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Design and manufacturing interface modelling
for manufacturing processes selection and knowledge

synthesis in design

Achraf Skander - Lionel Roucoules -
Jean Sébastien Klein Meyer

Abstract The research results presented in this paper are
related to the specification of a method and models that
tackle the problem of manufacturing processes selection
and the integration, as soon as possible, of their constraints
in the product modelling (i.e. information synthesis). This
method is based on a skin and skeleton design/manufac-
turing interface model that ensures connection between
design and manufacturing information. The use of these
features is justified by their capacity to make a product
representation which allows integration of both design and
manufacture data and therefore assists the product break-
down definition (including the 3D forms) by least
commitment. This method first analyses the product data
issued from functional analysis and component selection
(form, roughness, tolerance interval, etc.). Then, it deals
with manufacturing information (manufacturing processes
constraints). The approach is formalised with IDEF and
UML models and has been consolidated with software
developments based on C++ and open CASCADE
technologies.
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1 Introduction

In a context of deep change of industrial market related to
globalisation and delocalisation, being competitive
becomes a challenge for all industries. In order to increase
product quality and reduce production cost, the right
information must be provided at the right time to the right
person. DFX (design for X) methods provide approaches
that take into account a maximum of product life cycle
information during the design process. A design solution is
then the result of multiple expert product assessments and a
collaborative multidisciplinary decision making process.

The authors’ research activity is based on a framework
to support manufacturing information synthesis in design.
That research work is included within a general context
of concurrent engineering (CE) and integrated design.
Figure 1 presents the global concept of the framework in
which each design expert involved in the design project
can access a central information kernel where information
is shared. Product information is therefore first managed
individually in asynchronous mode by each member of the
design group and then shared in asynchronous or synchro-
nous mode for collaborative activities. A manufacturing
processes selection activity is specifically studied by the
authors here.

The most important result of the paper is a methodology of
process selection and manufacturing constraints integration in
design. Specific product information modelling called design/
manufacturing interface model is defined as the interface of
product modelling and expert’s (X) assessment. This interface
is dedicated to support the manufacturing information
synthesis. The design is then a knowledge intensive process
and no longer a 3D modelling-based process. The design
solution is then progressively defined by knowledge synthesis
by least commitment.
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Principal objectives of the proposed synthesis approach
are:

—  Progressive selection of potential manufacturing pro-
cesses in the early design stage. This is led by a
manufacturing data management strategy.

— Definition of a list of eligible (i.e. alternative) process
plans and associated manufacturing constraints (rough-
ness, tolerances, prices, technologies, etc.).

— Integration (synthesis) of manufacturing constraints in
the product definition using the interface model.

—  Proposition of alternative design solutions with respect
to alternative manufacturing process plans.

The second section of this article presents a literature
review concerning concurrent engineering, DFM and
feature-based product modelling and depicts how already-
published results are used as fundamental concepts and are
improved to support the manufacturing information syn-
thesis process. The third section outlines, on the one hand,
the knowledge intensive synthesis method for manufactur-
ing processes selection, while on the other hand, the
information model is detailed as an interface between
expert manufacturing information and shared collaborative
design information. Specifications and development of a
software demonstrator that supports this information
modelling is finally detailed. Section four presents an
example that illustrates the approach. The last section gives
a conclusion and recommendations for further work.

2 Literature review
2.1 Concurrent engineering

One of concurrent engineering’s (CE) goals is to integrate
product life cycle knowledge earlier during the design

Collaborative
activity

Interface
Shared model
Information
Model

Fig. 1 DFX in a CE framework where X = manufacture (DFM) or X =
other expert activity

process. CE must reduce iterations between product design
and manufacturing. One definition of concurrent engineer-
ing postulates that “Concurrent engineering is a way of
work where the various engineering activities in the product
and production development process are integrated and
performed as much as possible in parallel rather than in
sequence” [1]. Approaches of integrated design are also
presented which specify that knowledge integration aims at
taking into account the whole events which must appear
early or late in the product life cycle [2, 3]. DFX [4], seen
as assessing and integrating “X-field” information, is then
linked to CE and therefore can no longer be treated
independently.

Beyond such very large concepts the main limit remains
in modelling the information related to product design.
Indeed, current software solutions (CAD, project planning,
etc.) have not really followed such industrial (organisa-
tional) evolution and current industrial needs. Today, the
information must link enterprise organisation data, design
process data and product data [5, 6].

In that paper, the authors specifically tackle product data
modelling for manufacturing knowledge intensive design.

2.2 Design for manufacture

Design for manufacture (DFM) is a product design
approach that takes into account design goals and manu-
facturing information as soon as possible in product
definition. Many studies deal with presentation and imple-
mentation of DFM concepts:

—  Presentation of DFM concepts and tools [4, 7]

— Analysis of manufacturability and providing solutions
to improve design [8, 9]
Manufacturing processes selection based on processes
classification and attributes comparison. Specification
of appropriate method and techniques of materials and
processes selection [10—13]

—  Specification of techniques that will reduce cost and
ease handling of components [14]

— Providing some fundamental rules of design that give
the “best” solutions for manufacturing point of view [15]

In summary, the scientific community proposes many
studies of product manufacturability analysis based on
different parameters (tasks, attributes, characteristics, cost,
etc.) but it does not propose a synthesis (integration)
method. Current approaches require pre-definition of
product geometry and take place late in the detailed design
stage.

That paper then focuses on a methodology and a product
model that simultaneously manage manufacturability anal-
ysis (processes selection) and synthesis (constraints inte-
gration) to let the product definition (including 3D



modelling) progressively emerge. It takes place earlier
during the product definition process (in the conceptual
and embodiment design stages). The methodology is
defined by a set of activities whereby input/output is the
modelled product data.

2.3 Feature-based product modelling

Based on the original definition given by Shah, a feature is
described “as a semantically endowed object that accom-
panies product development from the customer request
through to product release” [16]. A huge number of product
meta-modelling proposals have been based on that concept
of feature to define design solution breakdown [17-19].
Current work should therefore not be focussed on devel-
oping new meta-models but to define concepts that support
the interoperability among those which exist.

With respect to general concepts given in Fig. 1, two
groups of information modelling have to be tackled:

— Information managed in “X-field’ expert activities for
specific product behaviour assessments with respect to
the entire product life cycle (manufacturability,
assemblability, recycling, etc.).

— Information shared among the design group to set
relationships among product data. That model must
propose a multiple point of views breakdown operator
[20]. The relations are used to propagate design
experts’ constraints and to progressively converge from
a set of alternatives to a design solution (knowledge
intensive design versus 3D-based design).

Fig. 2 Classification of design/

2.4 Design and manufacturing interface

Concerning design and manufacturing interface, various
scientific papers are focussed on CAD-CAM integration.
They provide solutions for exchanging data based on
standards (e.g. STEP-AP203); nevertheless, that standard
is not currently defining experts’ concepts but only from
features. Moreover, STEP standards cannot be changed
easily and dynamically to add some new concepts
concerning product modelling.

Some results are based on feature recognition [21]. Other
papers propose the integration of manufacturing system
constraints [22] but it is not really the same as manufac-
turing process constraints as considered in the paper.

Twigg [23] gives a more generic overview of what could
be mechanisms for design and manufacturing interface and
classify the different problems that should be faced (cf.
Fig. 2).

The research work presented here focuses on the
design phase and could be used to tackle AS, A6, A7
and D3. As shown on the Fig. 1, the authors describe a
specific structure to achieve the manufacturing information
synthesis in design. That model is called an interface
model, which is necessary because it represents only a few
parts of the whole expert knowledge, but then has to be
translated.

Skin and skeletons concepts are then used to define the
interface model. Those concepts have already been
presented in the literature to ensure a description of
product functional surfaces. In [24] and [25] the authors
define skeleton features as skins links. Skeletons corre-

manufacturing interface [24] Table Wl
A typology of inter-organisational coordination mechanisms
Pre-project phase Design phase Manufacturing phase
A Standards A1 Compatibility standards A5 Designers' tacit A7 Early manufacturing start
A2 Electronic data knowledge of with early design data
interchange manufacturing A8 Manufacturing flexibility
A3 CAD/CAM data A6 Design rules
exchange

A4 Cost management
B Schedules and plans B1 Capabilities development B3 Sign-off
schedules
B2 Relationship assessment

C Mutual adjustment® C1 Supplier development C3 Producibility design

B4 Production prototypes
engineering fit
build-test cycles

C6 Engineering changes

D Teams
team

D1 Supplier development

committee reviews C7 Site engineer
C2 Gatekeeper C4 Producibility/ C8 Product support engineer
manufacturing engineer

C5 Guest design engineer

D3 Joint product/process
design team

D4 Transition team

D2 Joint development

Note: ® an additional mechanism is available, that of post-project appraisal (C9)
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Fig. 3 Method benefits

spond to neutral material fibre and define part material
topology. In [26] and [27] the authors describe a method
for representing objects, they also use the notion of
skeletons defined by the central axis of objects and shapes
that cover the skeleton. The aim of the aforementioned
research is a representation of object motion for robotic
studies.

With regard to these works, the next section specifies
skin and skeleton concepts with a specific set of attributes
that ensure design/manufacturing interface modelling and
let the product emerge by least commitment instead of
being centred on CAD modelling.

3 Knowledge synthesis method and design/
manufacturing interface modelling

According to fundaments issued from the previously given
survey, this section presents the details of the method and

the models developed. Figure 3 presents the objectives and
benefits of our contribution.

In the current design process (Fig. 3 column 1) there are
very few feedbacks from “processes selection” to “design”
(i.e. CAD modelling). The presented approach defines new
models to support that kind of back loop (Fig. 3 column 2).
Further on, the “processes selection” activity moreover
should lead to a list of eligible process plans that also
clearly impact the design activity proposing several design
alternatives (Fig. 3 column 3). Each manufacturing process
plan then constrains a design solution.

After detailing those benefits in the next sections an
illustration is given (see Fig. 10).

3.1 Method for knowledge synthesis

According to the general framework of integrated design
(Fig. 1), the proposed synthesis approach has been based on
a formal analysis and representation of design expert
activity. This work is specifically based on the manufac-
turing process selection activity in order to give, as soon as
possible, recommendations to CAD models (Fig. 3). For
instance, from the same required functional surfaces, a final
CAD model may not be similar depending on forging,
casting or milling process.

With respect to IDEF@ modelling (Fig. 4), that activity
(A-0) is split into two main tasks:

— Al: to characterize the interface model. The expert must
first take into account the already-specified requirements
coming from other members of the design group. Those

List of products alternatives solutions (definition of : geometry, tolerance, etc)

Manufacture Design
requirements requirergents product-
q processes

Characterize interface

v

| Resources f

Design and
manufacture | |
requirements .
a Materials Resources
product-

requirements
processes

-

4 model
Interface model
A1 (evolve in the
4 synthesis loop)
Attributes values of Humans
Manufacturing interface resources :
model DFM Actor

v

_\Manufacturing

processes List

Select processes and
identify manufacturing
plans and their
constraints

A2

List of manufacture processegs
>

alternatives

List of manufacture processes
Ll

constraints

——List of plans alternatives —»

»

Manufacturing constraints synthesis (data flow)

Fig. 4 Main activities of knowledge synthesis method (IDEF@ model)
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requirements are modelled using what the author calls a
usage interface model (see Sect. 3.3.2). This model is
therefore the input of A2, where only the two lateral
plane surfaces are specified (i.e. usage) (see Fig. 10).

A2: to select manufacturing processes and to identify
process plans and their constraints. With respect to
the requirements (i.e. interface model), the expert
realises the first manufacturing process selection. The
output is a set of process plans and their respective
information (tolerances, roughness, etc.). That infor-
mation is described using the manufacturing interface
model and then fed back to the shared kernel of
information. That feedback is then used either to add
extra information (and associated range of values) on
the product that has to be shared for the collaborative
decision making process or to constrain the already-
defined information range of values. The shaped
surface was not defined as requirements but described

Design Resources
requirements product

-

Identify usage

Attributes values of
designed product

interface model
A11

*

Humans
resources :
DFM Actor

Manufacture Resources
requirements processes

g -

Characterize

Attributes values of

)

) manufacture interface |Manufactured producy

Manufacturing interface

model
A12

*

Humans
resources :

DFM Actor
model |

Attributes values of

according to manufacturing information (see Fig. 10).
Those surfaces’ characteristics (IT, Ra) therefore de-
pend on process selection.

A synthesis loop is defined between those two
activities to model the fact that the integrated design
process is no longer sequential. Requirements are
then evolving each time an expert integrates new
information. The interface model is then evolving too
and the expert can therefore run a new manufacturing
process selection task to either refine his first solution
or to validate that new requirements are still coherent
with the first selection. The final design solution
takes into account the manufacturing information and
is really based on knowledge synthesis and not only
on CAD model assessment. This new CAD model-
ling approach based on experts’ knowledge (e.g.
manufacturing) respects experts’ requirements ‘“the
first time” versus a “redo until right” process.

List of products alternatives solutions
(definition of : geometry, tolerance, etc)
(if inclusion relation verified)

N

v

Apply inclusion relation
(Designed product is
included in

manufacturing product) Interface model
A13| (evolveinthe synthesis”
? loop)
Humans
resources :
DFM Actor
|

Fig. 5 Al activity decomposition. Identification of the interface model requirements



The activities A1 and A2 manage data flows represent-
ing design and manufacture requirements, product and
process data resources, etc. This management consists of:

— Design information analysis: study of technological
components constraints and elaborate a product model
[28].

— Manufacturing processes analysis: choose processes
alternatives and analyse manufacturing processes to
identify constraints.

—  Creation of method and model of manufacturing pro-
cesses selection and constraints synthesis (integration).

This IDEF@ modelling makes decomposition of every
task into several ones possible at different granular levels.
Accurate details of the entire activity modelling can be
found in [29]. For example, Al activity (Fig. 5) is broken
down into:

— Al1l Identify usage interface model from already exist-
ing requirements in the shared kernel of information.

—  A12 Characterize manufacturing interface model based
on manufacturing process selection (A2).

— Al3 Apply inclusion relation (design product is
included in manufacturing product) to keep the

coherency in the synthesis (i.e. integration) loop as
previously enounced.

The usage interface model is not modifiable in A-0; it is
then All activity control information. Manufacturing
interface model is on the contrary refined in A-0, it is the
result of manufacturing attributes range of values synthesis;
this information is an input for A12 activity.

The inclusion relation (A13) is defined as: “designed (i.e.
required) product has to be included in manufacturing
solution (i.e. manufactured product)”. In fact, the manufac-
turing solution must include the required (design and
functional) specifications and other specifications that result
from other expertises. This relation is given by a rules and
relations list between both “usage” and “manufacturing”
interface model attributes. For example, the roughness value
that can be realised by a selected process must be lower
than the required roughness value.

With respect to the activity IDEF@ model, it is then easy
to identify static concepts used while processing the
knowledge synthesis method. The next step of the research
work is therefore to propose a static design view of the
information structure. To do so, the authors use UML

Illustration Description
Usage Skin Project. Operation Number|
:Name : char is made up of
* 1 |Author : char hl is illustrated py
+Create and initialize()] 1 0 1 is described by *
1 +Notify() Process plan Alternatives| is constituted of } [
is mad® up of -Name : char : Process ing
1 +Create H
* plan() -Name : char
Usage Skeleton 1. N 1 1.*
[+Notify() [+Create() 4 -
Prodcut Alternatives| 1 Manufacture Skeleton portion [+Notify Process() _
-Name : char [Name : char Skeleton Covering
N . . . s, made up of 1 —1—_
-Initial section form : Section Form 1. 1
-Final section form : Section Form | |
is defined by ‘ is defined by -Section variation : Section Variation . M ing Skin
1 1 1.7 -Neutral fibre : Neutral Fibre Processes !
‘ -Skeleton material direction : int
Skin Skeleton
-Name : char —Ngrne ¥ ch.ar . . 1 Use
oL -Initial section form : Section Form 1 is|
-Shape : Skin Shape . N K "
A l-Final section form : Section Form
-Ra : float Secti iation : Section Variati -
LT - float |-Section variation : Section Variation is characferized by [Attribute Value
: e -Neutral fibre : Neutral Fibre
|-Skin material direction : bool| i
|-Skeleton material direction : int
‘ * has g type 1
L : 1
; } is-charactetized by
Value Type Technology Physical Principle
Skeleton Attributs
A i? parameterized by
‘ Constraintg Integration
‘ Integer Real Skin Attribute Parameter
Section Neutral Fibre
is qmi ed by
1
1 is|defined by .
! Skin Shape limit Constraints
Section Form ISection Variation 1

Fig. 6 Presentation of modelling concepts with UML class diagram




formalism (Unified Modelling Language) [30] and, specif-
ically, the class diagrams.

That information modelling method is very similar to
knowledge management approaches. They first give an
overview of the activity and then extract the static concepts
(i.e. knowledge) [31]. That work has also been supported
by specifying scenarios (sequence diagrams) of the design
method (see Fig. 8).

3.2 Design and manufacturing interface model
for manufacturing knowledge synthesis

3.2.1 Concepts overview

From IDEF@ formalism (input, control, mechanism and
output information), information modelling concepts are
extracted:

— Human resources: experts that run the “manufacturing
process selection” activity (A-0).

— Product solution alternatives: list of potential design
solutions resulting from experts’ constraints integration.

— Manufacturing processes database.

— Process plan alternatives: list of eligible process plans
that result from selected processes.

— Design/manufacturing interface model: model that
simultaneously supports product and manufacturing
information in order to achieve the manufacturing
information synthesis during the design process.

— Information resources of product, processes and prod-
uct/processes: all product and process information used
in the product definition. That information concerns
either physical parameters or technological parameters.

These concepts have then been structured and presented
in a UML class diagram. Relations, attributes and oper-
ations (Fig. 6) are also detailed. The class diagram is made
up of two parts:

— Interface model that represents the minimal information
required to process the synthesis in design as presented
in Fig. 1. The authors use skin and skeleton features
and specific attributes to depict that model.

— Manufacturing data model that represents manufactur-
ing process selection information. That information, as
expert information, has a priori not to be shared among
the design group. It would be shared only if needed by
another expert.

Relationships between the two models are represented
by “processes selection” and “constraints integration”
associations with respect to common skin and skeleton
attributes.

The “project” class is made up (aggregation relation) of
“product alternatives” and “process plan alternatives”
classes. To define product model, skin and skeleton features
are used and represented in the diagram by the skin and
skeleton classes and their inheritance classes “usage skin”,
“usage skeleton”, “manufacturing skin” and “manufactur-
ing skeleton” (the diagram does not represent all the
inheritance links of skin shape, section shape, section

variation, and neutral fibre for clarity reasons).
3.2.2 Skin and skeleton feature definition

As introduced above, the interface model supports synthesis
of both design and manufacturing specifications. This
model allows emergence of product solutions that respect
manufacturing constraints. To describe the interface model
authors use specific skin and skeleton features.

According to the literature review and the definition of
the interface model, generic concepts of skin and skeleton
have first been defined. Skins must describe the product’s
functional surfaces and skeletons describe trajectory of
flow. Secondly, two kinds of specific (i.e. multiple
representations) of skin and skeleton features have been
detailed: usage features (i.e. design requirements) and
manufacturing features [32]:

— Usage skin: surface through which energetic flows
circulate [33]. Usage skins are defined by functional
surfaces resulting from technological components
selection (e.g. ball bearing coupling, poles of a magnet,

= Skeleton Skeleton
section / Trajectory = magnetic flow
L Skin topology =
+ surfaces crossed by the
“U” Magnet - magnetic flow

‘ Usage interface model = requirements |

V\ Skeleton trajectory

material flow

\ Skeleton /

section

Manuf. Solution 1 Manuf. Solution 2

Manufacturing interface model =
manufacturing information modelling

Fig. 7 Skin and skeleton illustration: example of alternative solutions
of a “U” magnet manufacturing
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Fig. 8 Example of UML sequence diagram

etc.). These skins support geometric attributes and
tolerances.

Usage skeleton: trajectory of an energetic (mechanical,
electrical, magnetic, etc.) flow circulating in the
product (e.g. see, for example, Fig. 10 where the U
trajectory represents that skeleton specified by design-
ers according to specific required magnetic behaviour).
Manufacturing skeleton: material flow trajectory pro-
cessed during manufacturing. Indeed authors make the
hypothesis that every manufacturing process is based
on a material flow (e.g. casting or injection moulding
create material, machining removes material, forging
deforms material).

— Manufacturing skin: surface generated by a manufac-

turing process. These features are partly issued from
manufacturing skeletons by a sweeping operation (e.g.
surfaces issued from a pocketing milling operation can
be defined by sweeping the end mill tool section on its
trajectory. The shaped surface is issued from both
extrusion and drilling processes, cf. Fig. 10). In the
case of deformation based processes, the manufacturing
skin is not deducted from the sweeping operation but
from deformation algorithms.

Owing to the manufacturing skeleton concept, material
flow can be globally (i.e. part level) or accurately (i.e. tool



Fig. 9 Graphic user interface of Usage Informations (Skin and Skeleton)
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level) described depending on the detail of information that
has to be taken into account in the design process.

Figure 7 presents an example of usage and manufacture
skins and skeletons to model the product solution of what
could be a “U” magnet. The required solution is not totally
defined and would then be constrained by manufacturing
interface modelling coming from the manufacturing
process selection task. Several design alternatives are then
available.

Specific sets of attributes are associated with skin and
skeleton features:

— Skin attributes are shape (cylinder, plane, etc.), toler-
ance, roughness and material direction (depending on
the form).

—  Skeleton attributes are initial section form, final section
form (circular, rectangular, etc.), section variation
(follow variation law: null, increasing, decreasing,
etc.), neutral fibre (line, curve, plate, etc.).

For manufacturing skeletons, an extra attribute defines the
material flow direction that could be set as: removal (e.g.

machining), addition (e.g. casting) or deformation (e.g.
forging, stamping).

Based on that simple concept it is very easy to analyse
what could be the final part definition based on manufac-
turing process selection. Indeed, the final 3D model of a
part (made of manufacturing skins) is constructed by
sweeping (Fig. 7) or deforming the skeleton section on
the skeleton trajectory. The initial model described with
“usage” skin and skeleton can be compared to the
“manufacturing” one.

The main benefit of these modelling concepts is that the
manufacturing knowledge is taken into account very early
in the product development process (and the CAD
modelling) instead of waiting for an initial CAD model
which would be modified afterwards.

3.3 Software demonstrator
In order to support the knowledge synthesis approach, a

software demonstrator has been developed to manage the
UML model presented above. It is specified using a UML



Fig. 10 Examples of the knowl-
edge synthesis approach using
skin and skeleton modelling

Examples

Examples of usage

interface modelling

Examples of manufacturing solutions:
manufacturing interface modelling

Example 1 : cube-shape creation

Initial and final section

Neutral fibre.

Initial and final section

forms. Manufacturing skin.
forms (rectangular).
Usage Skin Manufacturing Skin
The expected part | [Name :U-Skin 1 Name : M-Skin 1

has cube-shape.
Design requirements
are described with
two usage skins and
one usage skeleton
features.

Features attributes
are represented by
UML classes.

Shape : Rectangle
Roughness : 3,2
Tolerance : IT7

Skin material direction : +

Usage Skin

Name : U-Skin 2

Shape : Rectangle
Roughness : 3,2
Tolerance : IT7

Skin material direction : +

Usage Skeleton

Name : U-Skeleton 1

Initial Section form : Rectangle
Final section form : Rectangle
Section variation : Null

Neutral fibre : Rectilinear

Skeleton material direction : Material addition

Shape : Cube-shaped
Roughness : 3,2
Tolerance : IT7

Skin material direction : +

Manufacturing Skeleton

Name : M-Skeleton 1

Section variation : Null
Neutral fibre : Rectilinear

Initial Section form : Rectangle
Final section form : Rectangle

Skeleton material direction : Material addition

An example of selected manufacturing

process is: Extrusion.

Note: the rectangular section is represented
by length, breadth and radius (related to

process specification).

Example 2 : holed cube

Neutral fibre.

Initial and final section forms (circular).

The hole is
represented by
cylindrical usage
skin.

Usage Skin

Name : U-Skin 3
Shape : Cylinder
Roughness : 6

Tolerance : +-0.4

Skin material direction : -

Manufacturing Skin

Name : M-Skin 2

Shape : Cylindrical
Roughness : 6
Tolerance : +-0.4

Skin material direction : -

Manufacturing Skeleton

Name : M-Skeleton 2
Initial Section form : Circle
Final section form : Circle
Section variation : Null
Neutral fibre : Rectilinear

Skeleton material direction : Material remove

An example of selected manufacturing
process to make the hole is: Drilling.




sequence diagram (Fig. 8). This diagram presents specifi-
cations of chronological actions of a user on the software
demonstrator. It combines IDEF@ diagram activities and
class diagram static concepts.

Software developments have been based on the C++
language in the MS Visual 6.0 environment. Figure 9
presents an actual graphic user interface used to:

— Manage processes information (technological, physical,
etc.) in order to select processes.

— Model product (based on skin and skeleton) alterna-
tives issued from manufacturing process alternatives.

— Show product’s form features (i.e. shapes) in a 3D
viewer developed with Open CASCADE libraries. It is
then possible to compare design requirements (require-
ments specifications) and manufacturing alternatives
(final solution).

4 Illustration

Figure 10 presents two examples of a skin-skeleton model.
First, an example of usage representation indicates the
expected part (shape form, roughness, tolerance, etc.)
issued from functional analysis. Second, the manufacturing
process selection provides the manufacturing skeletons and
manufacturing skin (generated by skeleton covering and
represents manufactured part). Manufactured part solutions
must conform to the inclusion relation. In fact, manufac-
turing solutions do not necessarily have the same attribute
values of usage solutions (shape form, roughness, tolerance,
etc.) but must include them, so these solutions can be
different.

It should be noted that the proposed solutions represent
only the manufacturing point of view. The skin and
skeleton model could be enlarged and used to study other
expert activities (Fig. 1).

5 Conclusion and recommendations for further work

This research work presents a new knowledge synthesis
method that aims at integrating manufacturing constraints
as early as possible during the product definition. The
approach is based on two principal stages: processes
selection and progressive integration of manufacturing
constraints. To do so the authors present a method
supported by a design/manufacturing interface model that
uses skin and skeleton features specified in usage (i.e.
design data issued from components selection) and manu-
facturing (i.e. data related to manufacturing processes). This
model includes two parts: product interface model (product
representation) and manufacturing data model (manufactur-

ing process representation). Material selection and econom-
ic parameters are obviously linked to that examined but not
formalized in the paper.

The software demonstrator ensures product design
assistance. The result is the emergence of the product
definition with manufacturing constraints and reduction of
design/manufacturing iterations.

The first recommendation for further work concerns the
creation of process knowledge structure with respect to the
specified manufacturing data model and using existing
databases like CES4'. Generalization of the method and
model to other expertise fields (recycling, assembly, etc.)
could also be investigated to enlarge the DFX framework.
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