Tectonosedimentary evidence in the Tunisian Atlas, Bou Arada Trough: insights for the geodynamic evolution and Africa-Eurasia plate convergence

Mohamed Ben Chelbi, Kamel Samir, Harrab Salah, Rebai Noemen, Melki Fetheddine, Mustapha Meghraoui, Zargouni Fouad

To cite this version:

HAL Id: hal-00940308
https://hal.archives-ouvertes.fr/hal-00940308
Submitted on 31 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Tectono-sedimentary evidence in the Tunisian Atlas - Bou Arada Trough: Insights for the geodynamic evolution and Africa-Eurasia plate convergence

Mohamed Ben Chelbi1,2*, Samir Kamel1, Salah Harrab1, Noemen Rebaï3, Fetheddine Melki1, Mustapha Meghraoui 4, Fouad Zargouni1

1 Laboratoire de Géologie Structurale et Appliquée, Faculté des Sciences de Tunis, Université Tunis El Manar 2092, Tunis, Tunisie
2 Institut Supérieur des Sciences et Techniques des Eaux de Gabès, Université de Gabès, Cité Erriadh, 6072 Zrig Gabès, Tunisie
3 Unité Bassin Sédimentaire, Université Tunis El Manar, 1092, Tunis, Tunisie.
4 EOST Institut Physique de Globe, Université de Strasbourg, France

*Corresponding author: (med.benchelbi@gmail.com)

Abstract:

The Bou Arada Trough (BAT) is an E-W oriented structure located 80 km SW of Tunis, characterizing the central Tunisian Atlas. This trough is filled by a thick Quaternary sand and clay series and is bordered by complex systems of folds generally trending NE-SW. Contacts between the BAT and the neighbouring folds are accommodated by NE-SW and NW-SE oriented faults. Contrary to the other troughs of the Tunisian Atlas, which are related to the Plio-Quaternary orogenic period, the geodynamic evolution of the BAT has been started since began in the Maastrichtian and has continued until the present day. Structural, tectono-sedimentary and seismic data analyses are undertaken in the studied area to better understand the evolutionary scenario of this trough. Results obtained show that the BAT is fragmented into three NW-SE oriented sub-basins and records a continuous history of downthrow. Indeed, during extensional to transtensional regimes, this trough has evolved in response to the two networks of perpendicular fractures while during compressive to transpresssive periods, the collapse of the BAT has been induced by a pull-apart mechanism using the same
network of faults but with a strike slip movement. The Bou Arada Trough thus preserves a record of the convergence between the European and African plates since the Maastrichtian.

Key Words:
Bou Arada Trough, Geodynamic evolution, Tunisian Atlas, Transtension, Rifting, Transpression, pull-apart basin, Eurasia-Africa convergence.

1. Introduction
The present configuration of the Tunisian margin has resulted from the convergence and collisional movement between the African and European plates including the Tethys geological domain. The central Tunisian Atlas and the Algerian Sahara Atlas mountain ranges contain several troughs filled with Quaternary deposits arranged in a structural band between the Zaghouan and Teboursouk master faults (Fig. 1A). The average trend of these grabens is NW-SE to WNW-ESE, orthogonal to a set of NE-SW trending folds (Fig. 1B). Castany (1948) and Glangeaud (1951) deduced that these structures developed during Plio-Quaternary orogenic phases. These hypotheses were reinvestigated by Jauzein (1967), Richet (1971), Dlala et al. (1983), Philip et al. (1986) and Chihi and Philip (1998). These authors linked the development of these troughs to slip on the E-W and NE-SW faults, so that the grabens resulted from a compressive tectonic regime related to the convergence between African and European plates (Bousquet and Philip, 1986; Ricou, 1994). Although Plio-Quaternary tectonic movements are significant, our recent work (Ben Chelbi, 2007; Ben Chelbi et al., 2008), based on structural, tectono-stratigraphic and seismic analyses, shows that the Tunisian troughs have developed since the Maastrichtian.
The ESE-WNW to E-W Bou Arada Trough (BAT), the target of our present study, is located
~ 80 km southwest of Tunis (Fig. 1) and, unlike the other Tunisian Atlas troughs, was not
studied by our predecessors. The aims of this work are: (1) to analyze the contacts between
this trough and the neighbouring structures; (2) to explore the deep geometry of this structure
using three seismic lines; (3) to examine the spatial and temporal changes in facies and
thickness of the stratigraphic sequences since Campanian time; (4) to define and characterize
links between the evolutionary model of the BAT and the rest of the Tunisian margin; and (5)
to correlate the evolution of this graben with other examples in neighbouring regions.

2. Methodology

The study of tectonic contacts between the BAT and neighbouring geological structures is
primarily inferred from cross sections and analysis of fault movements. Ten geological cross
sections show the current dynamics of the different faults bordering the BAT. In addition, we
devote a particular care to the various geometries of these bordering faults. Four seismic
sections obtained from the Tunisian Petroleum Company (ETAP), are interpreted in this study
to illustrate the main structural geometry of the BAT at depth. The W1 petroleum well is used
to show the succession of different stratigraphic sequences characterizing the trough using
time-depth conversion of lithological data.

The geodynamic evolution of the BAT is interpreted, first, through the analysis of vertical
facies variations and thicknesses of the different series on both sides of the NW-SE oriented
faults. Since the Campanian, sedimentation has been controlled by this network of faults in
which we note a large variation of facies and thicknesses. Second, palaeostress regimes are
obtained by measurement of syn-depositional faults. These fault plane orientations and
directions and senses of slips are subsequently analyzed using Angelier’s (1984, 1989) Direct
Inversion Method (software version 5.42). This combination of surface and sub-surface data will contribute to the development of an evolutionary scenario for the BAT.

3. Geological setting

3.1. Stratigraphy

The stratigraphic series outcropping in the study area are essentially of Triassic, Cretaceous and Palaeogene age (Figs 2 and 3). Triassic beds crop out in Jebel Ech Chehid and Jebel Bessioud (Fig. 3B), composed of clay, marl, limestone, gypsum, salt, anhydrite and sand. The Germanic facies of Triassic, typical of the Tunisian margin, is evident. The Early Cretaceous is formed by thick series of clay, limestone and rare quartzitic intercalations. This sedimentation characterizes the “Sillon tunisien” (Sekatni et al, 2008). The Late Cretaceous is represented by carbonate and argillaceous sedimentation. It begins with alternations of gray marl and limestone (Fig. 3). These alternations characterize the Fahdène and Bahloul Formations, respectively of Albian and Cenomanian-Turonian ages (Burollet, 1956). The middle part of the Late Cretaceous corresponds to the argillaceous Aleg Formation, allotted to the Turonian-Coniacian-Santonian-Middle Campanian (Burollet, 1956). The Abiod Formation, Late Campanian to Maastrichtian in age, is composed of two limestone beds interbedded by marl (Fig. 3). The Tertiary is represented by Palaeocene clay (El Haria Formation), Early Eocene limestone (Bou Dabbous Formation), Late Eocene clay (Souar Formation) and Oligocene alternations of sand and clay (Fortuna Formation). These Tertiary sequences mark marine sedimentation during the Palaeocene and Eocene, and continental units of the Oligocene period. These various Palaeogene units are unconformably covered by Mio-Pliocene continental deposits formed essentially of sands and silt (Fig. 3).

3.2. Structural evolution
The geodynamic evolution of the Tunisian Atlas Mountains and margin has been part of the Tethys geological domain from the first stages of rifting until the present stage of the collision between Eurasia and Africa (Fig. 4). Evidence of first stages of the Tethyan rifting are dated to the Jurassic (Alouani et al., 1992; Soussi and Ben Ismaïl, 2000; Soussi, 2003; Boughdiri et al., 2006; Sekatni et al., 2008; Fig. 4). This Jurassic rifting phase has been inferred from the alkaline composition of the igneous rocks and in the presence of radiolarians in rocks associated with the middle Jurassic series. This rifting resulted from N-S extension and this mechanism of opening continued during the Early Cretaceous (Letouzey and Trémolière, 1980; Soyer and Tricart, 1987; Morgan et al., 1998). The minimum stress direction was NE-SW until the Aptian (Soyer and Tricart, 1987; Ben Chelbi et al., 2008; Melki et al., 2010; Fig. 4). This change in the minimum stress orientation was attested by reactivation of the NW-SE trending faults with normal activity, which created several basins elongated NE-SW (Ben Chelbi et al., 2008), and by intense magmatic activity associated with sedimentation. Contemporaneous to this activity, the Tunisian Atlas records intense halokinetic activity (Fig. 4) forming a large system of diapirs and/or salt glaciers (Vila et al. 1994).

During Late Cretaceous the Tunisian margin was controlled by transtensional tectonics (Zouari et al., 1999; Ben Chelbi et al. 2008), characterized by reactivation of the N-S, E-W and NE-SW trending normal faults with dextral component. The general inversion of the structures was recorded during the Middle Eocene (Masrouhi et al., 2008; Melki et al., 2010). The first period of folding is assigned to the Tortonian (Tlig et al., 1991), while the ultimate compression leading to the building of the Tunisian Atlas Mountains began during the Villafranchian and continues to the present-day (Bouaziz et al., 2002; Fig. 2). This long period of compression controlled by NNW-SSE to N-S stress has contributed to the final configuration of the Tunisian Atlas in which NE-SW, NW-SE, E-W and N-S oriented faults were respectively reactivated with sinistral reverse, dextral reverse, reverse and sinistral slip.
The central Tunisian Atlas is characterized by the coexistence of folding and rifting (Fig. 1B). The anticlines and large syncline basins that developed in this part of the Tunisian Atlas and are generally filled up with by Late Eocene deposits are elongated NE–SW. NW-SE oriented rifts, filled up by Mio-Plio-Quaternary deposits, developed orthogonally to these folds (Philip et al., 1986). The NE-SW oriented sinistral and NW-SE oriented dextral normal faults ensured the formation of these rifts following a pull-apart model (Ben Ayed and Viguier, 1981).

Evaporite layers, mostly Triassic in age, are present as a deep decollement level (Ahmadi et al. 2006). During both extensional and compressional phases this Triassic salt has been remobilized throughout the preexistent system of faults. Some of them are considered as diapirs (Gharbi et al. 2005) in which salt occupies the core of the anticlines, others as salt glaciers (Ben Chelbi et al. 2006; Ben Slama et al. 2009) in which Triassic evaporites were interstratified within the Aptian clay series. These salt structures started to grow during the Aptian (Snoke et al., 1988; Perthuisot et al., 1998) or even earlier (Boukadi and Bedir, 1996).

These different tectonic phases that affected the Tunisian margin since the first stage of rifting have affected the structural zoning of Tunisia. The major domains are, respectively, from north to south: the Tell zone; the Atlasic domain, itself subdivided into the northern, central and southern Atlas; the stable Sahara Platform; the Eastern Platform; and the North-South Axis (Fig. 1B).

4. Field studies of the structural position of the BAT

Detailed structural analysis of Quaternary deposits that cover the plain and neighbouring folded structures reveals that the history of the BAT is intimately associated with the activity and the evolution of a complex fault system. We present here the main structural features that border the BAT depression.
4.1. Northern contacts: The BAT is bounded to the north by Jebel Rihane, Henchire Bou Ftics and Jebel Bessioud (Fig. 2A and B). The contact between these structures and the plain is represented by a complex system of faults having two major NW-SE and NE-SW orientations (Fig. 2B). Indeed, Jebel Sidi Brahim and Ain Agueb, which consist of Aptian-Albian limestone series, are bordered to the south by NW-SE oriented faults (Fig. 5A). These contacts include the so-called Bou Jlida fault (Fig. 2B) that separates the southern El Aroussa plain and northern Jebel Rihane. Detailed examination of these generally SW dipping faults reveals three generations of striations, oriented S60°E and with weak pitch to the SE and strong pitch to the NW, indicating three phases of tectonic activity. Near Sidi Dakhli, the contact between Late Eocene claystone and Cenomanian limestone is represented by a NE-SW trending normal fault (Fig. 5B). The latter has a fault plane dipping SE with two generations of striations. The first generation has a pitch towards the SW indicating a dextral movement, while the second one has a pitch towards the NE indicating a sinistral sliding movement. The southern side of the Henchir Bou Ftics structure is truncated by several NW-SE trending en echelon faults (Fig. 2B and 5C). All these faults indicate polyphase activity of normal dextral slip with three generations of striations (pitches of 15° to the NW, 45° to the NW and 75° to the SE). In the south-eastern part of the Jebel Bessioud syncline, the Oligocene is missing. Slip on several NW-SE oriented faults has resulted in the submergence of this area below Quaternary alluvial deposits (Fig. 5C). In the east, a NW-SE system of faults delimits the Sabkhet El Korzia depression.

4.2. Western Contacts: The BAT is bordered to the west by the large Triassic diapir of Jebel Ech Chehid (Fig. 2B), which is moulded onto the NE-SW oriented El Alia-Téboursouk fault (Perthuisot and Jauzein, 1974; Ben Slama et al. 2009). The Campanian limestone layers and related geometry of Draa Sidi Haj Amor shows the sinistral movement of this NE-SW fault.
This structure constitutes a drag fold formed on the fault which gave rise to the Jebel Ech Chehid diapir. Moreover, at Faïd Ez Zitoun, slip on a SE dipping and NE-SW trending normal fault may explain the subsidence of the El Aroussa plain (Fig. 5D). On the fault plain we measured two generation of striations. The first shows a strong pitch to the SW (60° SW) while the second one has a weak pitch to the SW (20° SW), indicating two phases of tectonic activity.

4.3. Southern Contacts: The contact between the folded structures of Jebel er Remil and Taref Ech Chena, in the south, and the Quaternary plains of El Aroussa, Bou Arada and Sabkhet Taref Ech Chena, in the north, is represented by two NW-SE and NE-SW trending fault systems (Fig. 2B). Indeed, the Mio-Pliocene sand and clay formations covering the Jebel er Remil syncline are truncated by a succession of NW-SE trending normal faults (Fig. 6E). The slickensides on these faults indicate normal slip with a component of dextral slip. The curvature of Jebel Strassif is truncated by a NE dipping and NW-SE trending normal fault (Fig. 6F). A cross section at this location shows that the last movement recorded on this fault is reverse, given the overlap of the Palaeocene Sidi Ali Ben Ali Formation over Oligocene deposits (Fig. 6G) but without the normal faulting movement recorded during periods of extension. The Campanian dome of Aïn Bou Slama is bordered by a NE-SW oriented normal fault involving the downthrown of the Late Eocene Formation of Jebel er Remil (Fig. 6H). The northern periclinal termination of the Cretaceous Jebel Taref Ech Chena anticline is truncated by a network of NW-SE and NE-SW oriented faults (Fig. 6Í) with several generations of striations. On both sides of these faults no variation of thicknesses or facies is observed in the Late Cretaceous (pre-Maastrichtian) series. Further east, the downthrown of the northern part of the Taref Ech Chena structure (Fig. 6J) is accommodated by NW-SE oriented faults (Fig. 2B).
Seismic data analysis and graben formation

We have used four seismic profiles P1, P2, P3 and P4, respectively oriented NS, NNE-SSW, E-W and NW-SE across the BAT (Fig. 2B). These seismic profiles are calibrated by the W1 well.

Profile P1 (Fig. 7) shows that the BAT is bordered on the northern and southern areas by two major faults, named F1 and F2, respectively. At Jebel Rihane, fault F1 shows the downthrow of the Late Campanian calcareous series. The cumulative vertical displacement of this limestone layer is estimated as 1700m. At the surface, F1 corresponds to the Sidi Dakhli fault which places the Late Eocene Formation in contact with the Cenomanian marly-limestone (Fig. 5B). In the south, the BAT is separated from the folded structures by north dipping fault F2. According to vertical displacement between the limestone bed of the Abiod Formation in the centre of the trough and its equivalent forming the Ain Bou Slama dome, the downthrow is estimated to 1300m. In the same locality, the thick clay series of the Souar Formation is in direct contact with Campanian limestone deposits (Fig. 6H). The general configuration represented by this seismic section is of a negative flower structure in which the maximum subsidence is recorded at the centre of the basin.

Profile P2, with a NNE-SSW orientation, is located west of profile P1 and crosses the principal depocentre of the El Aroussa Trough (Fig. 2B). This profile shows that this trough is formed by two major faults constituting another negative flower structure (Fig 7). The cumulative vertical displacement affecting the top of the Campanian limestone series cropping out at Jebel Zemala and in the centre of the trough is estimated as 2000m. At the surface, the northern fault corresponds to the Jebel Sidi Brahim fault whereas the southern fault corresponds to the Jebel Zemala fault (Figs 2B and 5A).
Profile P3 (Fig. 8) crosses Sabkha Taref Ech Chena and continues through the Triassic diapir of Jebel Ech Chehid (Fig. 2B). It shows that the plain of Bou Arada is compartmentalized, from east to west, into three distinct basins along three NE-SW oriented faults, marked at depth by offset in Triassic units, structure this compartmentalization. These bordering faults of hidden basins have normal slip and show small reverse bends which could be induced by progressive structural inversions.

Profile P4 (Fig. 8) crosses the Bled et Tlili anticline and continues to Jebel Hzem Lessoued (Fig. 2B). It shows that this area of BAT is affected by a NE-SW trending normal fault which is also responsible for the subsidence of the El Aroussa plain. The cumulative vertical displacement recorded on this fault by the reference bed of the Abiod Formation is estimated as 1500m. The depressions revealed by profiles P3 and P4 were filled by Mio-Pliocene sand and clay deposits that cover unconformably the Oligocene series.

6. Tectono-sedimentary evolution since the Campanian

To determine the structural evolution of the BAT, we measured the orientations of striations on fault planes that affect different formations. Syndepositional fault populations, providing direct dating of tectonic events, have been specially analyzed. We then calculated the orientations of the principal stress axes σ_1, σ_2 and σ_3 and the ratio Φ of principal stress differences [$\Phi = (\sigma_2 - \sigma_3)/(\sigma_1 - \sigma_3)$] using the Angelier Direct Inversion Method software version 5.42 (Angelier, 1984, 1989). Several deformational phases affecting the studied area were thus established (see Table 1; also Ben Chelbi, 2007; Ben Chelbi et al., 2008).

The first phase of deformation thus recognised involved extension towards N64°W-S64°E on the NW-SE oriented normal faults during the Coniacian-Campanian. These NE-SW faults show a dextral normal movement involving the uplift of Triassic series. The maximum downthrow and sediment thickness during this phase developed at Jebel Rihane and Aïn Bou.
11 Slam (Fig. 9A). In addition, the activity recorded by this network of faults delimits a high zone with a thin series of sediments, corresponding to the modern BAT (Fig. 9A). The configuration of the sedimentary floor was thus controlled by a succession of horsts and grabens in which the current site of BAT is the uplifted zone and Jebel Rihan and Aïn Bou Slam correspond to the collapsed areas (Fig. 9A’).

In the second phase, the Maastrichtian to the Middle Eocene period was characterized by a transpressive to compressive tectonics with the maximum compressive strain oriented in the direction N41°W-S41°E. This was determined by analysis of syndepositional micro-faults affecting the formations that characterize this period (Fig. 10 A). This tectonic regime reactivated the NE-SW striking faults with reverse slip and the NW-SE to E-W striking faults with dextral normal slip (Fig. 10 B). This structural configuration involved the downthrow of NW-SE to E-W oriented blocks, for example in the BAT (Fig. 9 B and B’). We note the significant thickness (150m) of the limestone series forming the upper member of the Abiod Formation, the argillaceous series of the El Haria Formation and the various limestone layers of the Bou Dabbous Formation. These three formations are missing at Jebel Rihane and much reduced at Jebel Bou Fitis in the north and at Jebel Bou Arada Aïn Bou Slama in the south.

The phase of extension oriented N16°E-S16°W during the Late Eocene-Aquitanian was also deduced by analyzing syndepositional micro-faults (Fig. 11A). At this time the NW-SE to E-W oriented normal faults (Fig. 11 B) accommodated subsidence of BAT and the uplift of its neighbouring areas (Fig. 9). The NE-SW to N-S trending fault system also accommodated normal slip, amplifying the subsidence of the trough (Fig. 11 C and D).

During the Middle Miocene, the micro-faults analysed indicate N25°W-S25°E compression associated with the crustal shortening of the Atlas Mountains (Fig. 12 A). This phase reactivated the NE-SW oriented faults with reverse slip and the NW-SE to WNW-ESE system with normal slip (Fig. 12 B). The structures bounding the BAT were folded, maintaining the
downthrown in the interior of the trough (Fig. 12 C and D). The Late Miocene-Pliocene period was marked by continental sedimentation in an extensional tectonic regime associated with a S61°W-N61°E oriented principal strain (Fig. 13 A and B), once again revealed by analysis of micro-faults. The pre-existing faults were reactivated with normal slip that accommodated subsidence in the BAT (Fig. 13 C and D).

From the Early Quaternary to the present, the Atlas Mountains of Tunisia have been subjected to shortening with N-S compressive strain (Letouzey, 1986; Tlig et al., 1991; Mzali and Zouari, 2006; Ben Chelbi et al., 2008; Melki et al., 2010). In our study area this neotectonic regime has reactivated the NW-SE and E-W oriented faults with reverse slip (Fig. 14A). Moreover, the NE-SW and N-S fault system has also been reactivated and shows sinistral movements (Fig. 14B).

7. Discussion

On the basis of our morphostructural, tectono-sedimentary and seismic analyses and interpretations we infer a complex history of development of the BAT since the Maastrichtian. Moreover, this graben presents a particular geometry different from the other troughs of the central Tunisian Atlas. Indeed, this depressed structure, with an ESE-WNW to NW-SE orientation, is fragmented into three sub-basins, each one oriented NW-SE to WNW-ESE. These sub-basins are, from east to west, the Taref Ech Chena, Bou Arada and El Aroussa basins. They are separated by NE-SW trending sinistral faults and are downthrown essentially by the WNW-ESE to NW-SE oriented normal faults (Figs 8 to 14). The evolution of BAT indicates some differences when compared to the other Plio-Quaternary troughs of the central Tunisian Atlas described by Dlala et al. (1983), Philip et al. (1986) and Chihi and Philip (1998), Haj Sassi et al. (2006) and Belghith et al. (2011). Indeed, an intimate relationship exists since the Campanian between the facies distribution and thicknesses, and
movements of the NW-SE oriented faults. The BAT shows Palaeogene units unconformably covered by Mio-Pliocene continental deposits. The facies and thicknesses of these formations are largely controlled by a complex system of faults.

In principle, two possible scenarios can account for the development of the BAT. The first is extension or transtension, accommodated, on the NW-SE to WNW-ESE and NE-SW to ENE-WSW oriented normal faults; the occurrence of this process would lead to the classification of the BAT as an extension or rift basin. Second, the BAT might develop as a pull-apart basin in response to strike-slip movement associated with compression or transpression (Fig. 15).

Our results suggest the following evolutionary model of the BAT (Fig. 10 to 14):

(i) - During the Late Maastrichtian to the Middle Eocene, the compressive to transpressive tectonic mode applied a horizontal N319 principal strain and a N220 intermediate extensive strain (Fig. 11A). These strains activate the NE-SW to ENE-WSW oriented faults in reverse to dextral reverse movement (Fig. 10 B). The NW-SE to WNW-ESE oriented faults are reactivated into normal mechanism with considerable dextral component (Fig. 10 B). The interference of sliding movements recorded on these bordering faults coupled with the normal movement of the sub-parallel faults to the maximum stress, involves the subsidence of BAT (Fig. 10 C) due to a pull-apart mechanism of opening (Fig. 10 D and Fig. 15). This syn-deposits activity is attested by the total absence of the Maastrichtian, Paleocene and Early to Middle Eocene Formations in Jebel Rihane and Bou Ftis. In parallel, at Jebel Taref Ech Chena, Jebel Bou Arada and Drâa Sidi Haj Amor the equivalent deposits are condensed. At these localities the maximum thickness of these Formations were lower to 40m (Fig 9).

This opening model of BAT is comparable to that proposed for the opening of the Permian basin of Hercynian Morocco described by Saïdia et al. (2002).

This considered period is contemporary to the significant convergence between Africa and Eurasia plates (Biju Duval et al., 1977; Dercourt et al., 1985; Carminati et al., 1998;
Carminati and Doglioni, 2004) inducing the obduction of the Maghrebian furrow on the Alboran-Kabylia-Calabria block and the beginning of the thrust-and-fold tectonics that form the Maghreb Atlas Mountains (Piqué et al., 1998; Frizon De Lamotte et al., 2009).

(ii) - During the Late Eocene-Oligocene-Aquitanian interval, the study area was subjected to extension-transpression tectonic regime implying minimum N16 horizontal strain and N269 intermediate compression strain (Fig. 11 A). In response to this strain distribution, NE-SW to ENE-WSW oriented faults have normal mechanism, while the NW-SE to WNW-ESE oriented faults show normal mechanism with oblique component (Fig. 11 B)). This faulting activity shown by the two conjugate systems also involves the uplift of neighbouring structures in the BAT (Fig. 11 C). This syn-sedimentary normal faulting activity is attested by the strong accumulation of the Late Eocene clays and the Oligocene-Aquitanian sands and clays within the graben, and their reduction or absence at Jebel Rihane, Bou Fitis, Jebel Bessioud and Taref Ech Chena (Fig. 9).

This mode of extension tectonics and crustal opening is comparable with the evolution of the Upper Rhine graben (Bergerat, 1977; Granet et al., 2000) which is contemporary to the building of the Numidian basins in Tunisia (Talbi et al., 2008). These extension movements are as well coeval to the opening of the Algerian-Provençal basin (Tapponnier, 1977; Belon and Brousse, 1977) and can be considered as a response to the ongoing convergence between Africa and Eurasia (Biju-Duval et al., 1977; Dercourt et al., 1985).

(iii)- The Middle Miocene ultimate compressive phase responsible for the installation of the Tunisian Atlas (Ben Chelbi et al. 2008) was characterised by a N334 horizontal maximum compression strain, a vertical intermediate extension strain and a N241 oriented minimal strain (Fig. 12 A). These forces reactivated the NE-SW and NW-SE oriented faults in sinistral reverse and dextral to dextral normal movement, respectively (Fig. 12 B). The interaction of movements recorded on these faults may likely guide the continuous opening and subsidence
movement of BAT (Fig. 12 C and D). This tectonic configuration is attested by the thick accumulation of Late Miocene continental deposits in the trough centre and their absence in the basin borders.

During the Middle Miocene, the North African plate subduction under the Southern European margin was blocked (Dercourt et al., 1985), whereas, the Ionian and Adriatic plates continued to subduct (Aubouin, 1986; Carminati et al., 1998; Doglioni et al., 1999; Faccenna et al., 2004; Panza et al., 2007).

(iv) - During the Late Miocene-Pliocene period, the tectonic regime was essentially extensive to transtensive implying a N241 minimal strain and N150 compressive intermediate strain (Fig. 13 A). This couple of strain distribution reactivated the two pre-existing systems of fractures into normal movement with sinistral and dextral sliding component respectively (Fig. 13 B), thus involving the downthrown of the BAT (Fig. 13 C and D). This activity is here also attested by the strong accumulation of the Mio-Pliocene continental deposits in the centre of the trough, and their absence in its borders.

This basin formation mode is similar to that described by Hurwitz et al. (2002) to explain the mode of opening of the Sea of Galilee and the scenario of installation of some troughs of the Pelagean Sea (Chihi and Philip, 1998).

(v) - Since the Quaternary until Present day, the tectonic regime affecting the Tunisian Atlas and North Africa Mountain ranges is compressive as shown by the N359 horizontal compressive stress (Meghraoui et al., 1986; Rebai et al., 1992; Fig. 14 A). This most recent tectonic regime reactivates the NE-SW to ENE-WSW and NW-SE to WNW-ESE pre-existent faults in reverse movement with sinistral and dextral sliding component respectively (Fig. 14 B). This tectonic phase involves normal faulting and final trough installation in its current architecture (Fig. 14 C). The persistence of this compressive activity causes the reverse movements recorded by all the faults without compensation of the normal movements.
recorded since the first extensional phases of this basin’s evolution. This configuration is
attested, especially, on the P1 and P2 seismic sections. This situation will lead to the
beginning of closing of this structure. This period is contemporary to the phase of installation
of troughs in the central Tunisian Atlas (Philip et al., 1986; Chihi and Philip, 1998).

8. Conclusions

The BAT has developed during a succession of phases of crustal deformation since the
Maastrichtian, in association with slip on major faults oriented NE-SW and NW-SE. It is
inferred that during extensional phases the BAT has developed as a rift basin whereas during
compressive and transcurrent phases it has developed as a pull-apart basin. Seismic data
confirm field observations and indicate that the BAT is segmented into three sub-basins with
an overall negative flower structure. Its complex history of development reflects the complex
deformation of the wider region as a result of changes in the relative motions of the African
and Eurasian plates.

During periods of extensional tectonics the basin subsidence is attributed to a simple rifting
model, while during the compressive and transcurrent tectonic periods the opening of this
graben occurred according to a pull-apart mechanism. This scenario implies a continuous
subidence in the graben. The examination of seismic profiles combined with field
observations reveal 1) the NE-SW oriented faults allowed the fragmentation of this trough in
three adjacent grabens, and 2) the bordering faults of this depressed structure show flower
structures. Furthermore, the sub-surface observations in seismic profiles confirm those
performed at the surface and show that the subsidence process is continuous either in
extensional period according to a mechanism of the rifting type or in compression movement
period according to a pull-apart mechanism of opening.
Our evolution model of the BAT is different from that proposed to explain the modes of graben formation in the central Tunisian Atlas during the Mio-Plio-Quaternary (Philip et al., 1986). The BAT records the complex tectonic evolution in a convergence, subduction and collision system between the African and Eurasian plates outlined here since the Maastrichtian. Moreover, the BAT structural building could be a potential site for oil and water reservoir because formed by thick Cretaceous and Early Eocene limestone series rich in organic matter and a thick Oligocene and Neogene sandy deposits. Detailed geochemical and hydrogeochemical studies, complementary to this structural analysis, are necessary in order to understand the importance of hydrocarbon and hydrological potentialities within the BAT.

Acknowledgements: This work was made possible with the collaboration of ETAP (Tunisian Petroleum Company) and funding from the Ministry of Higher Education. Field observations and modelling benefited from fruitful discussion with Chedly Abbès and Noureddine Boukadi (Professors at the University of Tunis). We are thankful to Rob Westaway and two anonymous reviewers for the critical reading of an earlier version of the manuscript.
References

géodynamique récente de la Méditerranée occidentale. *Notes Service Géologique, Tunisie*, 64, 103-116.

Figure captions

Fig. 1: A- Simplified structural map of the northern and central Tunisian Atlas and localization of the studied area (T2: Zaghouan Fault, T3: Tunis-Ellès fault, T4: El Alia-Teboursouk Fault; After Melki et al. 2010). B- Structural zoning of Tunisia showing the structural position of the Bou Arada Trough (After Ben Chelbi et al. 2008).

Fig. 2: A- Geomorphologic context of the studied area (SRTM 30m). B- Geologic map of the studied area (1- Triassic; 2- Early Cretaceous; 3- Late Cretaceous; 4- Campanian-Maastrichtian; 5- Palaeocene-Middle Eocene; 6- Late Eocene-Oligocene-Aquitanian; 7- Mio-Pliocene; 8- Quaternary; 9: Fault; 10: Localization of the seismic lines; 11: Localization of the cross sections).

Fig. 3: Lithostratigraphic column of the study area

Fig. 4: Synthetic chart of the geodynamics of the Tunisian Atlas showing the relationship between convergence tectonics and salt tectonics, after Patriat et al. (2003), Mejri et al. (2006), and Ben Chelbi et al. (2008). Arrows are oriented with respect to the North as a vertical direction.

Fig. 5: Geological cross sections (for localization see Fig. 3C) showing the northernmost contacts of the graben of Bou Arada with the neighbouring structures (Apt.: Aptian; Alb.: Albian; Cen.: Cenomanian; Con.: Coniacian; Sant.: Santonian; Maast.: Maastrichtian; La. Eoc.: Late Eocene; Olig.: Oligocene; Mio-Plio.: Mio-Pliocene; Q.: Quaternary)

Fig. 6: Geological cross sections showing the southernmost contacts of the Bou Arada Trough with the neighbouring structures (see Figs 2B and 5 for locations). Abbreviations denote: Apt., Aptian; Alb., Albian; Cen., Cenomanian; Con., Coniacian; Sant., Santonian; Camp., Campanian; Maast., Maastrichtian; Ea. Eoc., Early Eocene; La. Eoc., Late Eocene; Olig., Oligocene; Ea. Olig., Early Oligocene; La. Olg., Late Oligocene; Mio-Plio., Mio-Pliocene; Mio-Plio-Q., Mio-Plio-Quaternary; and Q., Quaternary.

Fig. 7: Raw (P1, P2) and interpreted (P’1, P’2) N-S oriented seismic lines showing the configuration and the geometry of the Bou Arada Trough (see Fig. 2B for locations). Fine
lines denote limits of formations, thicker lines denote faults, and broken lines denote limits of Triassic series. Abbreviations denote: M.P.Q., Mio-Plio-Quaternary; OLAq., Oligo-Aquitnian; E.3, Late Eocene; M.E.2, Maastrichtian to middle Eocene; Co.Ca., Coniacian to Campanian; Al.Tur., Albian-Turonian.

Fig. 8: Raw (P3, P4) and interpreted (P’3, P’4) E-W and NW-SE oriented seismic lines showing the configuration and the geometry of the Bou Arada Trough (see Fig. 2B for locations). Notation is the same as for Fig. 7.

Fig. 9: Correlation proposed in this study between the lithostraigraphic series on both sides of the Bou Arada Trough (A, B, C) showing modes of formation (A’, B’, C’) and the evolution of this trough since the Campanian.

Fig. 10: Evolution of the Bou Arada Trough in response to the various tectonic constraints during Maastrichtian- middle Eocene. A depicts a stereographic representation (Schmidt’s projection, lower hemisphere) of the various populations of faults affecting the different layers in studied area (continuous lines); a strike rose diagram, showing principal stress axes orientation and value (σ1, σ2 and σ3). B depicts interpretations of the stereograms showing the various activities recorded on major faults. C depicts schematic block diagram showing the paleostructuration of the studied area (extension regime, Compression regime). D depicts an evolutionary model of BAT in relation to the bordering system of faults.

Fig. 11: Evolution of the Bou Arada Trough in response to the various tectonic constraints during Late Eocene-Aquitanien (same legend as Fig. 11).

Fig. 12: Evolution of the Bou Arada Trough in response to the various tectonic constraints during Middle to Late Miocene (same legend as Fig. 11).

Fig. 13: Evolution of the Bou Arada Trough in response to the various tectonic constraints during Late Miocene-Pliocene (same legend as Fig. 11).

Fig. 14: Evolution of the Bou Arada Trough in response to the various tectonic constraints during Quaternary-Actual (same legend as Fig. 11).
Fig. 15: A) Block diagram schematically showing the pull-apart model of formation of the BAT during transpression. B) Simplified sketch showing the faults that controlled the evolution of the BAT.

Table 1: Synthetic table of the palaeostress data used for the reconstruction of the tectonic evolution of the study area Tunisia (N: number of fault plans; \(\sigma_1, \sigma_2, \sigma_3\): Direction and value of the stress; \(\Phi\): ratio of stress magnitude differences \((\Phi = \sigma_2 - \sigma_3/\sigma_1 - \sigma_3)\); R: Palaeostress regimes; C, E, TT and TP: Compressional, Extensional, Transtensive and Transpressive regimes, respectively.
Fig. 1:
Fig. 2:
<table>
<thead>
<tr>
<th>Chronostratigraphy</th>
<th>Formation</th>
<th>Lithostratigraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Miocene - Pliocene</td>
<td></td>
<td>Sands, Silts, Clays and conglomerates</td>
</tr>
<tr>
<td>Oligocene</td>
<td>Fortuna</td>
<td>Yellow sands and clays alternations</td>
</tr>
<tr>
<td>Eocene</td>
<td>Souar</td>
<td>Yellow clays with rare limestone levels</td>
</tr>
<tr>
<td>Lower Bou Dabbous</td>
<td>Bou Dabbous</td>
<td>White limestones</td>
</tr>
<tr>
<td>Paleocene</td>
<td>El Haria</td>
<td>Green to grey clays and marls</td>
</tr>
<tr>
<td>Maastrichtian</td>
<td>Abiod</td>
<td>White massive limestones with some marly and limestones alternations</td>
</tr>
<tr>
<td>Campanian</td>
<td>Aleg</td>
<td>Thick series of green clays</td>
</tr>
<tr>
<td>Santonian</td>
<td>Aleg</td>
<td>Alternations of grey marls and white limestones</td>
</tr>
<tr>
<td>Coniacian</td>
<td>Aleg</td>
<td>Green marls and limestones</td>
</tr>
<tr>
<td>Turonian</td>
<td>Fahdene</td>
<td>Green to grey clays with some limestones levels and turbiditic sands</td>
</tr>
<tr>
<td>Albian</td>
<td>Bir M'Cchure Credit Group</td>
<td>Green clays and quartzites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blue limestones</td>
</tr>
<tr>
<td>Barremian</td>
<td></td>
<td>Green Marls and grey limestones</td>
</tr>
<tr>
<td>Hauterivian</td>
<td></td>
<td>Clays, Gypsum, Sands and Dolomites</td>
</tr>
</tbody>
</table>

Fig.3:
<table>
<thead>
<tr>
<th>Age</th>
<th>Convergence</th>
<th>Lithology</th>
<th>Tectonic events paleostress & salt tectonics</th>
</tr>
</thead>
<tbody>
<tr>
<td>QATERNARY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pliocene</td>
<td>Placenzian</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zancian</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Messinian</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tortonian</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serravalian</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Langhian</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burdigalian</td>
<td>20.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aquitanian</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>Oligocene</td>
<td>Chattian</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rupelian</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td>Eocene</td>
<td>Priabonian</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bartonian</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lutetian</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ypresian</td>
<td>53.0</td>
<td></td>
</tr>
<tr>
<td>Paleocene</td>
<td>Thanetian</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Danian</td>
<td>65.0</td>
<td></td>
</tr>
<tr>
<td>Cretaceous Early</td>
<td>Maastrichtian</td>
<td>72.0</td>
<td>Inception accretion north Atlantic ocean</td>
</tr>
<tr>
<td></td>
<td>Campanian</td>
<td>83.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santonian</td>
<td>87.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coniacian</td>
<td>88.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turonian</td>
<td>92.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cenomanian</td>
<td>96.0</td>
<td></td>
</tr>
<tr>
<td>Cretaceous Late</td>
<td>Aalbian</td>
<td>108.0</td>
<td>Inception accretion central Atlantic ocean</td>
</tr>
<tr>
<td></td>
<td>Aptian</td>
<td>113.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barremian</td>
<td>117.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haueriavian</td>
<td>123.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valangian</td>
<td>131.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berriasian</td>
<td>135.0</td>
<td></td>
</tr>
<tr>
<td>Jurassic Malm</td>
<td>Kimmeridgian</td>
<td>141.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxfordian</td>
<td>154.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Callovian</td>
<td>160.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bathonian</td>
<td>164.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bajocian</td>
<td>170.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aalnian</td>
<td>175.0</td>
<td></td>
</tr>
<tr>
<td>Triassic Lias</td>
<td>Toarcian</td>
<td>184.0</td>
<td>Kef Ourma</td>
</tr>
<tr>
<td></td>
<td>Pliensbachian</td>
<td>189.0</td>
<td>Chaabat Ataris</td>
</tr>
<tr>
<td></td>
<td>Sinemurian</td>
<td>200.0</td>
<td>Chaabone Oust</td>
</tr>
<tr>
<td></td>
<td>Hettangian</td>
<td>203.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhaetian</td>
<td>220.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norian</td>
<td>220.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carnian</td>
<td>230.0</td>
<td></td>
</tr>
<tr>
<td>Triassic Middle</td>
<td>Ladinian</td>
<td>233.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anisian</td>
<td>240.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Olenekian</td>
<td>250.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indosian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4: General N-S collision between Africa and Europe
Fig. 5:
Fig. 6:
Fig. 9:
Fig. 10:
Fig. 11:
Fig. 12:
Fig. 13:
Fig. 14:
Fig. 15:
Table 1:

<table>
<thead>
<tr>
<th>Chronostratigraphy</th>
<th>Formation</th>
<th>N</th>
<th>σ1</th>
<th>σ2</th>
<th>σ3</th>
<th>Φ</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary</td>
<td></td>
<td>12</td>
<td>359.16/12</td>
<td>91.9/12</td>
<td>210.71/12</td>
<td>0.094/12</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.51</td>
<td>-0.37</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Mio-Pliocene</td>
<td></td>
<td>11</td>
<td>334.52/-0.70</td>
<td>150.38/-0.20</td>
<td>241.20/0.9</td>
<td>0.314</td>
<td>SS</td>
</tr>
<tr>
<td>Middle Miocene</td>
<td>Beglia</td>
<td>18</td>
<td>335.13/-0.97</td>
<td>119.73/0.37</td>
<td>242.9/0.60</td>
<td>0.855</td>
<td>C to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP</td>
</tr>
<tr>
<td>Oligocene-Aquitanian</td>
<td>Fortuna</td>
<td>15</td>
<td>112.29/-0.55</td>
<td>269.50/-0.34</td>
<td>16.10/0.88</td>
<td>0.147</td>
<td>E to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT</td>
</tr>
<tr>
<td>Late Eocene</td>
<td>Souar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Eocene</td>
<td>Bou</td>
<td>12</td>
<td>319.9/-0.95</td>
<td>220.44/0.23</td>
<td>58.45/0.77</td>
<td>0.696</td>
<td>C to</td>
</tr>
<tr>
<td></td>
<td>Dabbous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TP</td>
</tr>
<tr>
<td>Paleocene</td>
<td>Al Haria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maastrichtian</td>
<td>Top Abiod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campanian</td>
<td>Base to</td>
<td>05</td>
<td>95.63/-0.95</td>
<td>202.8/0.35</td>
<td>296.26/0.61</td>
<td>0.834</td>
<td>E to</td>
</tr>
<tr>
<td></td>
<td>Middle Abiod</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TT</td>
</tr>
</tbody>
</table>