) ≥ 0, (2.1)

where

ql,r(u, κ) := sign(u− κ)
(
fl,r(u)− fl,r(κ)

)
.

The following particular properties of germs are of interest.

• An L1D germ is called maximal, if it is not a strict subset of some other L1D

germ.

• An L1D germ G is called definite, if there exists a unique maximal L1D germ G̃

such that G is a subset of G̃.

• An L1D germ G is called complete, if for every Riemann data

u0(x) = ul1x<0 + ur1x>0 with ul ∈ Ul, ur ∈ Ur

there exists a self-similar (i.e., x
t -dependent) solution u such that

a) u|Ωl×R+
is a Kruzhkov entropy solution of ∂tu+ ∂xfl(u) = 0 with u(x, 0) =

ul, x < 0,

b) u|Ωr×R+
is a Kruzhkov entropy solution of ∂tu+ ∂xfr(u) = 0 with u(x, 0) =

ur, x > 0,

c) the one-sided traces limx→0− u(x, t) =: γlu, limx→0+ u(x, t) =: γru of u at

the interface {x = 0} verify (γlu, γru) ∈ G.

Finally, given an L1D germ G, one defines its dual germ G∗ by setting

G∗ =
{
(vl, vr) ∈ Ul × Ur | fl(vl) = fr(vr) and ∀(ul, ur) ∈ G, (2.1) holds

}
.

Another useful notion, that we do not put forward here because it is less funda-

mental, is the notion of closed germ (see [14]) used in Proposition 3.6 in § 3.2.

bIt was supposed in [14] that Ul = Ur; yet the generalization to the case of different domains of
definition of fl,r is immediate, bearing in mind that some compatibility conditions of the kind
(1.4) are mandatory to develop an existence theory.
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The following relations between the above properties of L1D germs are relevant

for the subsequent analysis.

Proposition 2.2. The unique maximal extension of a definite L1D germ G is its

dual germ G∗. In particular, an L1D germ is maximal if and only if it coincides

with its dual.

Proposition 2.3. A complete L1D germ is maximal.

Given a definite L1D germ one defines G-entropy solutions and infers uniqueness

of the so defined solution; furthermore, given a complete L1D germ one obtains well-

posedness results and justifies convergence of the Godunov finite volume scheme.

Definition 2.4. Let G be a definite L1D germ. A function u ∈ C(R+;L
1
loc(R)) such

that u|Ωl×R+
takes values in Ul and u|Ωr×R+

takes values in Ur is called G-entropy

solution of equation (1.1),(1.2) with initial datum (1.5) if u(·, 0) = u0, the Kruzhkov

entropy inequalities are satisfied away from the interface:

∀κ ∈ Ul,r, ∂t|u(x, t)− κ|+ ∂xql,r(u(x, t), κ) ≤ 0 in D′(Ωl,r × R+), (2.2)

and the following adapted entropy inequalities are satisfied

for all (κl, κr) ∈ G, setting κ(x) = κl1x<0 + κr1x>0, there holds

∂t|u(x, t)− κ(x)| + ∂xq(u(x, t), κ(x);x) ≤ 0 in D′(R× R+), (2.3)

with the notation q(·, ·;x) = ql(·, ·)1x<0 + qr(·, ·)1x>0.

Let us recall the main results of the theory [14] on which our analysis will rely.

Theorem 2.5. Under the assumptions of this section, given a definite L1D germ G

there exists at most one G-entropy solution to the Cauchy problem (1.1),(1.2),(1.5)

for every initial datum. Furthermore, if G is a complete L1D germ, there exists a

unique solution to every Cauchy problem and this solution can be obtained as the

limit of approximations obtained by the time-explicit Godunov finite volume scheme

under some appropriate CFL condition.

For the details of the latter statement (description of the scheme, etc.) we refer

to [14, §6], but also to §3 of the present paper.

Actually, the uniqueness proof in [14] does not rely on Definition 2.4 but on an

equivalent definition of solution that makes appeal to strong boundary traces of

suitably defined singular mappings. In the sequel, we will only need the following

implication, contained in [14], which concerns solutions such that u itself possesses

strong boundary traces.

Proposition 2.6. Let G be a definite L1D germ, and let u ∈ L∞(R×R+) be such

that u ≤ u ≤ u a.e. in R× R+, and such that
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i. the restriction u|Ωl,r×R+
of u to Ωl,r × R+ is a Kruzhkov entropy solution,

i.e. (2.2) holds;

ii. u admits strong one-sided traces ul,r ∈ L∞(R+;Ul,r) on the interface Σ

such that (ul(t), ur(t)) ∈ G∗ for a.e. t > 0;

then u is the unique G-entropy solution.

In the above proposition, G∗ is maximal due to the definiteness assumption of G;

as a matter of fact, G- and G∗-entropy solutions coincide. Let us stress that the main

interest of the notion of definite L1D germ (in which case G ⊂ G∗) as compared to

the notion of maximal L1D germ (in which case G = G∗) is to enforce the smallest

possible number of constraints in (2.3). We refer to [28] and [14, §4.8] for one striking

example where G can be chosen to be a singleton. Yet, in the present contribution

we will not address the interesting question of finding the smallest definite subset

of G(β) given in (1.12). We only prove that G(β) is a complete maximal L1D germ,

and we put forward a slightly smaller subset Go(β) of “reachable states” that is a

definite L1D germ (see Proposition 3.6, cf. [14,13] for a particular example).

2.2. Transmission maps yield maximal L1-dissipative germs...

We start by providing a convenient parametrization of a transmission map β. Denote

p := ul + ur and p := ul + ur. Given β ⊂ [ul, ul] × [ur, ur] a maximal monotone

graph, the application

Π :

{
β → [p, p]

(ũl, ũr) 7→ Π(ũl, ũr) = ũl + ũr.

is a one-to-one mapping. The inverse of Π provides nondecreasing 1-Lipschitz con-

tinuous parametrizations of the coordinates of the elements of the graph β:
{
ũl,r : [p, p] → [ul,r, ul,r]

p 7→ ũl,r(p)
(2.4)

with (ũl(p), ũr(p)) ∈ β for all p ∈ [p, p] (i.e., Π = (ũ−1
l , ũ−1

r )).

In the next lemma, we define the interface numerical flux associated with the

interface transmission condition (1.11). In Proposition 2.9 we will prove that this is

exactly the Godunov flux for G(β)-entropy Riemann solver for (1.1),(1.2).

Lemma 2.7. For all (ul, ur) ∈ Ul × Ur, there exists p ∈ [p, p] such that

Gl(ul, ũl(p)) = Gr(ũr(p), ur).

While p is not necessarily unique, the corresponding interface flux map Gβ(ul, ur)

Gβ : (ul, ur) 7→ Gl(ul, ũl(p)) = Gr(ũr(p), ur) (2.5)

is uniquely defined. Moreover, Gβ is Lipschitz continuous w.r.t. ul and ur, and

0 ≤ ∂ul
Gβ(ul, ur) ≤ Ll, −Lr ≤ ∂urGβ(ul, ur) ≤ 0. (2.6)
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Observe that our notation is slightly abusive: namely, Gl,r depend only on fl,r,

respectively, while Gβ depends on β but also on fl and fr.

Proof. Define the functions Ψl,r : [p, p] → R by

Ψl(p) = Gl(ul, ũl(p)) and Ψr(p) = Gr(ũr(p), ur), ∀p ∈ [p, p],

then in view of the monotonicity and of the Lipschitz continuity of Gl,r and p 7→

ũl,r(p), one has

− Ll ≤ Ψ′
l(p) ≤ 0, 0 ≤ Ψ′

r(p) ≤ Lr, for a.e. p ∈ [p, p]. (2.7)

Using once again the monotonicity of Gl,r, one obtains that

Ψl(p) ≥ fl,r(ul,r) ≥ Ψr(p), (2.8)

and

Ψl(p) ≤ fl,r(ul,r) ≤ Ψr(p). (2.9)

Therefore, the existence of p ∈ [p, p] such that Ψl(p) = Ψr(p) follows from (2.8)–

(2.9), from the monotonicity (2.7) of Ψl,r and from the intermediate value theorem.

Moreover, if there exists p̂ > p such that Ψl(p̂) = Ψr(p̂), then due to their mono-

tonicity, both Ψl and Ψr are constant on [p, p̂], ensuring the uniqueness of the value

Gβ(ul, ur) defined by (2.5).

Let us now show that (2.6) holds. Let ûl ∈ Ul be such that ûl ≥ ul, and let p, p̂

be given by

p =min{ π | Gl(ul, ũl(π)) = Gr(ũr(π), ur) },

p̂ =min{ π | Gl(ûl, ũl(π)) = Gr(ũr(π), ur) }.

Since Gl(ûl, ũl(p)) ≥ Gl(ul, ũl(p)) = Gr(ũr(p), ur), then thanks to the monotonicity

properties of Gl,r and π 7→ ũl,r(π), we deduce that p̂ ≥ p. As a consequence,

Gβ(ul, ur) = Gr(ũr(p), ur) ≤ Gr(ũr(p̂), ur) = Gβ(ûl, ur),

ensuring that ∂ul
Gβ(ul, ur) ≥ 0. Moreover, Gl is Ll-Lipschitz continuous w.r.t. its

first variable, yielding

Gβ(ûl, ur)−Gβ(ul, ur) =Gl(ûl, ũl(p̂))−Gl(ul, ũl(p))

≤Gl(ûl, ũl(p))−Gl(ul, ũl(p)) ≤ Ll(ûl − ul).

This ensures that ∂ul
Gβ(ul, ur) ≤ Ll. Proving that −Lr ≤ ∂urGβ(ul, ur) ≤ 0 is

similar.

It is worth remarking that the set G(β) ⊂ Ul × Ur, defined by (1.12), can be

rewritten under the form

G(β) = {(ul, ur) | fl(ul) = fr(ur) = Gβ(ul, ur)}. (2.10)

Now, we examine G(β) in the light of Definition 2.1.
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Proposition 2.8. Consider equation (1.1) with fluxes (1.2),(1.4) and a transmis-

sion map β. The set G(β) is an L1-dissipative germ in the sense of Definition 2.1.

Proof. Given (ul, ur) ∈ G(β), equality fl(ul) = fr(ur) holds by the definition of

G(β). Further, let (ul, ur) and (vl, vr) be two elements of G(β); let us show that (2.1)

holds. First of all, notice that

ql(ul, vl)− qr(ur, vr) = 0 if (ul − vl)(ur − vr) ≥ 0,

so that we only have to consider the case (ul − vl)(ur − vr) < 0. Thanks to the

symmetry of ql,r w.r.t. ul,r and vl,r, we can assume without loss of generality that

ul < vl and ur > vr. Thanks to (2.10) and to the monotonicity of Gβ stated in (2.6),

we obtain that

fl,r(ul,r) = Gβ(ul, ur) ≤ Gβ(vl, vr) = fl,r(vl,r).

Therefore, inequality (2.1) holds.

Further, let us recall that the value of the Godunov numerical flux with argu-

ments ul and ur for a hyperbolic conservation law is defined as the value of the flux

at x = 0 in the solution of the Riemann problem with endpoints ul and ur.

Proposition 2.9.

(i) The L1-dissipative germ G(β) is complete; in particular, it is maximal.

(ii) The application Gβ : Ul × Ur → R defined in (2.5) of Lemma 2.7 is the

Godunov numerical flux at the interface corresponding to the G(β)-entropy

Riemann solver.

Proof. Let (ul, ur) ∈ Ul × Ur, then thanks to Lemma 2.7, there exists (ũl, ũr) ∈ β

such that

Gβ(ul, ur) = Gl(ul, ũl) = Gr(ũr, ur). (2.11)

Fix these values ũl,r and define v ∈ L∞(Ωl,r×R+) as the solution of (1.6) with the

Riemann datum u0 = ul1x<0 + ur1x>0 (in the sense of [21]), and denote by vl,r its

one-sided traces of {x = 0} (which exist and which are constant w.r.t. t, since v is

self-similar). We claim that

(vl, vr) ∈ G(β). (2.12)

Indeed, vl,r are characterized by

vl =




min{s | fl(s) ≤ fl(w), ∀w ∈ [ul, ũl]} if ul ≤ ũl,

max{s | fl(s) ≥ fl(w), ∀w ∈ [ũl, ul]} if ũl ≤ ul,
(2.13)

vr =




min{s | fr(s) ≤ fr(w), ∀w ∈ [ũr, ur]} if ũr ≤ ur,

max{s | fr(s) ≥ fr(w), ∀w ∈ [ur, ũr]} if ur ≤ ũr.
(2.14)
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The solution v of (1.6) satisfies the maximum principle on Ωl,r × R+, ensuring

that vl,r ∈ I(ul,r, ũl,r), where I(a, b) = [min(a, b),max(a, b)]. The Bardos-LeRoux-

Nédélec condition [21] for vl,r then writes

fl(vl) = Gl(vl, ũl), fr(vr) = Gr(ũr, vr). (2.15)

On the other hand, it follows from (2.13)–(2.14) and from the definition of Godunov

fluxes Gl,r that

Gl(ul, ũl) = fl(vl) and fr(vr) = Gr(ũr, ur). (2.16)

In conclusion, it follows from (2.11), and (2.15),(2.16) that

Gβ(ul, ur) = fl,r(vl,r) = Gl(vl, ũl) = Gr(ũr, vr),

which ensures (2.12). Now, the claims (i) and (ii) follow.

(i) Because the states ul,r ∈ Ul,r in the Riemann problem are arbitrary, prop-

erty (2.12) of traces of the solution to the Riemann problem means in particular

that the germ G(β) is complete in the sense of Definition 2.1. Therefore, G(β) is

maximal thanks to Proposition 2.3.

(ii) As a consequence, it follows from Proposition 2.6 that v is the unique G(β)-

entropy solution to the Riemann problem (1.1),(1.2) with initial datum u0 :=

ul1x<0 + ur1x>0. Because the flux fl,r(vl,r) across {x = 0} is given by Gβ(ul, ur),

this means that (2.5) is the precise expression of the Godunov numerical flux for

the Riemann problem set up at the interface.

The interest of Proposition 2.9 is two-fold. First, after parametrizing β in a

monotone way (for example as suggested in (2.4)), the formula (2.5) provides an

expression of Gβ depending on the one-sided Godunov solvers Gl,r. Extension of

this idea will provide a generic construction for monotone schemes (developed in §3)

for approximating the G(β)-entropy solution to the problem. On the other hand,

together with Theorem 2.5, it ensures the existence and the uniqueness of the G(β)-

entropy solution to the Cauchy problem (1.1),(1.2),(1.5) as stressed in the following

statement.

Corollary 2.10. Consider equation (1.1) with fluxes (1.2),(1.4) and a transmission

map β. There exists a unique G(β)-entropy solution to the problem (1.1),(1.2),(1.5)

in the sense of Definition 2.4.

Remark 2.11. According to Proposition 2.6, whenever strong boundary traces

ul,r in the sense (1.8) of a G(β)-entropy solution of (1.1),(1.2),(1.5) exist (this is

the case, e.g., under the non-linearity assumption on fl,r), the unique G(β)-entropy

solution of Corollary 2.10 is also the unique solution in the sense of local Kruzhkov

entropy inequalities away from the interface, see (1.7), and the interface transmission

condition encoded by the transmission map β, see (1.11).
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Thus, we have reduced the study of well-posedness for admissible solutions orig-

inating from the transmission map approach to general results on L1-dissipative

solvers for conservation laws...

2.3. ...but some maximal L1
D germs do not result from a

transmission map

Indeed, we now present an explicit counter-example. In order to build an L1-

dissipative germ that does not correspond to any transmission map β, we utilize

the notion of connection initially introduced by Adimurthi et al. [3] (see also [28])

in the case where fl,r are bell-shaped.

Definition 2.12. A couple (cl, cr) ∈ Ul × Ur is said to be

• a strict connection if

fl(cl) = fr(cr), and

{
Gl(cl, c̃l) = fl(cl) ⇔ cl = c̃l,

Gr(c̃r, cr) = fr(cr) ⇔ cr = c̃r;
(2.17)

• a connection if, for all ǫ > 0, there exists a strict connection (cǫl , c
ǫ
r) such

that

|cl − cǫl |+ |cr − cǫr| ≤ ǫ.

We denote by C ⊂ Ul × Ur the set of all the strict connections, and by C ⊂ Ul ×Ur
the set of all the connections.

It is worth noticing that if fl,r belong to C1(Ul,r;R), a sufficient condition for

(cl, cr) to be a strict connection is that

fl(cl) = fr(cr), f ′
l (cl) < 0, and f ′

r(cr) > 0. (2.18)

Therefore, in the particular case of bell-shaped fluxes (cf. §2.4), our definition co-

incides with the one introduced by Adimurthi et al. [3] and exploited by Bürger et

al. [28].

Let us state the following lemma, that claims that all the connections that are

in the germ G(β) belong to the graph β itself.

Lemma 2.13. Let (cl, cr) ∈ C ∩ G(β), then (cl, cr) ∈ β.

Proof. Let (cl, cr) ∈ C ∩ G(β). Since (cl, cr) ∈ G(β), there exists (c̃l, c̃r) ∈ β such

that

Gl(cl, c̃l) = fl(cl) = fr(cr) = Gr(c̃r, cr).

Since (cl, cr) ∈ C, one has

Gl(cl, c̃l) = fl(cl) ⇔ cl = c̃l, Gr(c̃r, cr) = fr(cr) ⇔ cr = c̃r,

ensuring that (cl, cr) = (c̃l, c̃r) ∈ β.
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In view of Lemma 2.13, we propose to build a maximal L1D germ G∗ such that

C∩G∗ contains two elements (cl, cr) and (ĉl, ĉr) with cl < ĉl and cr > ĉr. Then, since

no monotone graph β can contain both (cl, cr) and (ĉl, ĉr), the germ G∗ can not

correspond to any maximal monotone graph β. Further, as a consequence of Zorn’s

Lemma, any germ G admits a (non necessarily unique) maximal extension; hence

we can restrict our study to the building of a germ G containing two connections

(cl, cr) and (ĉl, ĉr) such that cl < ĉl and cr > ĉr.

In the counter-example we present now, ul,r = 0, ul,r = 2π, and

fl(u) = − sin(u), fr(u) = + sin(u).

Set cl ∈ (0, π/2), cr = 2π− cl, ĉl = cr and ĉr = cl, then both (cl, cr) and (ĉl, ĉr) be-

long to C since the sufficient condition (2.18) holds for each of the couples. Moreover,

property

ql(cl, ĉl) ≥ qr(cr, ĉr),

is easily checked, so that G := {(cl, cr), (ĉl, ĉr)} is an L1D germ. This provides the

required counterexample: no L1D germ of the form G(β) can contain G.

2.4. The case of bell-shaped fluxes

In this section, we assume in addition to assumptions (1.2),(1.4) that the fluxes fl,r
are bell-shaped, in the sense that there exist σl,r ∈ Ul,r such that

f ′
l,r(s)(σl,r − s) > 0 for a.e. s ∈ Ul,r. (2.19)

In particular, s 7→ fl,r(s) admit a unique maximum at s = σl,r . In the bell-shaped

case, the set C of the connections introduced in Definition 2.12 reduces to a portion

of a strictly decreasing graph in Ul × Ur, and (2.18) becomes the necessary and

sufficient condition for (cl, cr) to be a strict connection. We refer to [7] or [8] for

graphical illustrations of the set C (called U is these works).

In the bell-shaped case, it is possible to classify all definite L1D germs. Indeed,

it is shown in [14, §4.8] that

every maximal L1D germ contains one and only one connection (cl, cr)

i.e., a singleton {(cl, cr)} is a definite L1D germ ⇔ (cl, cr) ∈ C.
(2.20)

In our preceding work [7], we also underlined the interest of the parametrization of

the set C of connections (cl, cr) by the flux limitation level F in the interval

IF :=
[
max{fl,r(0), fl,r(1)} , min{max

Ul

fl,max
Ur

fr}
]
,

in the spirit of the idea introduced in [41]. Indeed, given F ∈ IF , there exists a

unique (cl, cr) ∈ C such that fl,r(cl,r) = F . Moreover, if G is a definite L1D germ

that contains (cl, cr) ∈ C, one easily checks that

fl,r(ul,r) ≤ F = fl,r(cl,r) ∈ IF for all (ul, ur) ∈ G∗. (2.21)
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In this case, the flux limitation constraint “limx→0 f(u(t, x);x) ≤ F” is fulfilled for

every G-entropy solution u of (1.1),(1.2) (see [7], cf. [41,11] for details).

To sum up, in the preceding works three equivalent points of view for admissi-

bility of solutions to (1.1),(1.2) in the bell-shaped case (2.19) were put forward:

1. Fix a definite L1-dissipative germ G. Consider G-entropy solutions of [14].

2. Fix a connection (cl, cr) ∈ C. Use the definitions of [3] and [28].

3. Fix a constraint level F ∈ IF in (2.21). Proceed as in [11] (see also [7]).

In this paper, we advocate for a yet another approach to (1.1),(1.2), which is equiv-

alent to 1.–3. in the bell-shaped case:

4. Fix a transmission map β. Consider solutions admissible in the sense of

local Kruzhkov entropy conditions (1.7) and the interface transmission con-

dition (1.11).

Indeed, since C reduces to a portion of a decreasing graph in Ul×Ur, its intersection

with any given maximal monotone graph β contains at most one singleton (cl, cr).

The following alternative holds.

• If β ∩ C = {(cl, cr)} 6= ∅, then it is evident that (cl, cr) ∈ G(β). Due to (2.20),

this identifies the L1D germ G(β) with the unique maximal extension {(cl, cr)}
∗ of

the L1D germ {(cl, cr)}. In this case the G(β)-entropy solution coincides with the

{(cl, cr)}-entropy solution introduced in [3] and [28].

• If β∩C = ∅, then reproducing the analysis performed in [8, §1.3] permits to prove

that the unique non-strict connection (coptl , coptr ) ∈ C\C belongs to G(β). According

to (2.20), {(coptl , coptr )} is a definite germ, therefore G(β) = {(coptl , coptr )}
∗
and,

following the terminology introduced in [3], the G(β)-entropy solution coincides

with the so-called optimal entropy solution.

Remark 2.14. The transmission map approach 4. developed in this paper leads,

as for the approaches 1–3, to a complete description of the set of the L1-dissipative

germs in the bell-shaped case. We demonstrate in this paper that it can be applied

directly for the general non-bell-shaped case, while the approach by connections 2.

becomes quite technical in the non-bell-shaped case (we refer in particular to the

PhD thesis of S. Mishra [61], where this problem has been studied thoroughly).

In the sequel, we will also extend the notion of optimal entropy solution to the

non-bell-shaped case.

3. Design and study of numerical scheme

While the convergence study of numerical schemes performed in [14] for general

L1-dissipative germs was restricted to abstract Godunov schemes, we will take ad-

vantage of the particular structure of the germs generated via a transmission map

for designing convergent numerical schemes based on any monotone approximate
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Riemann solvers associated to fl,r. This approach was suggested by the authors

in [9] (see also [6]) in the framework of multiphase flows in porous media.

3.1. Building monotone finite volume schemes

Definition 3.1. A monotone approximate Riemann solver associated to a L-

Lipschitz continuous nonlinearity f : [u, u] → R consists in an application F :

[u, u]2 → R such that

a) F is consistent w.r.t. f : F (u, u) = f(u), ∀u ∈ [u, u].

b) F is monotone and Lipschitz continuous w.r.t. its two variables, namely, there

exists M > 0 such that

0 ≤ ∂aF (a, b) ≤M, −M ≤ ∂bF (a, b) ≤ 0 for a.e. (a, b) ∈ [u, u]2.

While the exact Riemann (or Godunov) solver

G(a, b) =





mins∈[a,b] f(s) if a ≤ b

maxs∈[b,a] f(s) if a ≥ b

is a particular monotone approximate Riemann solver, numerous other examples

are encountered in practice, such as

• the Lax-Friedrichs solver FLF (under the CFL condition ∆t
∆x ≤ 1

L ):

FLF(a, b) =
f(a) + f(b)

2
+

∆x

2∆t
(a− b);

• the Rusanov solver FRus:

FRus(a, b) =
f(a) + f(b)

2
+
L(a− b)

2
;

• the Engquist-Osher solver FEO:

FEO(a, b) =
f(a) + f(b)

2
−

1

2

∫ b

a

|f ′(s)|ds.

Let us also mention two important application-based monotone finite volume

schemes:

• the so-called phase-by-phase upstream scheme studied in [66,23] for approx-

imating immiscible incompressible flows in porous media;

• the so-called Hilliges-Weidlich scheme [54] for approximating the car density

prescribed by first-order LWR models [60,64].

Given a couple of monotone approximate Riemann solvers Fl,r we can define as

in (2.5), the corresponding interface flux map Fβ : Ul × Ur → R. Indeed, we have

the following lemma whose proof is the same as the one of Lemma 2.7, the Godunov

solvers Gl,r being replaced by Fl,r.
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Lemma 3.2. Given monotone approximate Riemann solvers Fl,r associated to fl,r,

as in Definition (3.1), for all (ul, ur) ∈ Ul×Ur, there exists a unique value Fβ(ul, ur)

satisfying

Fβ(ul, ur) := Fl(ul, ũl) = Fr(ũr, ur) for some (ũl, ũr) ∈ β. (3.1)

Moreover, the so defined map Fβ : Ul × Ur → R is Lipschitz continuous, and for

a.e. (ul, ur) ∈ Ul × Ur, one has

0 ≤ ∂ul
Fβ(ul, ur) ≤Ml, −Mr ≤ ∂urFβ(ul, ur) ≤ 0,

Ml,r being the best Lipschitz constants of Fl,r respectively.

Let us now describe the scheme. For the ease of reading, we restrict our attention

to the case of uniform discretization of R × R+ described by a space step ∆x > 0

and a time step ∆t > 0. We denote by {xj = j∆x | j ∈ Z} the set of the edges

(that are just breakpoints since we are in 1D), so that the interface is located at

the edge x0. For all j ∈ Z, we initialize the scheme by setting, e.g.,

u0j+1/2 =
1

∆x

∫ xj+1

xj

u0(x)dx, ∀j ∈ Z. (3.2)

Then, the quantities (un+1
j+1/2)j∈Z are deduced from (unj+1/2)j∈Z by the explicit finite

volume scheme

un+1
j+1/2 − unj+1/2

∆t
∆x+ Fj+1(u

n
j+1/2, u

n
j+3/2)− Fj(u

n
j−1/2, u

n
j+1/2) = 0, (3.3)

where

Fj(a, b) =

{
Fl,r(a, b) if xj ∈ Ωl,r,

Fβ(a, b) if j = 0.
(3.4)

The discrete solution uh is then defined almost everywhere by

uh(x, t) = un+1
j+1/2 if (x, t) ∈ (xj , xj+1)× (n∆t, (n+ 1)∆t]. (3.5)

The scheme (3.3) can be rewritten

un+1
j+1/2 = Hj+1/2(u

n
j+1/2, u

n
j−1/2, u

n
j+3/2), ∀j ∈ Z, ∀n ∈ N,

where the map Hj+1/2 is nondecreasing w.r.t. each of its arguments under the CFL

condition

∆t ≤
∆x

2max(Ml,Mr)
, (3.6)

thanks to the monotonicity and the Lipschitz continuity of Fl,r (cf. Definition 3.1)

and of Fβ (cf. Lemma 3.2).
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3.2. Exactly preserved and reachable steady states

We will say that the scheme (3.3) based on solvers Fl,r preserves exactly a state

(κl, κr) ∈ G(β) if the discrete function

κh(x) =
∑

j∈Z

κj+1/21(xj,xj+1)(x) =

{
κl if x < 0,

κr if x > 0,
(3.7)

is a steady solution to the scheme (3.3). As it appears in the expression (2.10) of

G(β), the Godunov scheme for G(β)-entropy solutions of (1.1),(1.2) (whose interface

flux is precisely Gβ , according to Proposition 2.9(ii)) preserves exactly the whole

maximal L1D germ G(β). The exact preservation property is the main ingredient in

the proof of convergence of this scheme to the G(β)-entropy solution of (1.1),(1.2)

(see Theorem 2.5 and [14]). This property is lost when considering general monotone

solvers of the form (3.4). Nevertheless, whatever be the choice of Fl,r, a particular

subset G♭(β) of G(β) is preserved exactly by the approximated interface Riemann

solver Fβ . Indeed, we have

Lemma 3.3. Denote by G♭(β) = { (κl, κr) ∈ β | fl(κl) = fr(κr) }, then

Fβ(κl, κr) = fl,r(κl,r), ∀(κl, κr) ∈ G♭(β).

As a consequence of Lemma 3.3 and of the consistency of the numerical fluxes

Fl,r in Ωl,r, given (κl, κr) ∈ G♭(β), the discrete function (3.7) is an obvious steady

solution to the scheme (3.3). Notice that, in particular, strict connections in the

sense of Definition 2.12 that belong to the germ G(β) also belong to the set G♭(β) of

exactly preserved states. Also observe that the extremal states (ul, ur) and (ul, ur)

belong to G♭(β).

Proof of Lemma 3.3. Let (κl, κr) ∈ G♭(β), then since (κl, κr) ∈ β, one has

Fβ(κl, κr) = Fl(κl, κl) = Fr(κr, κr) = fl,r(κl,r)

thanks to the consistency of Fl,r with fl,r.

Unfortunately, the knowledge of the family G♭(β) of exactly preserved states is

not sufficient to guarantee the convergence of the scheme. Therefore, we have to

pay more attention to more complicated steady solutions of (3.3). To this end, we

introduce (following [31]) the set of the so-called reachable steady states. The name

“reachable” stems from the fact, proved in Lemmas 3.7, 3.8 below, that these states

can be obtained as limits of nontrivial numerical profiles solving the scheme (3.3),

whatever be the choice of solvers Fl,r .

Definition 3.4. An element (κl, κr) ∈ Ul × Ur is said to be a reachable state if

fl(κl) = fr(κr) and if there exists (κ̃l, κ̃r) ∈ β such that
{
fl(κl) < fl(s), ∀s ∈ (κl, κ̃l] if κl ≤ κ̃l,

fl(κl) > fl(s), ∀s ∈ [κ̃l, κl) if κl ≥ κ̃l,
(3.8)
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and
{
fr(κr) > fr(s), ∀s ∈ (κr, κ̃r] if κr ≤ κ̃r,

fr(κr) < fr(s), ∀s ∈ [κ̃r, κr) if κr ≥ κ̃r.
(3.9)

We denote by Go(β) the subset of Ul × Ur containing all the reachable states.

Observe that exactly preserved states are reachable, more precisely, we have

Lemma 3.5. One has G♭(β) ⊂ Go(β) ⊂ G(β).

Proof. First remark that G♭(β) ⊂ Go(β) since one can choose κ̃l,r = κl,r, so that

the conditions in (3.8)–(3.9) are trivially satisfied. Now, let (κl, κr) ∈ Go(β), and

let (κ̃l, κ̃r) ∈ β such that (3.8)–(3.9) hold, then, in view of the definition (1.9) of

the one-sided Godunov solvers, one has

fl(κl) = Gl(κl, κ̃l), fr(κr) = Gr(κ̃r, κr).

Since fl(κl) = fr(κr), we obtain that (κl, κr) belongs to G(β).

The germ Go(β) has three important properties that we now prove. Firstly, this

is a definite germ.

Proposition 3.6. The subset Go(β) of G(β) is a definite L1-dissipative germ, and

G(β) is the unique maximal L1-dissipative germ containing Go(β).

Proof. To prove this proposition, we can make appeal to the notion of closed germ

developed in [14]. By the closure of an L1D germ G we understand the smallest

closed germ containing G.

Let (κl, κr) ∈ G(β), then there exists (κ̃l, κ̃r) ∈ β such that

fl,r(κl,r) = Gl(κl, κ̃l) = Gr(κ̃r, κr). (3.10)

Setting

κol,r =

{
max{s ∈ [κl,r, κ̃l,r] | fl,r(s) = fl,r(κl,r)} if κl,r ≤ κ̃l,r,

min{s ∈ [κ̃l,r, κl,r] | fl,r(s) = fl,r(κl,r)} if κl,r ≥ κ̃l,r,
(3.11)

it follows from the definition (1.9) of Gl,r and the Definition 3.4 of Go(β) that

(κol , κ
o
r) ∈ Go(β) and that

Gl(κl, κ
o
l ) = fl,r(κl,r) = fl,r(κ

o
l,r) = Gr(κ

o
r, κr). (3.12)

From (3.12), we see that the states κl and κol (respectively, κr and κor) can be

connected by a zero-speed Kruzhkov-admissible shock of the conservation law ∂tu+

∂xfl(u) = 0 (resp., of ∂tu+∂xfr(u) = 0), which means exactly that (κl, κr) belongs

to the closure of Go(β). Further, it is proved in [14] that every maximal extension of

a germ contains its closure; thus, every maximal extension of Go(β) contains G(β).

But since we know that G(β) is maximal itself, this means that G(β) it the unique

maximal extension of Go(β); in other words, Go(β) is a definite L1D germ.
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Secondly, for (ul, ur) ∈ Go(β) the states ul (at −∞) and ur (at +∞) can be

connected by numerical profiles of the finite volume scheme we consider in this

section, as explained in the following lemma:

Lemma 3.7. Let (κl, κr) ∈ Go(β), and let (κ̃l, κ̃r) ∈ β such that (3.8)–(3.9) hold,

then there exists (κj+1/2)j∈Z
such that

i) the function κh =
∑
j∈Z

κj+1/21(xj,xj+1) is a steady solution to the

scheme (3.3), more precisely, there holds
{
fl(κl) = Fl(κj−1/2, κj+1/2) = Fl(κ−1/2, κ̃l), ∀j < 0,

fr(κr) = Fr(κj−1/2, κj+1/2) = Fl(κ̃r, κ1/2), ∀j > 0,
(3.13)

ii) the sequences (κj+1/2)j≥0 and (κj−1/2)j≤0 are monotone and

lim
j→−∞

κj−1/2 = κl, lim
j→+∞

κj+1/2 = κr.

Proof. Let us focus on what occurs in Ωr, the situation in Ωl being similar. In the

case where κ̃r = κr, then one can choose κj+1/2 = κr for all j ≥ 0. Assume now

that κ̃r 6= κr, say κ̃r > κr for the sake of being definite. Then due to (3.9), due to

the consistency and to the monotonicity of Fr, one has

Fr(κ̃r, κ̃r) ≤ fr(κr) ≤ Fr(κ̃r, κr).

Therefore, since Fr is continuous w.r.t. its second argument, there exists κ1/2 ∈

[κr, κ̃r) such that Fr(κ̃r, κ1/2) = fr(κr). If κ1/2 = κr (this is the case if Fr ≡ Gr),

then one can choose κj+1/2 = κr for all j ≥ 0.

Assume that for j ≥ 0, we have built {κ1/2, . . . , κj+1/2} such that

κ̃r > κ1/2 > · · · > κj−1/2 > κj+1/2 > κr,

and

fr(κr) = Fr(κ̃r, κ1/2) = Fr(κi+1/2, κi+3/2), ∀i ∈ {0, . . . , j − 1}.

Using again (3.9) as well as the properties of Fr, one gets that

fr(κj+1/2) = Fr(κj+1/2, κj+1/2) > fr(κr) ≥ Fr(κj+1/2, κr),

ensuring the existence of κj+3/2 ∈ [κr, κ̃r) such that Fr(κj+1/2, κj+3/2) = fr(κr). If

κj+3/2 = κr, then one can choose κi+3/2 = κr for all i ≥ j.

It follows from the above construction (that can be carried out in a similar way

if κ̃r < κr) that the sequence (κj+1/2)j≥0
is monotone and bounded between κr and

κ̃r, so that it converges towards some ℓr ∈ [min{κr, κ̃r},max{κr, κ̃r}] as j → ∞.

Passing to the limit j → ∞ in (3.13) yields fr(ℓr) = Fr(ℓr, ℓr) = fr(κr), and thus

ℓr = κr in view of (3.9).

And finally, the profiles constructed in Lemma 3.7 are convergent:
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Lemma 3.8. Let (κl, κr) ∈ Go(β), let (κj+1/2)j∈Z be as in Lemma 3.7, and let

κh =
∑

j∈Z
κj+1/21(xj ,xj+1), then

κh → κl1x<0 + κr1x>0 in L1
loc(R) as ∆x→ 0.

Proof. Let ǫ > 0, then since κj+1/2 → κl,r as j → ±∞, there exists j0(ǫ) ≥ 0 such

that

|j| ≥ j0(ǫ) =⇒ |κj+1/2 − κr| ≤ ǫ and |κ−j−1/2 − κl| ≤ ǫ.

Let (∆xn)n≥1 be a sequence of space steps tending to 0 as n → ∞, and let x ∈

R \
⋃
n≥1 ∆xnZ, then there exists n0(x, ǫ) such that

n ≥ n0(x, ǫ) =⇒ |x| > j0(ǫ)∆xn,

yielding |κh(x)− κl1x<0(x) − κr1x>0(x)| ≤ ǫ. Hence we get the almost everywhere

convergence of κh towards κl1x<0 + κr1x>0. Since u ≤ κh ≤ u, the convergence in

L1
loc(R) follows from the dominated convergence theorem.

3.3. Monotonicity estimates and compactness

The monotonicity of Hj+1/2 under the CFL condition (3.6) has important conse-

quences. In particular, let v0 ∈ L∞(R) with u ≤ v0 ≤ u a.e. in R be such that

u0 − v0 ∈ L1(R), let

v0j+1/2 =
1

∆x

∫ xj+1

xj

v0(x)dx, ∀j ∈ Z, (3.14)

and let
(
vn+1
j+1/2

)

j∈Z,n≥0
be given by the scheme

vn+1
j+1/2 = Hj+1/2(v

n
j+1/2, v

n
j−1/2, v

n
j+3/2), ∀j ∈ Z, ∀n ∈ N, (3.15)

then it follows from classical arguments (see e.g. [43,44]) that for all n ≥ 0, one has

∑

j∈Z

(un+1
j+1/2 − vn+1

j+1/2)
±∆x ≤

∑

j∈Z

(unj+1/2 − vnj+1/2)
±∆x ≤

∫

R

(u0 − v0)
±dx. (3.16)

Lemma 3.9. Let u0 ∈ L∞(R) with u ≤ u0 ≤ u a.e. in R, and let uh be the discrete

solution defined by (3.2)–(3.5), then, under the CFL condition (3.6), one has

u(x) ≤ uh(x, t) ≤ u(x) for a.e. (x, t) ∈ R× R+.

Proof. Since (ul, ur) and (ul, ur) belong to the subset G♭(β) of G(β) defined in

Lemma 3.3, the steady states u and u are exactly preserved by the numerical

scheme (3.3). Therefore we can choose vnj+1/2 = u(xj+1/2) and v
n
j+1/2 = u(xj+1/2)

for all j ∈ Z and all n ≥ 0 in (3.16), which permits us to conclude.

Further, due to the consistency of Fl,r with fl,r, one has

κ = Hj+1/2(κ, κ, κ), ∀j ∈ Z \ {−1, 0}, ∀n ∈ N, ∀κ ∈ [u(xj+1/2), u(xj+1/2)].
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Therefore, with the notation

a⊤b = max(a, b) and a⊥b = min(a, b),

standard monotonicity arguments (see e.g. [48]) provide that, for all j /∈ {−1, 0},

for all n ≥ 0 and for all κ ∈ [u(xj+1/2), u(xj+1/2)], one has

|un+1
j+1/2 − κ| − |unj+1/2 − κ|

∆t
∆x

+ Fj+1(u
n
j+1/2⊤κ, u

n
j+3/2⊤κ)− Fj+1(u

n
j+1/2⊥κ, u

n
j+3/2⊥κ)

− Fj(u
n
j−1/2⊤κ, u

n
j+1/2⊤κ) + Fj(u

n
j−1/2⊥κ, u

n
j+1/2⊥κ) ≤ 0. (3.17)

Similarly, let (κl, κr) ∈ Go(β), and let
(
κj+1/2

)
j∈Z

be as in Lemma 3.7, then for

all j ∈ Z and for all n ≥ 0, one has

|un+1
j+1/2 − κj+1/2| − |unj+1/2 − κj+1/2|

∆t
∆x+Qnj+1 −Qnj ≤ 0, (3.18)

where we have set, for j ∈ Z and n ∈ N,

Qnj =Fj(u
n
j−1/2⊤κj−1/2, u

n
j+1/2⊤κj+1/2) (3.19)

− Fj(u
n
j−1/2⊥κj−1/2, u

n
j+1/2⊥κj+1/2)

(recall that for Fj , we use Fl if j < 0, Fβ if j = 0 and Fr if j > 0).

While (3.17)–(3.18) play an important role in identifying the limit u as ∆x,∆t→

0 of uh as the unique G(β)-entropy solution (as this will appear in §3.4), compactness

properties on the family (uh)∆x,∆t will be needed to ensure the existence of this

aforementioned limit u of uh. To this end, the so-called BVloc strategy proposed

in [26,27] can be mimicked, leading to the following Proposition.

Proposition 3.10. Assume additionally that u0 ∈ BV(R), then, under the CFL

condition (3.6), there exists C > 0 depending only on Ml,r and u0 (but neither on

∆x nor ∆t) such that

∫

R

|uh(x, t+ τ)− uh(x)|dx ≤ C(τ +∆t), for a.e. t > 0 and all τ > 0. (3.20)

Moreover, for all η > 0 and all T > 0, there exists Cη depending on T , η, Ml,r and

u0 (but neither on ∆x nor on ∆t) such that, for all ξ ∈ (−η, η) and ∆x ∈ (0, η),

one has

∫ T

0

∫

R\(−3η,3η)

|uh(x+ ξ, t)− uh(x, t)|dxdt ≤ Cη(|ξ|+∆x). (3.21)
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3.4. Convergence of the scheme

As a consequence of Lemma 3.9 and Proposition 3.10, if u0 ∈ BV(R), there exists

a function u ∈ L∞(R × R+) with u ≤ u ≤ u a.e. in R × R+ such that, up to an

unlabeled subsequence,

uh → u a.e. in R× R+ as ∆x,∆t→ 0. (3.22)

Our goal is now to identify the limit u of uh as the unique G(β)-entropy solution of

the problem (1.1),(1.2),(1.5) in the sense of Definition 2.4. To this end, let us first

check that the local Kruzhkov entropy inequalities (2.2) hold.

It remains to prove adapted entropy inequalities of Definition 2.4.

Proposition 3.11. Let u0 ∈ BV(R), and let u be given by (3.22), then, for all

κ ∈ [ul,r, ul,r] and all φ ∈ D+(Ωl,r × R+), one has

∫∫

Ωl,r×R+

|u− κ|∂tφdxdt

+

∫

Ωl,r

|u0 − κ|φ(·, 0) dx+

∫∫

Ωl,r×R+

ql,r(u, κ)∂xφdxdt ≥ 0. (3.23)

Proof. Since supp(φ) is compact in Ωl,r × R+, there exists T > 0 and ǫ > 0

such that supp(φ) ⊂ {|x| ≥ ǫ} × [0, T ]. Therefore, thanks to Proposition 3.10, uh
belongs to BV(supp(φ)) as soon as ∆x is small enough. Proving that the limit

u of discrete solutions uh obtained via monotone finite volume schemes satisfies

Kruzhkov entropy inequalities and the initial condition (1.5) is then classical (see

e.g. [51,48]).

Proposition 3.12. Let u0 ∈ BV(R), let u be given by (3.22), then, for all (κl, κr) ∈

Go(β), property (2.3) holds true.

Proof. First, it is easy to check that the space {φ ∈ D(R) | ∂xφ ∈ D(R∗)} of test

functions with vanishing near x = 0 derivative is dense in D(R) for the W 1,1(R)

topology, so that, since D(R)⊗D(R+) is dense in W 1,1(R× R+), the set

T + = {φ ∈ D+(R× R+) | ∂xφ ∈ D(R∗ × R+)}

is dense in D+(R × R+) for the W
1,1(R × R+) topology. Therefore, since u, κ and

ql,r(u, κl,r) belong to L∞(R× R+), it is sufficient to prove (2.3) with test function

φ ∈ T +.

Let φ ∈ T +, then supp(∂xφ) ∩ ((−η, η) × R) = ∅ for some η > 0. Since we

are interested in the limit ∆x,∆t → 0, we can assume that ∆x < η. Denote by

φnj+1/2 = φ(xj+1/2 , t
n) for all j ∈ Z and all n ≥ 0, then remark that

φnj+1/2 = φnj−1/2 if |j| ≤
η

∆x
−

1

2
. (3.24)
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Multiplying the inequality (3.18) by ∆tφn+1
j+1/2 provides after classical reorgani-

zations (see, e.g., [48]) that

Ah + Bh + Ch ≤ 0, (3.25)

with

Ah =
∑

n≥0

∆t
∑

j∈Z

|unj+1/2 − κj+1/2|
φnj+1/2 − φn+1

j+1/2

∆t
∆x,

Bh =
∑

j∈Z

|u0j+1/2 − κ0j+1/2|φ
0
j+1/2∆x,

Ch =
∑

n≥0

∆t
∑

j∈Z

Qnj (φ
n+1
j−1/2 − φn+1

j+1/2),

where Qnj was defined by (3.19). It follows from classical arguments that

lim
∆x,∆t→0

Ah = −

∫∫

R×R+

|u(x, t)− κ(x)|∂tφ(x, t)dxdt, (3.26)

and that

lim
∆x→0

Bh = −

∫

R

|u0(x)− κ(x)|φ(x, 0)dx. (3.27)

Let us focus on the term Ch. Thanks to (3.24), one has

Ch =
∑

n≥0

∆t
∑

|j|≥η/∆x

Qnj (φ
n+1
j−1/2 − φn+1

j+1/2),

while thanks to the Lipschitz continuity and the consistency of the numerical fluxes

Fj , one has

∣∣∣∣
1

2

(
ql(u

n
j+1/2, κl) + ql(u

n
j−1/2, κl)

)
−Qnj

∣∣∣∣

≤Ml

(
|κj+1/2 + κj−1/2 − 2κl|+ |unj+1/2 − unj−1/2|

)
if j < 0, (3.28)

and
∣∣∣∣
1

2

(
qr(u

n
j+1/2, κr) + qr(u

n
j−1/2, κr)

)
−Qnj

∣∣∣∣

≤Mr

(
|κj+1/2 + κj−1/2 − 2κr|+ |unj+1/2 − unj−1/2|

)
if j > 0. (3.29)

Moreover, since κj+1/2 tends to κl,r as |j| → ∞, then, for all ǫ > 0, there exists

α > 0 such that

0 < ∆x < α =⇒

{
|κj+1/2 + κj−1/2 − 2κl| ≤ ǫ if j < − η

∆x ,

|κj+1/2 + κj−1/2 − 2κr| ≤ ǫ if j > η
∆x .
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Therefore, with the notation

δxφh(x, t) =
φn+1
j+3/2 − φn+1

j−1/2

2∆x
if (x, t) ∈ (xj , xj+1/2)× (n∆t, (n+ 1)∆t],

one obtains that
∣∣∣∣∣∣
Ch +

∑

m∈{l,r}

∫∫

Ωm×R+

qm(uh, κm)δxφhdxdt

∣∣∣∣∣∣

≤ max(Ml,r)

(
ǫ
∑

n≥0

∆t
∑

j∈Z

|φn+1
j+1/2 − φn+1

j−1/2|

+ ‖∂xφ‖∞

∫

R+

∫

|x|≥η−∆x/2

|uh(x+∆x, t)− uh(x, t)|dxdt

)
. (3.30)

Thanks to (3.22) and Proposition 3.10, passing to the limit ∆x,∆t → 0 in (3.30)

provides
∣∣∣∣∣∣

lim
∆x,∆t→0

Ch +
∑

m∈{l,r}

∫∫

Ωm×R+

qm(u, κm)∂xφdxdt

∣∣∣∣∣∣
≤ Cǫ

for all ǫ > 0, hence

lim
∆x,∆t→0

Ch = −
∑

m∈{l,r}

∫∫

Ωm×R+

qm(u, κm)∂xφdxdt. (3.31)

Taking (3.26)–(3.27) and (3.31) into account in (3.25) provides that (2.3) holds with

the chosen couples (κl, κr).

By virtue of Proposition 3.6, Go(β) is a definite germ; therefore the informa-

tion (2.3) with (κl, κr) ∈ Go(β) only is sufficient to characterize the G(β)-entropy

solutions. To sum up, we have

Corollary 3.13. Let u0 ∈ BV(R), let u be given by (3.22), then (2.3) holds for all

(κl, κr) ∈ G(β).

We have now all the necessary tools to prove the main theorem of the section.

We strengthen the CFL condition (3.6) into

2max(Ml,r)∆t

∆x
∈ [α, 1] for some α > 0, (3.32)

prohibiting the fact that ∆t/∆x→ 0 when ∆t,∆x→ 0. This ensures in particular

the finite speed of propagation for the discrete solution, more precisely
∫

|x|≤R

|uh(x, t)− vh(x, t)|dx ≤

∫

|x|≤R+Mt+h

|uh(x, 0)− vh(x, 0)|dx, ∀t > 0,

(3.33)
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where M =
2max(Ml,r)

α . Since Ml,r ≤ Ll,r necessarily, then M ≥ max(Ll,r).

Theorem 3.14. Let u0 ∈ L∞(R) be such that (1.5) holds, then, under the CFL

condition (3.32), the discrete solution uh defined by (3.2)–(3.5) converges strongly

in L1
loc(R×R+) towards the unique G(β)-entropy solution of (1.1),(1.2),(1.5) in the

sense of Definition 2.4.

Proof. Assume first that u0 ∈ BV(R), then we have proved in Corollary 3.13 that,

under the CFL condition (3.6), any limit value u as ∆x,∆t → 0 of the sequentially

compact in L1
loc(R × R+) family (uh)∆x,∆t is a G(β)-entropy solution, which is

unique, ensuring the strong convergence in L1
loc(R× R+) of the whole sequences.

Let K be a compact subset of R× R+, then there exists R such that

K ⊂ CR :=
⋃

t≥0

{
x ∈ R | |x| < (R−Mt)+

}
× {t}.

Now, if u0 ∈ L∞(R), then for all ǫ > 0, there exists uǫ0 ∈ BV(R) such that

∫ R

−R

|u0(x) − uǫ0(x)|dx ≤ ǫ.

Denote by uh the discrete solution corresponding to the initial datum u0, u
ǫ
h the

one corresponding to uǫ0, by u the unique G(β)-entropy solution corresponding to

u0, and by uǫ the one corresponding to uǫ0, then

∫∫

K

|uh − u|dxdt ≤

∫∫

CR

|uh − u|dxdt

≤

∫∫

CR

|uh − uǫh|dxdt+

∫∫

CR

|uǫh − uǫ|dxdt+

∫∫

CR

|uǫ − u|dxdt. (3.34)

Thanks to (3.33), one has

∫∫

CR

|uh − uǫh|dxdt ≤
R

M

∫ R

−R

|uh(x, 0)− uǫh(x, 0)|dx ≤
R

M
ǫ,

while, thanks to the L1-contraction at the continuous level proved in [14], one has

∫∫

CR

|u− uǫ|dxdt ≤
R

M

∫ R

−R

|u0 − uǫ0|dx ≤
R

M
ǫ.

Therefore, (3.34) yields
∫∫

K

|uh − u|dxdt ≤ 2
R

M
ǫ+

∫∫

CR

|uǫh − uǫ|dxdt.

It follows from the strong convergence in L1
loc(R × R+) of the discrete solution

corresponding to initial data in BV(R) that

lim
∆x,∆t→0

∫∫

CR

|uǫh − uǫ|dxdt = 0,



July 4, 2014 15:13 WSPC/INSTRUCTION FILE AC-NBS-PreprintVers2

26 Boris Andreianov and Clément Cancès

ensuring by the way that

lim inf
∆x,∆t→0

∫∫

K

|uh − u|dxdt ≤ 2
R

M
ǫ, ∀ǫ > 0,

thus the convergence in L1
loc(R×R+) of uh towards the unique G(β)-entropy solution

u associated to u0.

4. Examples and applications

In this section, we aim to connect our work to existing results related to scalar con-

servation laws with discontinuous flux function, embedding them in our framework.

But first, we focus on monotonicity properties w.r.t. the graph β in §4.1, leading to

the introduction of the extremal graphs βmin and βmax.

4.1. Order relation for transmission maps, comparison of fluxes

Let us define a partial order on the set of transmission maps of Definition 1.1.

Definition 4.1. Let β, β̂ ⊂ Ul × Ur be two maximal monotone graphs, then one

says that β � β̂ if, for all sl ∈ Ul, for all sr, ŝr ∈ Ur such that (sl, sr) ∈ β and

(sl, ŝr) ∈ β̂, then

sr ≤ ŝr =⇒ (sl, σr) ∈ β ∩ β̂ for all σr ∈ [sr, ŝr]. (4.1)

Notice that the above property is equivalent to having βo(s) ≥ β̂o(s) for a.e.

s ∈ Ul, where βo,β̂o are arbitrarily fixed, everywhere defined single-valued sections

of the graphs β,β̂, respectively.

Proposition 4.2. Let β � β̂ be two maximal monotone graphs of Ul × Ur, then

Fβ(ul, ur) ≥ Fβ̂(ul, ur), ∀(ul, ur) ∈ Ul × Ur,

where Fβ and Fβ̂ are obtained from one-sided monotone fluxes Fl,r through (3.1)

for the graphs β and β̂ respectively.

Proof. Let (ul, ur) ∈ Ul × Ur, and let (sl, sr) ∈ β such that

Fβ(ul, ur) = Fl(ul, sl) = Fr(sr, ur).

Consider an auxiliary value s̃r such that (sl, s̃r) ∈ β̂ (such a s̃r always exists thanks

to the maximality of the graph β̂). If s̃r ≥ sr, it follows from (4.1) that (sl, sr) ∈ β̂,

so that Fβ̂(ul, ur) = Fβ(ul, ur) and the claim of the lemma holds true. Assume now

that s̃r < sr, then, due to the monotonicity of Fr, one has

Fl(ul, sl) ≥ Fr(s̃r, ur). (4.2)

If (4.2) is in fact an equality, then Fβ̂(ul, ur) = Fβ(ul, ur) again. Assume finally

that the inequality (4.2) is strict. Let (ŝl, ŝr) ∈ β̂ be the couple defining Fβ̂(ul, ur):

namely, Fl(ul, ŝl) = Fr(ŝr, ur). Using the monotone parametrization (2.4) of β̂,
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consider the function Ψ : p ∈ [p, p] 7→ Fl(ul, ũl(p))− Fr(ũr(p), ur). For p := sl + s̃r,

from sl,r = ũl,r(p) we find

Ψ(p) = Fl(ul, sl)− Fr(s̃r, ur) > 0,

while for p̂ := ŝl + ŝr we have Ψ(p̂) = 0 by the definition of ŝl,r. The function Ψ

being non-increasing, this implies that p̂ > p, thus that ŝl ≥ sl, and finally,

Fβ̂(ul, ur) := Fl(ul, ŝl) ≤ Fl(ul, sl) = Fβ(ul, ur)

due to the monotonicity of Fl. This ends the proof.

Despite the set of transmission maps is only partially ordered by “�”, it admits

the maximal element βmax defined by

(ul, ur) ∈ βmax iff (ul − ul)(ur − ur) = 0, (4.3)

and the minimal element βmin defined by

(ul, ur) ∈ βmin iff (ul − ul)(ur − ur) = 0. (4.4)

It follows directly from Proposition 4.2 that for all transmission map β, one has

Fβmin
(ul, ur) ≤ Fβ(ul, ur) ≤ Fβmax

(ul, ur), ∀(ul, ur) ∈ Ul × Ur.

Analogous property holds true for any complete maximal L1D germ G in the sense

of Definition 2.1. To be precise, we restrict our attention to the exact Godunov

solver GG comparing it to the Godunov solvers Gβmin
and Gβmax

(for general germs,

the Godunov flux GG is the only generic consistent interface flux; it is defined via

the exact Riemann solver by GG(ul, ur) := fl(γlu) = fr(γru), where γl,ru are the

interface traces of the self-similar solution u = u(x/t) of the Riemann problem with

data u0(x) = ul1x<0 + ur1x>0 as described in Definition 2.1 a)-c)).

Proposition 4.3. Let G be a complete maximal L1-dissipative germ in the sense of

Definition 2.1, then denote by GG the corresponding Godunov solver, and by Gβmin

and Gβmax
the Godunov solvers corresponding to the maximal L1-dissipative germs

G(βmin) and G(βmax) respectively, then

Gβmin
(ul, ur) ≤ GG(ul, ur) ≤ Gβmax

(ul, ur), ∀(ul, ur) ∈ Ul × Ur.

Proof. Let us prove that GG(ul, ur) ≤ Gβmax
(ul, ur), the proof of the other in-

equality being similar. First, given (ul, ur) ∈ Ul × Ur, by the definition of GG we

find that there exist (sl, sr) ∈ G (given by sl,r = γl,ru in Definition 2.1 a)-c) of the

Riemann solver) such that

Gl(ul, sl) = fl(sl) = GG(ul, ur) = fr(sr) = Gr(sr, ur).

On the other hand, it is easy to check that the maximal Godunov solver Gβmax
is

defined by

Gβmax
(ul, ur) =

{
Gl(ul, ul) if Gl(ul, ul)−Gr(ur, ur) ≤ 0,

Gr(ur, ur) otherwise.
(4.5)
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Thanks to the monotonicity of Gl,r, one has

Gl(ul, ul) ≥ Gl(ul, sl) and Gr(ur, ur) ≥ Gr(sr, ur),

ensuring that Gβmax
(ul, ur) ≥ GG(ul, ur) for every (ul, ur) ∈ Ul × Ur.

Based on the above considerations, we extend the notion of optimal entropy

solution first introduced by Adimurthi et al. in [3] in the case of bell-shaped flux

functions. Since, on the contrary to this particular case, the flux functions we con-

sider have a general shape, the notion of optimal entropy solution can be extended

in two ways, leading to the so-called minimal and maximal entropy solutions.

Definition 4.4. A function u ∈ L∞(R×R+) such that u ≤ u ≤ u a.e. in R×R+ is

said to be the maximal (resp. minimal) entropy solution if u is the unique G(βmax)-

entropy solution (resp. G(βmin)-entropy solution).

Notice that even in the bell-shaped case, both notion are of great interest. For

example, both of them appear as asymptotic limits for two-phase flows in porous

media when the capillary pressure depends only on space [31,32,33]. The maximal

entropy solution also appears naturally in the modeling of traffic flows (see §4.4).

4.2. The vanishing viscosity solution

A classical example consists in considering the case where a weak solution u of

(1.1) is judged admissible if and only if u is the vanishing viscosity limit ǫ→ 0, i.e.,

u = limǫ→0+ u
ǫ with

∂tu
ǫ + ∂xf(u

ǫ;x) = ǫ∂xxu
ǫ.

We assume that the flux f is of the form prescribed by (1.2), requiring by the

way that Ul = Ur. This limit appears in the modeling of clarifier-thickener units

for water treatmentand it has been extensively studied in the literature (see in

particular [56,67,45,5,13,62,15]). The corresponding germ GV V and its definite part

GoV V consisting in couples of states that can be connected by vanishing viscosity

profiles are described in [14,13].

Since for all ǫ > 0, uǫ is continuous w.r.t. space variable across {x = 0}, one

could expect its limit u to be “as continuous as possible” across the interface, i.e.,

the jump across the interface has to be minimized (we refer to [15] to a deeper

discussion on this issue). It is proved in [45] that the one-sided traces ul,r of the

solution (when they exist) fulfill the so-called Γ-condition, namely

there exists s such that Gl(ul, s) = Gr(s, ur). (4.6)

In view of the analysis carried out above, this turns out to correspond to the

transmission map Id = {(s, s) | s ∈ Ul,r}, i.e., the “vanishing viscosity” germ

GV V of [14,13] coincides with G(β) for the choice β = Id. Notice that also GoV V
coincides with the set of reachable states Go(Id). In this relation, let us observe that

reachable states can be connected by numerical profiles described in § 3.2, and also

by vanishing viscosity profiles, see [13].
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4.3. The vanishing capillarity solution for porous media flows

The immiscible incompressible flow of oil and water in porous media are often

modeled by the so-called Darcy-Muskat equations

φ(x)∂tsα − ∂x (ηα(sα;x)K(x)(∂xpα − ραg)) = 0, α ∈ {o, w}, (4.7)

where the subscript o (resp. w) stand for oil (resp. water), φ ∈ (0, 1) is the porosity

of the medium, sα ∈ [0, 1] is the saturation of the phase α, ηα its mobility (which

is nondecreasing w.r.t. sα), pα its pressure and ρα its density. K(x) denotes the

intrinsic permeability of the porous medium, and g the gravity.

A first natural assumption consists in requiring that the pore volume is filled by

the two fluids, i.e.

so + sw = 1 =⇒ s := so, sw = 1− s;

Moreover, there might exist irreducible saturations 0 ≤ s(x) ≤ s(x) ≤ 1 such that

ηo(s) = 0 if s ≤ s and ηw(s) = 0 if s ≤ 1− s.

Following [29,35], the relevant way to prescribe a (static) capillary pressure

relation in the one-dimensional case (see [24,36] in the multidimensional context)

consists in requiring

po − pw ∈ π(s;x),

where π(·;x) ⊂ [s(x), s(x)]×R is some maximal monotone graph. This implies the

existence of a maximal monotone graph π−1 ⊂ R× [s, s] such that

s ∈ π−1(p;x), (4.8)

where p = po − pw denotes the capillary pressure.

Standard reformulation of the problem (see e.g. [8,9]) allow to reduce formally

the system to the following degenerate parabolic equation

φ(x)∂ts+ ∂xf(s;x) = ∂x (λ(s;x)∂xπ(s;x))

where λ(s(x);x) = λ(s(x);x) = 0.

Therefore, the quantity to be “as continuous as possible” is now the capillary

pressure, and not the saturation. Assume that f is of the form (1.2), and that

φ(x) = φl1x<0 + φr1x>0, λ(s;x) = λl(s)1x<0 + λr(s)1x>0,

and

π(s;x) = πl(s)1x<0 + πr(s)1x>0,

then the scaling x := x/ǫ and t := t/ǫ yields

φ(x)∂ts
ǫ + ∂xf(s

ǫ;x) = ǫ∂x (λ(s
ǫ;x)∂xπ(s

ǫ;x)) . (4.9)

If s = limǫ→0+ s
ǫ with sǫ satisfying (4.9), we say that s is a vanishing capillarity

solution to the limit equation φ(x)∂ts+ ∂xf(s;x) = 0.
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Remark 4.5. The limit problem can be rewritten under the form (1.1),(1.2) pro-

vided the unknown s is changed into u := φs (then also f(·;x) is changed into

f̃(·;x) := f( ·
φ(x) ;x), cf. [8, Remark 2], and the intervals Ul,r of values of the new

unknown u are taken to be [φl,rsl,r, φl,rsl,r]) and the whole theory developed here

and in preceding contributions can be applied. Considering transmission maps in

new variables, as maximal monotone graphs in Ul ×Ur, amounts to consider maxi-

mal monotone graphs in [sl, sl]× [sr, sr] for the original unknown s.

As proved in [8] (see also [6,9]), the vanishing capillarity solution s, correspond-

ing to the limit as ǫ→ 0 of sǫ, can be seen as the G(β)-entropy solution correspond-

ing to the graph

β =
{
(π−1
l (p), π−1

r (p)) | p ∈ R
}
⊂ [sl, sl]× [sr, sr].

As an important by-product, the vanishing capillarity solution is highly sensitive

to the choice of capillary pressure graphs πl,r. Therefore, any convergent numerical

method for approximation of vanishing capillarity solutions must let these capillary

pressure graphs appear, as it is the case in the method we propose here and in [9]

in the particular case of the phase-by-phase upstream scheme. We refer to [6] for

construction of the scheme, based on these ideas, suitable for approximation of the

multi-dimensional hyperbolic-elliptic Buckley-Leverett problem.

4.4. Transmission maps for traffic flows

In the context of traffic flow modeling, the density of cars ρ on highways can be

modeled by a continuous transport equation

∂tρ+ ∂x(ρv) = 0.

Following Lighthill & Whitham [60] and Richards [64], the speed v depends in a

non-increasing way on the density and vanishes as the road is saturated (traffic

jam), i.e.

v = v(ρ), ∂ρv ≤ 0, v(ρ) = 0 for some ρ > 0.

We assume the resulting flux function ρ 7→ f(ρ) = ρv(ρ) to be a Lipschitz continuous

bell-shaped function, i.e.

there exists σ ∈ (0, ρ) such that f ′(ρ)(ρ− σ) < 0 for a.e. ρ in (0, ρ)

the problem reduces to the scalar conservation law

∂tρ+ ∂xf(ρ) = 0.

We then define the monotone functions φ and ψ by

φ(s) =

∫ s

0

(f ′)
+
(a)da, ψ(s) =

∫ ρ

s

(f ′)
−
(a)da, ∀s ∈ [0, ρ],

so that

f(ρ) = min (φ(ρ), ψ(ρ)) , ∀ρ ∈ [0, ρ]. (4.10)
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Across a discontinuity (ρl, ρr), the flux is given by

G(ρl, ρr) = min(φ(ρl), ψ(ρr)), (4.11)

in order to optimize the flux across the discontinuity. Since f is bell-shaped, it

appears that G(ρl, ρr) coincides with the usual Godunov solver corresponding to

the usual Kruzhkov entropy solution.

In the case of discontinuous road parameters, like for instance when the number

of lines is changing, the maximal density ρ can depend on x, as well as the speed

distribution ρ 7→ v(ρ;x). Assume that

ρ(x) = ρl1x>0(x) + ρr1x>0(x), v(ρ;x) = vl(ρ)1x<0(x) + vr(ρ)1x>0(x),

so that the flux f is of the form (1.2), and

φ(ρ;x) = φl1x>0(x) + φr1x>0(x), ψ(ρ;x) = ψl(ρ)1x<0(x) + ψr(ρ)1x>0(x).

It is then expected from (4.11) that the Godunov solver at the interface is given by

Gint(ρl, ρr) = min(φl(ρl), ψr(ρr)), ∀(ρl, ρr) ∈ [0, ρl]× [0, ρr]. (4.12)

The bell-shaped property of the fluxes fl,r implies that

Gint(ρl, ρr) = Gβmax
(ρl, ρr), ∀(ρl, ρr) ∈ [0, ρl]× [0, ρr],

where, following (4.3), the maximal graph βmax ⊂ [0, ρl]× [0, ρr] is defined by

(ρl, ρr) ∈ βmax if ρl(ρr − ρr) = 0.

In relation with the result of Proposition 4.3, one can interpret this result by saying

that the choice of the Godunov flux (4.12) corresponds to modeling a rational

behavior of drivers: namely, the model prescribes a maximal possible flux at the

sites where the number of lines on the road changes.

4.5. Locally constrained conservation law with general flux

In this section, we consider the particular case f = fl = fr, where f : [0, R] → R

satisfies the following properties:

f(ρ) ≥ 0 for all ρ ∈ [0, R], f(0) = f(1) = 0.

We consider weak solutions of

∂tρ+ ∂xf(ρ) = 0, ρ|t=0
= ρ0 ∈ L∞(R; [0, R]) (4.13)

such that u satisfies entropy inequalities away from the interface, i.e.

∀κ ∈ [0, R], ∂t|ρ− κ| − ∂xq(ρ, κ) ≤ 0 in D′(R∗ × R+),

where q(ρ, κ) = sign(ρ−κ)(f(ρ)−f(κ)). Following [41], we modify the admissibility

conditions at the point {x = 0}, by requiring that the flux f(ρ)|x=0
is constrained

to remain lower or equal to a prescribed value F ∈
[
0,maxs∈[0,R] f(s)

]
, i.e.

f(ρ)|x=0
(t) ≤ F for a.e. t ∈ R+. (4.14)
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In general, the constraint can be time-dependent, to model, e.g., road lights [41] or

non-local “panic” effects in crowd dynamics [10], but here we restrict our attention

to the case of a constant F suitable, e.g., for modeling of toll gates.

If the constraint is not saturated on a time interval (t1, t2), we expect the solution

ρ to fulfill the Kruzhkov entropy inequalities on the whole domain:

∀κ ∈ [0, R], ∂t|ρ− κ| − ∂xq(ρ, κ) ≤ 0 in D′(R× (t1, t2)).

Otherwise, non-classical shocks at {x = 0} appear, as described by the Riemann

solver constructed in [41] under the assumption of bell-shaped flux function f .

Both situations (the unsaturated and the saturated constraint) can be accounted

for via the suitable notion of entropy solution proposed in [41], leading to well-

posedness for the Cauchy problem. The link with the theory of L1-dissipative germs

was made in [11], where the convergence of monotone Finite Volume scheme was

established. Error estimates for the Godunov approximation of the solution were

proposed in [37].

Let us interpret the results of [41,11,37] for the bell-shaped case (and also those

of [38] for a non-bell-shaped casec, see below) in terms of a well-chosen transmission

map. We have not identified a choice of β that would stem from modeling assump-

tions, but we can suggest an optimal choice for a graph that constrains the flux in

the weakest possible sense. Indeed, recalling the result of Proposition 4.2, a larger

graph (in the sense of the partial order relation �) allows for a larger interface flux.

Further, the unconstrained situation corresponds to the identity graph Id (indeed,

the classical solution is nothing but the vanishing viscosity solution corresponding

to β = Id, see § 4.2). Finally, from the description of the Riemann solver in [41]

and analysis of [11], the uniqued connection (ρ̂F , ρ̌F ) at the flux level F belongs to

the associated germ. Because a simple way to require that the connection (ρ̂F , ρ̌F )

belongs to the underlying germ is to ask that (ρ̂F , ρ̌F ) ∈ β (see Lemma 2.13), we

can look for a graph β that lies “as close as possible” below the identity graph

Id and that contains (ρ̂F , ρ̌F ) ∈ C, the connection at flux level F . Therefore, the

transmission map β corresponding to entropy solutions of (4.13),(4.14) in the sense

of [41,11] can be chosen as follows:

β :=
{
(c, c) | c ∈ [0, 1] \ [ρ̌, ρ̂]

}
∪
{
(c, ρ̌) | c ∈ [ρ̌, ρ̂]

}
∪
{
(ρ̂, c) | c ∈ [ρ̌, ρ̂]

}
.

All the aforementioned works on constrained traffic flows focused on the case

of bell-shaped f . More recently, Chalons et al. [38] considered the case of non-bell-

shaped (but yet not general) fluxes for modeling pedestrian flows (cf. [52,53] for

cTo be specific, in [38] two different notions of solution were considered: the one based on the
classical Kruzhkov solutions away from the interface, and the one based on the non-classical
Riemann solver of Colombo and Rosini [42]. The present paper deals exclusively with the first
(classical) interpretation.
dDue to the bell-shape assumption on f , given F ∈ [0,max f), the only element of C with flux
equal to F is the couple (ρ̂F , ρ̌F ) defined by ρ̌F < ρ̂F , f(ρ̌F ) = F = f(ρ̂F ). This couple always
lies below the diagonal of Ul × Ur = [0, 1]2.
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empirical evidence of relevancy of non-bell-shaped flux models). Contrarily to the

bell-shaped case, here the set of connections at level F :

CF = {(ρ̂, ρ̌) ∈ C | f(ρ̂) = F = f(ρ̌)}

is not reduced to a singleton. Among these connections at the flux level F , only

appear as non-classical shocks in the construction of the Riemann solver those that

lie below the diagonal of [0, 1]2, i.e., those with ρ̂ ≥ ρ̌ (see [38, Rem. 1]). Therefore

the recipe proposed hereabove for the bell-shaped case still applies in the case of

fluxes considered in [38] and it yields the same admissible solutions: namely, one

can take for transmission map β, the projection of the identity graph Id on the

set of maximal monotone graphs containing all the elements (ρ̂, ρ̌) of CF such that

ρ̂ ≥ ρ̌ (see Figure 1 for an example). To sum up, the L1-dissipative germ exhibited

in [38] coincides with the germ G(β). Therefore, the admissible solution considered

in [38] coincides with the G(β)-entropy solution prescribed by the transmission map

β obtained as the projection of the identity on the set of the graphs containing the

connections located below the identity.

This fact permits to use the transmission-map-based finite volume scheme we

propose in § 3 for approximating admissible solutions in the sense of [38]. Let us

provide an illustration for a particular case inspired from [42,38]. Define the function

f(ρ) = max

(
ρ(7− ρ)

6
,
3(ρ− 6)(2ρ− 21)

20(ρ− 12)

)
, ∀ρ ∈ [0, 10.5].

At the interface {x = 0}, we impose that

f(ρ)|x=0
(t) ≤ 0.3, for a.e. t ≥ 0,

leading to the configuration illustrated by Figure 1. This allows to determine the 4

elements of CF , three of them being below the identity graph, from what we deduce

the expression of the graph β to be used as transmission map. Let us expose some

numerical results provided by the scheme analyzed in §3. The computations are

performed thanks to the Godunov and Rusanov schemes with hybridization of the

interface at {x = 0}. The first initial data we considered is

ρ0(x) =

{
5.3 if x ∈ (−0.8,−0.5),

0 otherwise.
(4.15)

First, on Figure 2, we plot in the (x, t)-plane the solution obtained via the Godunov

scheme with 300 space cells. One can in particular see an undercompressive wave

leaving the interface.

We have also plotted on Figure 3 the solutions at t = 2 computed with or

without constraint and with the Godunov and Rusanov schemes. For this test, we

only used 100 cells so that the Rusanov scheme is not yet converged, and one can

see a difference between the solution obtained by the Rusanov scheme and the one

obtained by the Godunov scheme.
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Fig. 1. Example of §4.5. The flux function f , represented in the left figure, is not a bell-shaped
function. Therefore, the set CF contains 4 singletons represented in the right figure by black circles.
The graph β (red solid line) is defined as the projection of the identity (blue dashed line) on the
set of the maximal monotone graphs containing the strict connections of CF located below the
graph Id.

Fig. 2. Example of §4.5. Plot of the solution ρ corresponding to the initial data (4.15) in the
(x, t)-plane. One can see two waves leaving the interface, leading to a so-called undercompressive
discontinuity, that is usually forbidden in the Kruzhkov theory.

The second initial data we consider is

ρ0(x) = 6.8 for all x ∈ R. (4.16)

The couple (6.8, 6.8) belongs to G(β), hence the exact solution is constant, and it
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Fig. 3. Example of §4.5. Despite the Rusanov scheme is more diffusive than the Godunov scheme,
its numerical diffusion is well-balanced to preserve the connections of G(β) (cf. Lemma 3.3), so
that the undercompressive waves are accurately solved.

is exactly computed thanks to the Godunov scheme. But since (6.8, 6.8) ∈ Go(β) \

G♭(β), the solution is not exactly computed by the Rusanov scheme. Indeed, a

numerical viscous layer appears nearby the interface Σ (cf. Figure 4).

4.6. Example of non-conservative coupling using transmission

map and additional dissipation information

To conclude, we have chosen to present briefly an example where a transmission map

is combined with a non-conservative coupling. The example refers to the problem

∂tu+ ∂x
u2

2
= −λuδ0(x) (4.17)

considered in [18]; the motivation comes from particle-in-Burgers model proposed in

[58], see also [12]. In this case, fl(u) = fr(u) =
u2

2 , Ul,r = R (condition (1.4) being

dropped); λ > 0 is a parameter. The action of the singular right-hand side in (4.17)

is dissipative, that’s why the problem can be treated within a slight generaliza-

tion of the “germs theory” recalled in Section 2.1. The transmission map approach

of the preceding sections can be adapted so that to include problem (4.17), as a

representative of large a class of problems with non-conservative interface coupling.

Let us recall the established well-posedness theory for (4.17). First, the right-

hand side of (4.17) has to be given a precise sense, because it has the form of a

non-conservative product (cf. [46]). The interpretation used in [18] goes back to the
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Fig. 4. Example of §4.5. Numerical solutions for 100 celles corresponding to the initial data (4.16)
provided by the Godunov (blue) and Rusanov (red) schemes. In the case of the Rusanov scheme,
numerical profiles are observed, as suggested by the study carried out in §3.2.

analysis of the particle-in-Burgers model of Lagoutière, Seguin and Takahashi [58]

where the Dirac measure δ0 is seen as the (weak-∗, in the sense of measures) limit

of some monotone profiles δǫ ∈ C∞
c (R). This singular limit approach leads to the

identification of the subset

Gλ =
{
(ul, ur)

∣∣ ul − ur = λ or
(
ur ≤ 0 ≤ ul and |ul + ur| ≤ λ

)}
(4.18)

which plays the role of an L1-dissipative germ (in this case, Definition 2.1 should be

relaxed because the Rankine-Hugoniot condition fl(ul) = fr(ur) is not relevant for

the non-conservative equation (4.17)). In [18], it is shown that there exists a unique

Gλ-entropy solution to the Cauchy problem for (4.17) with given L∞ datum; the

solution is defined in the same way as in Definition 2.4 and in Proposition 2.6.

We claim that this unique Gλ-entropy solution is the unique function that fulfills

(1.7) and verifies the following non-conservative analogue of condition (1.11):

the one-sided traces ul,r(t) of u in the sense (1.8) fulfill for a.e. t > 0

∃p ∈ R such thate






fl(ul) = Gl(ul,
p+λ
2 ),

Gr(
p−λ
2 , ur)−Gl(ul,

p+λ
2 ) + λ

2 p = 0,

Gr(
p−1
2 , ur) = fr(ur).

(4.19)

Condition (4.19) corresponds to the transmission map βλ := Id− λ parametrized,

eHere, we keep the notation Gl,r for Godunov fluxes for the sake of subsequent generalizations;
but in the case of problem (4.17), we have fl = fr so that Gl = Gr .
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as in § 2.2, by p = ũl+ ũr. But in addition, the monotone non-decreasing functionf

ψλ := λ
2 Id enters the flux balance which can be written under the form

Ψ(p) = 0, where Ψ : p 7→ Gr(ũr(p), ur)−Gl(ul, ũl(p)) + ψλ(p),

with βλ parametrized by p ∈ R 7→ (ũl(p), ũr(p)) ∈ βλ, p = ũl(p) + ũr(p).
(4.20)

The transmission condition (4.19) characterizes Gλ-entropy solutions due to the

following lemma, which can be proved thanks to a simple case-by-case study using

the expression of the Godunov flux Gl = Gr corresponding to fl,r : u 7→ u2

2 .

Lemma 4.6. Denote by G(βλ, ψλ) the subset of R
2 consisting of all couples

(ul, ur) ∈ R
2 that fulfill (4.19). Then G(βλ, ψλ) coincides with Gλ given by (4.18).

From now on, we will drop the subscript λ in the notation for monotone graphs

βλ, ψλ and for the corresponding set G(βλ, ψλ) ⊂ R
2 defined as in Lemma 4.6;

this set is the non-conservative analogue of L1D germs. Indeed, the precise choice

βλ = Id − λ and ψλ = λ
2 Id is only needed in order to specify our analysis to the

example (4.17) of non-conservative interface coupling.

To conclude, we briefly investigate finite volume approximation of G(β, ψ)-

entropy solutions. First, the monotonicity of Ψ : R 7→ R defined in (4.20) and the

fact that Ψ(±∞) = ±∞ ensure that for every couple (ul, ur) ∈ R
2 there exist unique

values F−
β,ψ(ul, ur) and F

+
β,ψ(ul, ur) equal to Gl(ul, ũl(p)) and to Gr(ũr(p), ur), re-

spectively, for which Ψ(p) = 0. This defines, respectively, the left and the right

numerical fluxes F−
β,ψ(·, ·) and F+

β,ψ(·, ·) at the interface. The resulting finite vol-

ume scheme takes the same form as (3.3) in Section 3, with the exception of the

equations for j = −1 and j = 0 that become

un+1

−1/2
−un

−1/2

∆t ∆x+ F−
β,ψ(u

n
−1/2, u

n
1/2)−Gl(u

n
−3/2, u

n
−1/2) = 0,

un+1

1/2
−un

1/2

∆t ∆x+Gr(u
n
1/2, u

n
3/2)− F+

β,ψ(u
n
−1/2, u

n
1/2) = 0.

(4.21)

As for the conservative case, it is not difficult to prove the convergence of this

scheme to the unique G(β, ψ)-entropy solution; moreover, as in Proposition 2.9, one

sees that the resulting scheme is the Godunov scheme.

One can also replace the Godunov fluxes Gl,r in (4.20) (and in the corresponding

definition of one-sided interface numerical fluxes F±
β,ψ) with any other monotone,

Lipschitz, consistent with fl,r numerical fluxes Fl,r; this means that we define

F−
β,ψ(a, b) := Fl(a, ũl(p)) and F+

β,ψ(a, b) := Fr(ũr(p), b) where p solves
{
Fr(ũr(p), b)− Fl(a, ũl(p)) + ψ(p) = 0,

(ũl(p), ũr(p)) ∈ β, p = ũl(p) + ũr(p).

(4.22)

In the case of problem (4.17), for Fl,r one chooses a single numerical flux F con-

sistent with fl = fr : u 7→ u2

2 . The resulting finite volume scheme using equations

fMore generally, one could ask that ψ be a maximal monotone graph relating the canonical pa-
rameter p of graph β to the amount of flux dissipation corresponding to interface couple of states
(ũl(p), ũr(p))



July 4, 2014 15:13 WSPC/INSTRUCTION FILE AC-NBS-PreprintVers2

38 Boris Andreianov and Clément Cancès

(4.21) near the interface is slightly different from the scheme for Gλ-entropy solu-

tions designed in [18]. Our scheme has the disadvantage of including one non-linear

equation to be solved at every time step, while the scheme of [18] is fully explicit.

At the same time we expect more robust stability properties for our scheme; in

particular, the condition

∂a(∂aF (a, b) + ∂bF (a, b)) ≥ 0 and ∂b(∂aF (a, b) + ∂bF (a, b)) ≥ 0 (4.23)

imposed in the analysis of the scheme of [18] is not needed for our new scheme.

Indeed, we have the following easy observation directly related to the discrete L1

contraction property of [18, Prop. 8].

Lemma 4.7. Consider the numerical fluxes defined by (4.22). Then for all real

numbers a ≤ A and b ≤ B, there holds G+ −G− ≤ 0, where

G± := F±
β,ψ(A,B)− F±

β,ψ(a, b). (4.24)

Proof. The result follows readily from the definition (4.24) and the fact that

Fl,r(·, b) and −Fl,r(a, ·) are non-decreasing maps while β and ψ are monotone

graphs.

Lemma 4.7 can be used in the place of the argument of [18, proof of Prop. 8,

p. 1956] where (4.23) was exploited. Henceforth, we easily adapt the convergence

proof to the numerical scheme for problem (4.17) using discretization (4.21) near

the interface; the one-sided interface numerical fluxes (4.22) are defined thanks to

the transmission map approach advocated in the present paper.

From the above example, it is clear that discontinuous-flux problems with con-

servative coupling by a transmission map β can be seen as a particular case of

non-conservative ones, where β prescribes the “desired trace values” and an ad-

ditional non-decreasing function (or, more generally, maximal monotone graph) ψ

prescribes the “desired interface dissipation”; the choice ψ ≡ 0 corresponds to the

conservative case.
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