Palindromic complexity of codings of rotations
Alexandre Blondin Masse, Srečko Brlek, Sébastien Labbé, Laurent Vuillon

To cite this version:

HAL Id: hal-00939195
https://hal.archives-ouvertes.fr/hal-00939195
Submitted on 30 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

We study the palindromic complexity of infinite words obtained by coding rotations on partitions of the unit circle by inspecting the return words. The main result is that every coding of rotations on two intervals is full, that is, it realizes the maximal palindromic complexity. As a byproduct, a slight improvement about return words in codings of rotations is obtained: every factor of a coding of rotations on two intervals has at most 4 complete return words, where the bound is realized only for a finite number of factors. We also provide a combinatorial proof for the special case of complementary-symmetric Rote sequences by considering both palindromes and antipalindromes occurring in it.

Keywords: Codings of rotations, Sturmian, Rote, return words, full words.

1. Introduction

A coding of rotations is a symbolic sequence obtained from iterative rotations of a point $x$ by an angle $\alpha$ and according to a partition of the unit circle [1]. When the partition consists of two intervals, the resulting coding is a binary sequence. In particular, it yields the famous Sturmian sequences if the size of one interval is exactly $\alpha$ with $\alpha$ irrational [2]. Otherwise, the coding is a Rote sequence if the length of the intervals are rationally independent of $\alpha$ [3] and quasi-Sturmian in the other case [4]. Numerous properties of these sequences have been established regarding subword complexity [1], continued fractions and combinatorics on words [4], or discrepancy and substitutions [5].

The palindromic complexity $|\text{Pal}(w)|$, i.e. the number of distinct palindrome factors, of a finite word $w$ is bounded by $|w| + 1$ (Droubay et al. 2001 [6]) and $w$ is called full (Brlek et al. 2004 [7], or rich in Glen et al. 2009 [8]) if it realizes that upper bound. Naturally, an infinite word is said to be full if all its finite
factors are full. The case of periodic full words was completely characterized in [7]. On the other hand, Sturmian words, which are particular cases of coding of rotations, and even episturmian words are full [6]: this result is obtained by showing that the longest palindromic suffix of every nonempty prefix is unicoercent; rephrasing this property in terms of return words, one has that a word \( w \) is full if and only if each complete return word of every palindrome in \( w \) is a palindrome [8].

Our main result is Theorem 19 stating that every word generated by codings of rotations is full. To achieve this, we start with a thorough study of partitions of the unit circle into sets \( I_w \) according to some trajectories under rotations labeled by \( w \). The proof is based on two cases, whether \( I_w \) is an interval or not: Proposition 11 and 16 handle those cases. We use the property that each factor of a coding of rotations on two intervals has at most 4 complete return words, where the bound is realized only for a finite number of factors \( w \), those such that \( I_w \) is not an interval and \( w \) is some power of a letter.

Moreover, these partitions show some remarkable geometrical symmetries that are useful for handling return words: in particular, if the trajectory of a point is symmetric with respect to some global axis, then the coding of rotations from this point is a palindrome. When the first return function is a bijection then it coincides with some interval exchange transformation, a very useful fact for proving our claim. A direct consequence of our study on return words is that every coding of rotations on two intervals is full.

The paper is divided into four parts. First the basic terminology is introduced, notation and tools relative to combinatorics on words, the unit circle, interval exchange transformations, Poincaré's first return function and codings of rotations. In particular, some conditions for the Poincaré's first return function to be a bijection and consequently an interval exchange transformation are stated. Section 3 contains results about partitions of the unit circle induced by codings of rotations. Section 4 is devoted to the statement and proof of the main result. In Section 5, we provide an alternative proof of the fact that complementary-symmetric words (i.e. words with complexity \( f(n) = 2n \) whose language is closed under swapping of letters) are also full by considering both palindromes and antipalindromes occurring in it.

2. Preliminaries

The basic terminology about words is borrowed from M. Lothaire [9]. In what follows, \( \Sigma \) is a finite alphabet whose elements are called letters. A word is a finite sequence of letters \( w : [0..n - 1] \rightarrow \Sigma \), where \( n \in \mathbb{N}^+ = \mathbb{N} \setminus \{0\} \).

The length of \( w \) is \( |w| = n \) and \( w_i \) denote its \( i \)-th letter. If \( k \) and \( \ell \) are two nonnegative integers, then \( w_{[k,\ell]} \) denotes the word \( w_k w_{k+1} \cdots w_{\ell} \). The set of \( n \)-length words over \( \Sigma \) is denoted \( \Sigma^n \), and that of infinite words is \( \Sigma^\omega \). By convention, the empty word \( \varepsilon \) is the unique word of length 0. The free monoid generated by \( \Sigma \) is defined by \( \Sigma^* = \bigcup_{n \geq 0} \Sigma^n \), and \( \Sigma^\infty = \Sigma^w \cup \Sigma^* \). Given a word \( w \in \Sigma^\infty \), a factor \( u \) of \( w \) is a word \( u \in \Sigma^* \) such that \( w = xuy \), for some \( x \in \Sigma^* \), and \( y \in \Sigma^\infty \). If \( x = \varepsilon \) (resp. \( y = \varepsilon \)) then \( u \) is called a prefix (resp.
suffix). The set of all factors of $w$ is denoted by $\text{Fact}(w)$, those of length $n$ is $\text{Fact}_n(w) = \text{Fact}(w) \cap \Sigma^n$, and $\text{Pref}(w)$ is the set of all prefixes of $w$. If $w = pu$, with $|w| = n$ and $|p| = k$, then $p^{-1}w = w_{[k,n]} = u$ is the word obtained by erasing the prefix $p$ from $w$. An occurrence of $u$ in $w$ is a position $k$ such that $u = w_{[k,k+|u|-1]}$, the set of all its occurrences is $\text{Occ}(u,w)$. The number of occurrences of $u$ in $w$ is denoted by $|w|_u$. An infinite word is periodic if there exists a positive integer $p$ such that $w[i] = w[i + p]$, for all $i$. An infinite word $w$ is recurrent if every factor $u$ of $w$ satisfies $|w|_u = \infty$.

The reversal of $u = u_1u_2\ldots u_n \in \Sigma^n$ is the word $\bar{u} = u_nu_{n-1}\ldots u_1$. A palindrome is a word $p$ such that $p = \bar{p}$. Every word contains palindromes, the letters and $\varepsilon$ being necessarily part of them. For a language $L \subseteq \Sigma^\infty$, the set of its palindromic factors is denoted by $\text{Pal}(L)$. Obviously, the palindromic language is closed under reversal, since $\text{Pal}(L) = \text{Pal}(\bar{L})$.

Let $w$ be a word, and $u,v \in \text{Fact}(w)$. Then $v$ is a return word of $u$ in $w$ if $vu \in \text{Fact}(w)$, $u \in \text{Pref}(vu)$ and $|vu|_u = 2$. Moreover, $vu$ is a complete return word of $u$ in $w$. The set of complete return words of $u$ in $w$ is denoted $\text{CRet}_w(u)$. A natural generalization of complete return words consists in allowing the source word to be different from the target word. Let $u,v \in \text{Fact}(w)$. Then $w_{[i,j|v|v|u|−1]}$ is a complete return word from $u$ to $v$ in $w$ if $i \in \text{Occ}(u,w)$ and if $j$ is the first occurrence of $v$ after $u$, i.e., if $j$ is the minimum of the set of occurrences of $v$ in $w$ strictly greater than $i$. The set of all complete return words from $u$ to $v$ in $w$ is denoted $\text{CRet}_w(u,v)$. Clearly, $\text{CRet}_w(u,u) = \text{CRet}_w(u)$. From now on, the alphabet is fixed to be $\Sigma = \{0,1\}$.

2.1. Unit circle

The notation adopted for studying the dynamical system generated by some partially defined rotations on the circle is from Levitt [10]. The circle is identified with $\mathbb{R}/\mathbb{Z}$, equipped with the natural projection $p : \mathbb{R} \rightarrow \mathbb{R}/\mathbb{Z} : x \mapsto x + \mathbb{Z}$. The set $A \subseteq \mathbb{R}/\mathbb{Z}$ is called an interval of $\mathbb{R}/\mathbb{Z}$ if there exists an interval $B \subseteq \mathbb{R}$ such that $p(B) = A$ (see Figure 1).

![Figure 1: (a) The interval [0.25, 0.55]. (b) The interval [0.75, 0.08]. (c) Not an interval.](image)

An interval $I$ of $\mathbb{R}/\mathbb{Z}$ is fully determined by the ordered pair of its endpoints, $\partial(I) = \{x,y\}$ where $x \leq y$ or $x \geq y$. The topological closure of $I$ is the closed interval $\overline{I} = I \cup \partial(I)$, and its interior is the open set $\text{Int}(I) = I \setminus \partial(I)$.
The basic function on \( \mathbb{R}/\mathbb{Z} \) considered in our study is the rotation of angle \( \alpha \in \mathbb{R} \), defined by \( R_\alpha(x) = x + \alpha \in \mathbb{R}/\mathbb{Z} \). Clearly, \( R_\alpha \) is a bijection. As usual, this function is extended to sets of points \( R_\alpha(X) = \{ R_\alpha(x) : x \in X \} \) and in particular to intervals. Conveniently, the iterates of \( R_\alpha \) are defined by \( R^m_\alpha(x) = x + m\alpha \in \mathbb{R}/\mathbb{Z} \), where \( m \in \mathbb{Z} \).

2.2. Interval exchange transformations

An interval exchange transformation is a piecewise affine transformation which maps a partition of the space into intervals to another one according to a permutation. Here, the notation is adapted from Keane and Rauzy (see [11, 12]).

Let \( J, K \subseteq \mathbb{R}/\mathbb{Z} \) be two left-closed right-open intervals of the same length \( \lambda \). Let \( q \geq 1 \) be an integer and \((\lambda_1, \lambda_2, \ldots, \lambda_q)\) be a vector with values in \( \mathbb{R}^+ \) such that \( \sum_{i=1}^q \lambda_i = \lambda \), and let \( \sigma \) be a permutation of the set \{1, 2, \ldots, q\}. The intervals \( J \) and \( K \) are partitioned into \( q \) sub-intervals as follows. For \( 1 \leq i \leq q \), define

\[
J_i = \left[ \sum_{j<i} \lambda_j, \sum_{j\leq i} \lambda_j \right] \quad \text{and} \quad K_i = \left[ \sum_{k<\sigma^{-1}(i)} \lambda_{\sigma(k)}, \sum_{k\leq \sigma^{-1}(i)} \lambda_{\sigma(k)} \right].
\]

The \( q \)-interval exchange transformation according to \( \sigma \) is a function \( F \) such that \( F(J_i) = K_i \) and \( F|_{J_i} \) is a translation for \( i = 1, 2, \ldots, q \).

2.3. Poincaré’s first return function

Let \( J, K \subseteq \mathbb{R}/\mathbb{Z} \) be two nonempty left-closed and right-open intervals and let \( \alpha \in \mathbb{R} \). Define the map \( T_\alpha(J,K) \) by

\[
T_\alpha(J,K) : J \rightarrow \mathbb{N}^+ \cup \{+\infty\} \\
x \mapsto \inf \{ t \in \mathbb{N}^+ | x + t\alpha \in K \}
\]

and the map \( P_\alpha(J,K) \) by

\[
P_\alpha(J,K) : J \rightarrow K \\
x \mapsto x + T_\alpha(J,K)(x) \cdot \alpha,
\]

The number \( T_\alpha(J,K)(x) \) indicates how many rotations of angle \( \alpha \) it takes to move from the point \( x \) of \( J \) to some target point \( P_\alpha(J,K)(x) \) in \( K \). The function \( P_\alpha(J,K) \) is a natural generalization of the usual Poincaré’s first return function (when \( J = K \)) and so called as well [5].

Note that it is possible that \( T_\alpha(J,K) = +\infty \). Indeed, if \( \alpha \) is rational, there is no guarantee that the interval \( K \) can be reached from the interval \( J \) by rotations of angle \( \alpha \). However, if \( \alpha \) is irrational, \( T_\alpha(J,K)(x) \) is finite (using a density argument) for all \( x \in J \). Also, if \( J = K \), then \( T_\alpha(J,K)(x) \in \mathbb{N}^+ \) for all \( x \in J \) for all \( \alpha \in \mathbb{R} \), even if \( \alpha \) is rational.

Moreover, we recall a well-known result which can be deduced from Keane [11]:

4
Lemma 1. The induced map $P_\alpha(J,J)$ of the rotation $R_\alpha$ is an exchange transformation of $r \leq 3$ intervals. Moreover, there exists a decomposition

$$J = J_1 \cup J_2 \cup \ldots \cup J_s, \quad r \leq s \leq 3,$$

into disjoint subintervals and positive integers $t_1, t_2, \ldots, t_s$ such that for $x \in J_i$,

$$P_\alpha(J,J)(x) = R_{\sigma}^i(x),$$

with $R_\alpha$ continuous on every interval $R_\alpha^k(J_i)$, $k = 0, 1, \ldots, t_i - 1$. \hfill $\square$

To conclude this section, we show that, under some conditions, Poincaré’s first return function is an interval exchange transformation. Define the complement of a permutation $\sigma$ of length $n$ by $\overline{\sigma}(i) = n - 1 - \sigma(i)$, for $i = 1, \ldots, n$.

Proposition 2. Assume that $|J| = |K| \leq \alpha$. Then $P_\alpha(J,K)$ is a bijection if and only if $P_\alpha(J,K)$ is a $q$-interval exchange transformation of permutation $\overline{\alpha}$, for some $q \in \{1, 2, 3\}$.

Proof. Let $P = P_\alpha(J,K)$ and $T = T_\alpha(J,K)$.

$(\Leftarrow)$ By definition of interval-exchange transformation. $(\Rightarrow)$ Consider the image $T(J) \subseteq \N^+$. If $|T(J)| = 1$, then $P$ is a 1-interval exchange transformation, so that one may suppose $|T(J)| \geq 2$.

Let $t_1$ and $t_2$ be the two smallest values of $T(J)$ with $t_1 < t_2$ and let $J_i = T^{-1}(t_i)$, $K_i = P(J_i)$ for $i = 1, 2$. The set $K_1$ is an interval (if $1/2 < |K| \leq \alpha$, then $t_1 = 1$ and $K_1$ cannot overlap both endpoints of $K$) sharing an endpoint with $K$. Since $K_1 = K \cap R_\alpha^1(J)$ and $K_2 = K \cap R_\alpha^2(J - J_1)$ and since $P$ is a bijection, $K_1$ and $K_2$ do not intersect and they both share a distinct endpoint with $K$. If $|T(J)| = 2$, then $J = J_1 \cup J_2$ and $K = K_1 \cup K_2$, and $P$ is the 2-interval exchange transformation given by $J_1$ and $J_2$ of permutation $(2, 1)$.

Suppose now $|T(J)| \geq 3$. Let $t_3 = \min(T(J) - \{t_1, t_2\})$, $J_3 = T^{-1}(t_3)$ and $K_3 = P(J_3) = K \cap R_\alpha^3(J - (J_1 \cup J_2))$. Since $K_3$ is non empty and because $P$ is a bijection, then $R_\alpha^3(J - (J_1 \cup J_2))$ must intersect $K$ in the interval $K - (K_1 \cup K_2)$. But the length of this left-closed right-open interval is $|K - (K_1 \cup K_2)| = |J - (J_1 \cup J_2)|$ so that there is just enough space for it. It follows that $R_\alpha^3(J - (J_1 \cup J_2)) \subseteq K$ and thus $K_3 = R_\alpha^3(J - (J_1 \cup J_2))$. Hence, $J_3 = J - (J_1 \cup J_2)$, $|T(J)| = 3$ and $P$ is the 3-interval exchange transformation given by $J_1$, $J_2$ and $J_3$ of permutation $(3, 2, 1)$. \hfill $\square$

2.4. Coding of rotations

Let $x, \alpha, \beta \in \R/\Z$. The unit circle $\R/\Z$ is partitioned into two nonempty intervals $I_1 = [0, \beta]$ and $I_0 = [\beta, 1]$. Then, a sequence of letters $(c_i)_{i \in \N}$ in $\Sigma = \{0, 1\}$ is defined by setting

$$c_i = \begin{cases} 1 & \text{if } R_\alpha^i(x) \in [0, \beta], \\ 0 & \text{if } R_\alpha^i(x) \in [\beta, 1], \end{cases}$$
and a sequence of words \((C_n)_{n \in \mathbb{N}}\), by \(C_n(x) = c_0c_1 \cdots c_{n-1}\) where \(C_0(x) = \varepsilon\). The coding of rotations of \(x\) with parameters \((\alpha, \beta)\) is the infinite word
\[
C(x) = \lim_{n \to \infty} C_n(x).
\]

**Example 3.** If \(x = 0.23435636, \alpha = 0.222435236\) and \(\beta = 0.30234023\), then
\[
W_{\text{Ex.3}} = C(x) = 10001000110001100011000110001100011000110 \ldots
\]

**Example 4.** If \(x = 0.23435636, \alpha = 0.422435236\) and \(\beta = 0.30234023\), then
\[
W_{\text{Ex.4}} = C(x) = 10100001010001010000101000101000010100101000010 \ldots
\]

It is well-known that \(C(x)\) is periodic if and only if \(\alpha\) is rational. When \(\alpha\) is irrational, with \(\beta = \alpha\) or \(\beta = 1 - \alpha\), the corresponding coding is a Sturmian word. Otherwise, the case \(\beta \not\in \mathbb{Z} + \alpha \mathbb{Z}\) yields Rote words [3], while \(\beta \in \mathbb{Z} + \alpha \mathbb{Z}\) the quasi-Sturmian words [5, 4].

Poincaré’s first return function is linked with complete return words as shown by the next lemma.

**Lemma 5.** Let \(u, v \in \text{Fact}(C)\) and \(T = T_\alpha(I_u, I_v)\). Then, the set of complete return words from \(u\) to \(v\) in \(C\) is exactly \(\{C_{T(\gamma)+|v|}(\gamma) \mid \gamma \in I_u\}\).

**Proof.** The word \(w\) is a complete return word from \(u\) to \(v\) in \(C\) if and only if \(w = C_{[j,k+[v]-1]}\), \(j\) is an occurrence of \(u\) and if \(k\) is the first occurrence of \(v\) in \(w\) strictly greater than \(j\), if and only if there exists \(\gamma \in I_w\) such that \(\gamma \in I_u\), \(R_{\alpha}^{-|v|} \in I_v\) and \(R_{\alpha}^i \not\in I_v\) for all \(0 < i < |w| - |v|\), if and only if there exists \(\gamma \in I_w\) such that \(\gamma \in I_u\) and \(T_\alpha(I_u, I_v)(\gamma) = |w| - |v|\), if and only if there exists \(\gamma \in I_u\) such that \(w = C_{|w|}(\gamma) = C_{T(\gamma)+|v|}(\gamma)\). \(\square\)

3. **Partitions of the unit circle**

Let \(x, \alpha, \beta \in \mathbb{R}/\mathbb{Z}\). For each word \(w \in \Sigma^*\), the set of points \(I_w\) from which the word \(w\) is read under rotations by \(\alpha\) is:
\[
I_w = \{\gamma \in \mathbb{R}/\mathbb{Z} \mid C_{|w|}(\gamma) = w\}.
\]
The sets \(I_w\) are easily computed from the letters of \(w\) and form a partition of the unit circle \(\mathbb{R}/\mathbb{Z}\), explicitly:
\[
I_w = \bigcap_{0 \leq i \leq n-1} R_{\alpha}^{-i}(I_w), \quad P_n = \{I_w \mid w \in \text{Fact}_n(C(\gamma)), \gamma \in \mathbb{R}/\mathbb{Z}\}, \quad 0 \leq n \leq n-1
\]

The set of boundary points \(P_n\) of the partition \(P_n\) is
\[
P_n = \bigcup_{I \in P_n} \partial(I).
\]
Trivially, when \( n = 1 \), \( P_1 = \partial(I_0) \cup \partial(I_1) = \{0, \beta\} \) and it can be shown more generally that
\[
P_n = \{-i\alpha \mid i = 0, 1, \ldots, n - 1\} \cup \{\beta - i\alpha \mid i = 0, 1, \ldots, n - 1\}.
\]
The partitions \( P_1, P_2 \) and \( P_3 \) for \( W_{Ex,3} \) are represented in Figure 2 whereas those of \( W_{Ex,4} \) are illustrated in Figure 3. Note that in the second case, \( I_{00} \) and \( I_{00} \) are not intervals. The proof of the main result of this paper is precisely based on two cases: whether \( I_w \) is an interval (Case 1) or not (Case 2). First, Lemma 1 implies the following result.

**Lemma 6.** Let \( w \in \Sigma^* \) be such that \( I_w \) is an interval. Then

(i) \( P_\alpha(I_w, I_w) \) is a \( q \)-interval exchange transformation, where \( q \in \{1, 2, 3\} \).

(ii) \( w \) has at most 3 complete return words.

The following lemma is technical and is useful for our goal.

**Lemma 7.** Let \( E \) be a finite set. Let \( (A_i)_{i \in E} \) be a family of left-closed and right-open intervals \( A_i \subseteq \mathbb{R}/\mathbb{Z} \). Let \( \ell = \min\{|A_i| : i \in E\} \) and \( L = \max\{|A_i| : i \in E\} \). If \( \ell + L \leq 1 \), then \( \bigcap_{i \in E} A_i \) is an interval.
Proof. The proof proceeds by induction on \( n \). If \( n = 1 \), there is nothing to prove. Otherwise, let \( k \in E \) be such that \(|A_k| = L = \max\{|A_i| : i \in E\}\) and \( \ell = \min\{|A_i : i \in E\}|. \) Then

\[
\bigcap_{i \in E} A_i = A_k \cap \left( \bigcap_{i \in E \setminus \{k\}} A_i \right).
\]

By the induction hypothesis, \( \bigcap_{i \in E \setminus \{k\}} A_i \) is an interval and its length is less than \( \ell \). Since \( \ell + L \leq 1 \), \( A_i \) and \( \bigcap_{i \in E} A_i \) cannot intersect on both of their endpoints at the same time. \( \square \)

Under some mild condition, it is guaranteed that the set \( I_w \) is an interval. This elementary result is provided for sake of completeness.

**Lemma 8.** Let \( w \in \Sigma^* \), and \( \alpha, \beta \in \mathbb{R}/\mathbb{Z} \). The following properties hold:

(i) If both letters 0 and 1 appear in \( w \), then \( I_w \) is an interval and \(|I_w| \leq \alpha\);

(ii) If \( \alpha < \beta \) and \( \alpha < 1 - \beta \), then \( I_w \) is an interval.

**Proof.** (i) Let \( L = \{R_{\alpha}^{-i}(I_w) : 0 \leq i \leq n - 1\} \). If both letters 0 and 1 appear in the word \( w \) then \( L = \{\beta, 1 - \beta\} \) so that \( \min L + \max L = 1 \). Therefore, the intersection of intervals of Equation (1) satisfies the criteria of Lemma 7 and hence \( I_w \) is an interval.

The factor 01 or the factor 10 must appear in \( w \). In the first case, the length of \( I_w \) is bounded: \(|I_w| \leq |I_{01}| = |R_{\alpha}(I_0) \cup R_{\alpha}^{-1}(I_1)| \leq \alpha \). A similar inequality is obtained for the factor 10.

(ii) We prove the contrapositive. Assume that there exist a positive integer \( n \) and a word \( w \in \text{Fact}_n(C) \) such that \( I_w \) is an interval while \( I_{wa} \) is not, for some letter \( a \). It follows from (i) that \( w = a^n \) and \( |I_0| > |I_0| \). However, Equation (1) implies \( I_w = \bigcap_{i=0}^{n-1} R_{\alpha}^{-i}(I_a) \). In particular, \( I_w \subseteq R_{\alpha}^{-n-1}(I_a) \) so that

\[
R_{\alpha}^{-n-1}(I_b) \subseteq [0, 1 \setminus I_w].
\]

Moreover, \( I_{wa} = I_w \cap R_{\alpha}^{-n}(I_a) \) and hence \( R_{\alpha}^{-n}(I_b) \subseteq I_w \). It follows that \( R_{\alpha}^{-n-1}(I_b) \cap R_{\alpha}^{-n}(I_b) = \emptyset \), \( R_{\alpha}(I_b) \cap I_b = \emptyset \) and \( \alpha \geq |I_b| = \min(\beta, 1 - \beta) \). \( \square \)

### 3.1. Symmetry of the partition

In [13], the authors used the global symmetry of the partition \( P_n \), sending the interval \( I_w \) on the interval \( I_{w'} \). In fact, there are two points \( y_n \) and \( y_n' \) such that \( 2 \cdot y_n = 2 \cdot y_n' = \beta - (n - 1)\alpha \), and the symmetry \( S_n \) of \( \mathbb{R}/\mathbb{Z} \) is defined by \( x \mapsto 2y_n - x \). This symmetry is useful for describing the structure of return words as illustrated in Figure 4.

**Lemma 9.** Let \( m \in \mathbb{N} \). The following properties hold.

(i) If \( S_n(x) = R_{\alpha}^m(x) \), then \( S_n(x + \alpha) = R_{\alpha}^{m-1}(x) \).
Figure 4: Let $\alpha = 0.135$ and $\beta = 0.578$. The orbit of the point $x = (\beta - 9\alpha)/2 = 0.6815$ is symmetric with respect to $S_3: x \mapsto \beta - 2\alpha - x$. In fact, one may verify that the points $x$ and $x + 7\alpha$ satisfy $S_3(x) = x + 7\alpha$ and that $C_{10}(x) = 0001111000$ is a palindrome.

(ii) If $x \in \text{Int}(I_w)$, then $S_n(x) \in I_{\tilde{w}}$.

(iii) Assume that $x + \ell \cdot \alpha \notin \mathcal{P}_n$ for all $0 \leq \ell \leq m$. If $S_n(x) = R_m(x)$, then $C_{n+m}(x)$ is a palindrome.

Proof. (i) One has

$$S_n(x + \alpha) = 2y_n - x - \alpha = S_n(x) - \alpha$$

$$= x + m\alpha - \alpha = x + (m-1)\alpha.$$ 

(ii) This follows from the definition of $S_n$. (iii) In any case, one may suppose that $x \in I_w$ where $|w| = n$. The proof is done by induction on $m$. If $m = 0$, then $x \in I_{\tilde{w}}$ from (ii) so that $w = \tilde{w} = C_{n+0}(x)$. If $m = 1$, then $x + \alpha \in I_{\tilde{w}}$ from (ii). Hence, $C_{n+1}(x) = \tilde{w}w = \tilde{w}b$ where $a,b \in \{0,1\}$. Clearly, $a = w_0 = b$ and $C_{n+1}(x)$ is a palindrome. In general, for $m \geq 2$, $C_{m+n}(x) = a \cdot C_{m+n-2}(x+\alpha) \cdot b$ where $a = w_0 = b$ since $a$ is the first letter of $w$ and $b$ is the last letter of $\tilde{w}$. From (i), we know that $S_n(x + \alpha) = (x + \alpha) + (m-2)\alpha$ so that $C_{m+n-2}(x+\alpha)$ is a palindrome by the induction hypothesis.

4. Main results

We describe now the relation between dynamical systems and coding of rotations on two intervals by computing the complete return words of $C(x)$ using Poincaré’s first return function as follows. The key idea is to establish that every complete return word of a palindrome is itself a palindrome. For that purpose, assume that $u \in \text{Pal}(C(x))$ where $C = C(x)$ is such a coding. There are two cases to consider according to whether $I_u$ is an interval or not.
4.1. Case 1: \( I_u \) is an interval

Recall from Lemma 6 that \( P_\alpha(I_u, I_u) \) is a \( q \)-interval exchange transformation with \( q \in \{1, 2, 3\} \). Let \((J_i)_{1 \leq i \leq q} \) be the \( q \) nonempty and maximal sub-intervals of \( I_u \) such that \( P_\alpha(I_u, I_u)(J_i) = R^k_t(J_i) \) where \( i < j \) implies \( t_i < t_j \). Any point of \( J_i \) requires the same number \( t_i \) of rotations by \( \alpha \) to reach the interval \( I_u \). In the general case, two points in \( J_i \) may code different words of length \( t_i \) under rotations by \( \alpha \). For example, the factor 100 has three complete return words in \( W_{\text{Ex},3} \) among which two have the same length: 10000100, 1000100, 10001100.

Nevertheless, the next lemma ensures the uniqueness of the return word of length \( t_i \) obtained from the interval \( J_i \) in the case where \( I_u \) is an interval.

**Lemma 10.** If \( I_u \) is an interval, then for all \( x, y \in J_i \) and \( 1 \leq i \leq q \) one has \( C_{t_i}(x) = C_{t_i}(y) \).

**Proof.** Without loss of generality one may assume that \( x < y \). By contradiction, suppose that there exists \( k, 0 \leq k \leq t_i \), such that \( R^k_t(x) \) lies in \( I_0 = [0, \beta] \) and \( R^k_t(y) \) lies in \( I_1 = [\beta, 0] \) (the proof is the same for the other case). Then,

\[
\beta \in [R^k_t(x), R^k_t(y)] \subset R^k_t(\text{Int}(J_i)).
\]

If \( k < n \), then \( \beta - k\alpha \in \text{Int}(J_i) \) which is a contradiction because it is a point of the set \( \mathcal{P}_n \). If \( k \geq n \), then \( \beta - k\alpha \in R^{k-\ell}_t(\text{Int}(J_i)) \) for all \( 0 \leq \ell < n \). This is a contradiction as well because at least one of the boundary points of \( I_u \) is of the form \( \beta - \ell\alpha \) which contradicts the minimality of \( t_i \).

A well-chosen representative allows one to compute the word coded from the interval \( J_i \). It appears that the middle point \( m_i \) of \( J_i \) is convenient for being symmetric: indeed, it follows from Lemma 5 and Lemma 10 that if \( u \in \text{Fact}_n(C) \) is a palindrome such that \( I_u \) is an interval, then

\[
\text{CRet}_C(u, u) = \{C_{t_i+n}(m_i) \mid 1 \leq i \leq q\}. \tag{3}
\]

**Proposition 11.** If \( I_u \) is an interval then every complete return word of \( u \) is a palindrome.

**Proof.** Let \( n = |u| \) and \( w \in \text{CRet}_C(u) \). Since \( I_u \) is an interval, there exists \( i \in \{1, 2, 3\} \) such that \( w = C_{T(m_i)+n}(m_i) \) where \( T = T_\alpha(I_u, I_u) \) and \( m_i \) is the middle point of the interval \( J_i \), for \( i = 1, 2, 3 \). Let \( \sigma_i : \gamma \mapsto 2m_i - \gamma \) denote the reflection with respect to the middle point \( m_i \) of the sub-interval \( J_i \). Moreover, since \( P_\alpha(I_u, I_u) \) is an interval exchange transformation, the following equalities hold

\[
m_i + T(m_i)\alpha = P_\alpha(I_u, I_u)(m_i) = (S_n \circ \sigma_i)(m_i) = S_n(m_i).
\]

From Lemma 10, we know that none of the points \( m_i + \ell \cdot \alpha \) are in \( \mathcal{P}_n \) so that Lemma 9 (iii) can be applied, and \( w \) is a palindrome.
4.2. Case 2: $I_a$ is not an interval

In this case Lemma 8 implies that $u = a^n$ is some power of a single letter. Then every complete return word of $u$ is either (i) of the form $a^{n+1}$ or (ii) belongs to the set $a^n b \Sigma^* \cap \Sigma^* b a^n$, with $a \neq b$. The first case is trivial because $a^{n+1}$ is clearly a palindrome, so only the second case is described in detail.

Proposition 12. If $u' = a^n b$ and $v' = b a^n$ then $P_\alpha(I_{u'}, I_{v'})$ is a bijection.

Proof. It suffices to show that $P_{-\alpha}(I_{v'}, I_{u'})$ is the inverse of $P_\alpha(I_{u'}, I_{v'})$. By contradiction, assume that it is not the case. Then there exist $x \in I_{u'}$ and $y \in I_{v'}$ such that $y = P_\alpha(I_{u'}, I_{v'})(x)$ and $T_{-\alpha}(I_{v'}, I_{u'})(y) < T_\alpha(I_{u'}, I_{v'})(x)$, i.e. the orbit of $y$ falls within $I_{u'}$ before reaching $x$ when making rotations of $-\alpha$. Therefore, by Lemma 5, there exists a complete return word $w$ from $u' = a^n b$ to $v' = b a^n$ such that $u'$ occurs twice in $w$. But this implies that $v'$ occurs twice in $w$ as well, which contradicts the definition of complete return word.

\[ \square \]

Corollary 13. If $u' = a^n b$ and $v' = b a^n$ then $P_\alpha(I_{u'}, I_{v'})$ is a $q$-interval exchange transformation, where $q \in \{1, 2, 3\}$.

Let $(J_i)_{1 \leq i \leq q}$ be the $q$ nonempty sub-intervals of $I_{u'}$ as defined in the proof of Proposition 2. It follows from the preceding lemmas that any point of $J_i$ requires the same number of rotations by $\alpha$ to reach the interval $I_{v'}$, i.e. $T_\alpha(I_{u'}, I_{v'})(x) = T_\alpha(I_{v'}, I_{u'})(y)$ for all $x, y \in J_i$. Hence, for $1 \leq i \leq q$, let

$$t_i = T_\alpha(I_{u'}, I_{v'})(J_i).$$

(4)

As pointed out above, two points in the interval $J_i$ might code different words of length $t_i$ under rotations by $\alpha$. Nevertheless, the uniqueness of the return word obtained from the interval $J_i$ is ensured in our case.

Lemma 14. If $u' = a^n b$ and $v' = b a^n$, then for all $x, y \in J_i$ and $1 \leq i \leq q$ one has $C_{t_i}(x) = C_{t_i}(y)$ where $t_i$ is defined by Equation (4).

Proof. Without loss of generality one may assume that $x < y$. By contradiction, suppose that there exists $k$, $0 \leq k \leq t_i$, such that $R^k_\alpha(x)$ lies in $I_0 = [0, \beta]$ and $R^k_\alpha(y)$ lies in $I_1 = [\beta, 0]$ (the proof is the same for the other case). Then,

$$\beta \in \overline{R^k_\alpha(x), R^k_\alpha(y)} \subset R^k_\alpha(\text{Int}(J_i)).$$

If $k \leq n$, then $\beta - k \alpha \in \text{Int}(J_i)$ which is a contradiction because it is a point of the set $P_{\alpha+1}$. If $k > n$, then $\beta - \ell \alpha \in R^{k-\ell}_\alpha(\text{Int}(J_i))$ for all $0 \leq \ell \leq n$. This is a contradiction as well because at least one of the boundary points of $I_{u'}$ or $I_{v'}$ is of the form $\beta - \ell \alpha$ which contradicts the fact that $P_\alpha(I_{u'}, I_{v'})$ is a bijection. \[ \square \]

Once again, we choose the middle point $m_i$ as representative. It follows from Lemma 5 and Lemma 14 that if $u' = a^n b$ and $v' = b a^n$, then

$$\text{CRet}_{C}(u', v') = \{C_{t_i+n+1}(m_i) \mid 1 \leq i \leq q\}.$$  

(5)
Proposition 15. Let $T = T_\alpha(I_{a^n b}, I_{b a^n})$. Then,

$$\text{CRet}(a^n) \subseteq \{a^{n+1}\} \cup \{C_{T(m_i)+n+1}(m_i) \mid 1 \leq i \leq q\}.$$ 

Proof. Let $us \in \text{CRet}(u)$ and let $b$ be the first letter of $s$. If $b = a$, then $us = ua = a^{n+1}$. If $b \neq a$, then $us = ubtu = a^n bta^n$ where the last letter of $bt$ must be $b$: these are the complete return words from $a^n b$ to $ba^n$ as given by Equation (5).

Proposition 16. If $I_u$ is not an interval then every complete return word of $u$ is a palindrome.

Proof. Let $n = |u|$ and let $w \in \text{CRet}(u)$. Since $I_u$ is not an interval, $u = a^n$ with $a \in \{0, 1\}$ by Lemma 8. Proposition 15 implies that $w = a^{n+1}$ which is a palindrome or $w = C_{T(m_i)+n+1}(m_i)$ where $T = T_\alpha(I_{a^n b}, I_{b a^n})$. Again, let $\sigma_i : \gamma \mapsto 2m_i - \gamma$ denote the reflection with respect to the middle point $m_i$ of the sub-interval $J_i$. Then

$$m_i + T(m_i)\alpha = P_n(I_{a^n b}, I_{b a^n})(m_i) = (S_{n+1} \circ \sigma_i)(m_i) = S_{n+1}(m_i).$$ 

so that $w$ is a palindrome by Lemma 9 (iii).

4.3. Concluding statements

First, it is worth mentioning that a slight technical refinement of Katok’s results is obtained from Lemma 10 and Proposition 15.

Proposition 17. The set of words $w \in \text{Fact}(C)$ having 4 complete return words is finite. Moreover, $I_w$ is not an interval and $w$ is the power of a single letter.

This result is illustrated in the following example.

Example 18. The factor 000 has four complete return words in $W_{\text{Ex,4}}$ namely

$$0000, \ 0001000, \ 000101000 \text{ and } 00010100101000$$

all being palindromes.

This example illustrates that complete return words of palindromes are palindromes, a consequence of Propositions 11 and 16. In other words:

Theorem 19. Every coding of rotations on two intervals is full.

In [14], the authors showed that an infinite word $w$ whose set of factors is closed under reversal is full if and only if

$$\text{Pal}_n(w) + \text{Pal}_{n+1}(w) = \text{Fact}_{n+1}(w) - \text{Fact}_{n}(w) + 2 \quad \text{for all } n \in \mathbb{N}. \quad (6)$$

Since Equation (6) is verified for the case where the number of return words is at most 3, it is likely that Theorem 19 could be deduced from results in [14]. However, it is not clear if this also holds for the more involved case where the bound of 4 return words is realized. Here all possible cases were handled, including the periodic one.
5. Complementary-symmetric Rote words

The special case when $\beta = 1/2$ deserves some attention. These words built on the alphabet $\Sigma = \{0, 1\}$ are called complementary-symmetric Rote words [3]. We provide here a combinatorial proof for the case where $\alpha$ is irrational and $\beta = 1/2$, based on the peculiar structure of antipalindromes, a generalization of palindromes.

An antipalindrome $q$ is a word such that $\overline{q} = \overline{q}$ where $\overline{\cdot}$ is the non-trivial involution on $\Sigma^*$ (swapping of letters) defined by $0 \mapsto 1, 1 \mapsto 0$. Given two palindromes $p$ and $q$, one writes $p \prec q$ if there exists a word $x$ such that $x^{-1}q = px\overline{x}$ or equivalently $q = xp\overline{x}$. The difference of $w$, denoted by $\Delta(w)$, is the word $v = v_1v_2\cdots v_{|w|-1}$ defined by

$$v_i = (w_{i+1} - w_{i}) \mod 2, \text{ for } i = 1, 2, \ldots, |w| - 2.$$ 

Complementary-symmetric words are connected to Sturmian words by a structural theorem.

**Theorem 20** (Rote [3]). An infinite word $w$ is a complementary-symmetric Rote word if and only if the infinite word $\Delta(w)$ is a Sturmian word.

For instance, the following word is complementary-symmetric

$$x = 11000110011011110011110011000\cdots$$

and its associated Sturmian word is

$$y = \Delta(111000000111100)\cdots = 0100100101001010010010100101001\cdots$$

The key idea is to exploit the link with Sturmian words and to use both palindromes and antipalindromes. First, we state without proof some elementary properties of the operator $\Delta$.

**Lemma 21.** Let $u, v \in \Sigma^*$, where $|u|, |v| \geq 2$. Then

(i) $\Delta(u) = \Delta(v)$ if and only if $v = u$ or $v = \overline{u}$,

(ii) $u$ is either a palindrome or an antipalindrome if and only if $\Delta(u)$ is a palindrome and
(iii) \( u \) is an antipalindrome if and only if \( \Delta(u) \) is an odd palindrome with central letter 1.

The following fact, established in [16, 17], is useful.

**Theorem 22.** A binary word \( w \) is Sturmian if and only if every nonempty factor \( u \) of \( w \) satisfies \(|\text{CRet}_w(u)| = 2\).

The lattice of palindrome factors of Sturmian words has the following factorial closure property.

**Lemma 23.** Let \( s \) be a Sturmian word and \( p,q \in \text{Pal}(s) \), where \(|p| \geq |q|\). Assume that there exists a nonempty word \( r \) such that \( r \prec p \) and \( r \prec q \). Then \( q \prec p \).

**Proof.** The proof proceeds by contradiction. Assume that \( q \not\succ p \) and let \( r' \) be the longest palindrome such that \( r' \prec p,q \). Clearly, \( r' \neq \varepsilon \) since \( r \neq \varepsilon \).

Moreover, \( r' \neq p,q \) since \( q \not\prec p \). Therefore, there exist two distinct letters \( a \) and \( b \) such that \( ar'a \prec p \) and \( br'b \prec q \), i.e. \( ar'a \) and \( br'b \) are both factors of \( s \). This is a contradiction with the balance property of Sturmian words, since \(|ar'a|_a - |br'b|_a = 2 > 1\).

A last lemma is useful to prove Theorem 25.

**Lemma 24.** Let \( r \) be a complementary-symmetric Rote word and \( u \in \text{Pal}(r) \). Then there exist a palindrome \( p \) and an antipalindrome \( q \) such that \( u \in \text{Pref}(p) \cap \text{Pref}(q) \) and

\[
\text{CRet}_r(\Delta(u)) = \{\Delta(p), \Delta(q)\}.
\]

**Proof.** From Theorem 20, we know that \( \Delta(r) \) is Sturmian and from Lemma 21 that \( \Delta(u) \) is a palindrome. Therefore, it follows from Theorem 22 that \( \Delta(u) \) has two complete return words. Moreover, since \( \Delta(r) \) is full, these two complete return words are palindromes.

Let \( p \) and \( q \) be the two words such that \( u \in \text{Pref}(p) \cap \text{Pref}(q) \) and

\[
\text{CRet}_r(\Delta(u)) = \{\Delta(p), \Delta(q)\}.
\]

By Lemma 21(i), \( p \) and \( q \) are indeed unique and it follows from Lemma 21(ii) that \( p \) and \( q \) are either palindromes or antipalindromes.

First, one shows that \( p \) and \( q \) cannot be both antipalindromes. Arguing by contradiction, assume that the contrary holds. Then \( \Delta(p) \) and \( \Delta(q) \) are both palindromes of odd length having 1 as a central factor. By Lemma 23, one concludes that \( \Delta(p) \prec \Delta(q) \) or \( \Delta(q) \prec \Delta(p) \). The former case implies \( |\Delta(q)|_{\Delta(u)} \geq 4 \) while the latter implies \( |\Delta(p)|_{\Delta(u)} \geq 4 \), contradicting the fact that \( \Delta(p) \) and \( \Delta(q) \) are complete return words.

It remains to show that \( p \) and \( q \) cannot be both palindromes. Since \( r \) is recurrent for being Sturmian, there exists \( v \in \text{Fact}(r) \) such that \( u \in \text{Pref}(v) \), \( \overline{v} \in \text{Suff}(v) \) and \(|v|_u = |\overline{v}|_v = 1 \), i.e. \( \Delta(v) \) is a complete return word of \( \Delta(u) \) in \( \Delta(r) \). But \( v \) is not a palindrome since \( u \in \text{Pref}(v) \) and \( \overline{v} \in \text{Suff}(v) \), so that it must be an antipalindrome.
As a consequence the fullness property holds.

**Theorem 25.** Rote words with $\beta = 1/2$ are full.

**Proof.** Let $r$ be a Rote sequence, $u \in \text{Pal}(r)$ and $v$ a complete return word of $u$ in $r$. It suffices to show that $v$ is a palindrome.

First, note that $|v|_u = 2$ but it is possible to have $|v|_r > 0$. Let $n = |v|_r$. By Lemma 24, there exist a palindrome $p$ and an antipalindrome $q$ such that $\Delta(p)$ and $\Delta(q)$ are the two complete return words of $\Delta(u)$ in $r$, where $u \in \text{Pref}(p) \cap \text{Pref}(q)$. If $n = 0$, then $v = p$ is a palindrome, as desired. Otherwise, $v = (qu^{-1})(pu^{-1})^n q$.

Therefore,

$$\bar{v} = \bar{q}(u^{-1}\bar{p})^n(u^{-1}\bar{q}) = q(u^{-1}p)^n(u^{-1}q) = v,$$

so that $v$ is a palindrome. Hence, $r$ is full. $\Box$

**Acknowledgements**

This paper is an extended version of a communication that appeared in [18]. The results presented in this paper were discovered by computer exploration using the open-source mathematical software Sage [19]. We are also grateful to the anonymous referees for pointing out crucial points that improved the presentation.

This research was supported by NSERC (Canada).


