Predicting the popularity of online articles based on user comments

Abstract : Understanding user participation is fundamental in anticipating the popularity of online content. In this paper, we explore how the number of users' comments during a short observation period after publication can be used to predict the expected popularity of articles published by a countrywide online newspaper. We evaluate a simple linear prediction model on a real dataset of hundreds of thousands of articles and several millions of comments collected over a period of four years. Analyzing the accuracy of our proposed model for different values of its basic parameters we provide valuable insights on the potentials and limitations for predicting content popularity based on early user activity.
Type de document :
Communication dans un congrès
Rajendra Akerkar. WIMS 2011 - 1st International Conference on Web Intelligence, Mining and Semantics, May 2011, Sogndal, Norway. ACM, pp.67:1--67:8, 2011, 〈10.1145/1988688.1988766〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00940014
Contributeur : Fabien Mathieu <>
Soumis le : vendredi 31 janvier 2014 - 11:11:35
Dernière modification le : mardi 4 décembre 2018 - 01:24:52

Identifiants

Collections

Citation

Alexandru Tatar, Jeremie Leguay, Panayotis Antoniadis, Arnaud Limbourg, Marcelo Dias de Amorim, et al.. Predicting the popularity of online articles based on user comments. Rajendra Akerkar. WIMS 2011 - 1st International Conference on Web Intelligence, Mining and Semantics, May 2011, Sogndal, Norway. ACM, pp.67:1--67:8, 2011, 〈10.1145/1988688.1988766〉. 〈hal-00940014〉

Partager

Métriques

Consultations de la notice

295