H. Abboud, F. E. Chami, and T. Sayah, A priori and a posteriori estimates for three-dimensional Stokes equations with nonstandard boundary conditions, Numerical Methods for Partial Differential Equations, vol.9, issue.4, pp.1178-1193, 2012.
DOI : 10.1002/num.20676

C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Mathematical Methods in the Applied Sciences, vol.2, issue.9, pp.823-864, 1998.
DOI : 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B

B. Andreianov, M. Bendahmane, F. Hubert, and S. Krell, On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality, IMA Journal of Numerical Analysis, vol.32, issue.4, pp.1574-1603, 2012.
DOI : 10.1093/imanum/drr046

URL : https://hal.archives-ouvertes.fr/hal-00355212

D. N. Arnold, R. S. Falk, and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bulletin of the American Mathematical Society, vol.47, issue.2, pp.281-354, 2010.
DOI : 10.1090/S0273-0979-10-01278-4

L. Beirão-da-veiga, V. Gyrya, K. Lipnikov, and G. Manzini, Mimetic finite difference method for the Stokes problem on polygonal meshes, Journal of Computational Physics, vol.228, issue.19, pp.7215-7232, 2009.
DOI : 10.1016/j.jcp.2009.06.034

L. Beirão-da-veiga, K. Lipnikov, and G. Manzini, Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes, SIAM Journal on Numerical Analysis, vol.48, issue.4, pp.1419-1443, 2010.
DOI : 10.1137/090757411

L. Beirão, K. Veiga, and . Lipnikov, A mimetic discretization of the Stokes problem with selected edge bubbles, SIAM J. Sci. Comput, vol.32, issue.2, pp.875-893, 2010.

C. Bernardi and N. Chorfi, Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem, SIAM Journal on Numerical Analysis, vol.44, issue.2, pp.826-850, 2006.
DOI : 10.1137/050622687

URL : https://hal.archives-ouvertes.fr/hal-00112164

P. Bochev, J. M. Hyman, P. Arnold, R. Bochev, R. A. Lehoucq et al., Principles of mimetic discretizations of differential operators of The IMA Volumes in mathematics and its applications, Compatible Spatial Discretization, pp.89-120, 2005.

J. Bonelle, Compatible Discrete Operator Schemes for Elliptic and Stokes Equations on Polyhedral Meshes, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01116527

J. Bonelle and A. Ern, Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.2, pp.553-581, 2014.
DOI : 10.1051/m2an/2013104

URL : https://hal.archives-ouvertes.fr/hal-00751284

A. Bossavit, Computational electromagnetism and geometry, J. Japan Soc. Appl. Electromagn. & Mech, vol.102, issue.1 2 39 4 5 6, pp.7-8150, 1999.

J. H. Bramble and P. Lee, On variational formulations for the Stokes equations with nonstandard boundary conditions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.28, issue.7, pp.903-919, 1994.
DOI : 10.1051/m2an/1994280709031

F. Brezzi, A. Buffa, and K. Lipnikov, Mimetic finite differences for elliptic problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.2, pp.277-295, 2009.
DOI : 10.1051/m2an:2008046

F. Brezzi and M. Fortin, Mixed and Hydbrid Finite Element Methods. Springer series in computational mathematics, 1991.

F. Brezzi, K. Lipnikov, and M. Shashkov, Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes, SIAM Journal on Numerical Analysis, vol.43, issue.5, pp.1872-1896, 2005.
DOI : 10.1137/040613950

S. H. Christiansen, A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES, Mathematical Models and Methods in Applied Sciences, vol.18, issue.05, pp.739-757, 2008.
DOI : 10.1142/S021820250800284X

M. Clemens and T. Weiland, Discrete Electromagnetism with the Finite Integration Technique, Progress In Electromagnetics Research, vol.32, pp.65-87, 2001.
DOI : 10.2528/PIER00080103

L. Codecasa, R. Specogna, and F. Trevisan, A new set of basis functions for the discrete geometric approach, Journal of Computational Physics, vol.229, issue.19, pp.7401-7410, 2010.
DOI : 10.1016/j.jcp.2010.06.023

L. Codecasa and F. Trevisan, Convergence of electromagnetic problems modelled by Discrete Geometric Approach, CMES, vol.58, issue.1, pp.15-44, 2010.

S. Delcourte and P. Omnes, A Discrete Duality Finite Volume discretization of the vorticityvelocity-pressure formulation of the 2D Stokes problem on almost arbitrary two-dimensional grids, 2013.

M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, Discrete Exterior Calculus, p.508341, 2005.

D. A. Di-pietro and S. Lemaire, An extension of the Crouzeix???Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Mathematics of Computation, vol.84, issue.291, 2014.
DOI : 10.1090/S0025-5718-2014-02861-5

URL : https://hal.archives-ouvertes.fr/hal-00753660

J. Droniou and R. Eymard, Study of the mixed finite volume method for Stokes and Navier-Stokes equations, Numerical Methods for Partial Differential Equations, vol.7, issue.1, pp.137-171, 2009.
DOI : 10.1002/num.20333

URL : https://hal.archives-ouvertes.fr/hal-00110911

F. Dubois, Une formulation tourbillon-vitesse-presion pour le problème de Stokes, Comptes Rendus de l'Académie des Sciences, pp.277-280, 1992.

F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem, Mathematical Methods in the Applied Sciences, vol.12, issue.13, pp.1091-1119, 2002.
DOI : 10.1002/mma.328

R. Eymard, J. Fuhrmann, and A. Linke, On MAC schemes on triangular delaunay meshes, their convergence and application to coupled flow problems, Numerical Methods for Partial Differential Equations, vol.48, issue.4, pp.1397-1424, 2014.
DOI : 10.1002/num.21875

R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn et al., 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids, Finite Volumes for Complex Applications VI -Problems & Perspectives, pp.95-130, 2011.
DOI : 10.1007/978-3-642-20671-9_89

URL : https://hal.archives-ouvertes.fr/hal-00580549

R. Falk and M. Neilan, Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation, SIAM Journal on Numerical Analysis, vol.51, issue.2, pp.1308-1326, 2013.
DOI : 10.1137/120888132

M. Gerritsma, An Introduction to a Compatible Spectral Discretization Method, Mechanics of Advanced Materials and Structures, vol.35, issue.3, pp.48-67, 2012.
DOI : 10.1006/jcph.2001.6973

R. Hiptmair, Discrete Hodge-Operators: An Algebraic Perspective, Progress In Electromagnetics Research, vol.32, pp.247-269, 2001.
DOI : 10.2528/PIER00080110

J. Kreeft and M. Gerritsma, Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution, Journal of Computational Physics, vol.240, pp.284-309, 2013.
DOI : 10.1016/j.jcp.2012.10.043

S. Krell and G. Manzini, The Discrete Duality Finite Volume Method for Stokes Equations on Three-Dimensional Polyhedral Meshes, SIAM Journal on Numerical Analysis, vol.50, issue.2, 2012.
DOI : 10.1137/110831593

A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Computer Methods in Applied Mechanics and Engineering, vol.268, pp.782-800, 2014.
DOI : 10.1016/j.cma.2013.10.011

C. Mattiussi, The finite volume, finite element, and finite difference methods as numerical methods for physical field problems Advances in Imaging and electron physics, pp.1-146, 2000.

P. Monk, Finite Element Methods for Maxwell's Equations. Numerical Mathematics and Scientific Computation, 2003.

J. C. Nédélec, Incompressible mixed finite elements for Stokes equations, Numerische Mathematik, vol.12, issue.1, pp.97-112, 1982.
DOI : 10.1007/BF01399314

J. B. Perot, Discrete Conservation Properties of Unstructured Mesh Schemes, Annual Review of Fluid Mechanics, vol.43, issue.1, pp.299-318, 2011.
DOI : 10.1146/annurev-fluid-122109-160645

J. B. Perot and R. Nallapati, A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows, Journal of Computational Physics, vol.184, issue.1, pp.192-214, 2003.
DOI : 10.1016/S0021-9991(02)00027-X

J. B. Perot and V. Subramanian, Discrete calculus methods for diffusion, Journal of Computational Physics, vol.224, issue.1, pp.59-81, 2007.
DOI : 10.1016/j.jcp.2006.12.022

T. Tarhasaari, L. Kettunen, and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis], IEEE Transactions on Magnetics, vol.35, issue.3, pp.1494-1497, 1999.
DOI : 10.1109/20.767250

F. L. Teixeira, Differential Forms in Lattice Field Theories: An Overview, ISRN Mathematical Physics, vol.33, issue.15, p.16, 2013.
DOI : 10.1063/1.3692167

E. Tonti, On the formal structure of physical theories. Istituto di matematica, 1975.

E. Tonti, Finite formulation of the electromagnetic field, Progress In Electromagnetics Research (PIER), pp.1-44, 2001.

S. Zaglmayr, High order finite element methods for electromagnetic field computation, 2006.