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Abstract

The propagation of unstable interfaces is at the origin of remarkable patterns that are observed
in various areas of science as chemical reactions, phase transitions, growth of bacterial colonies.
Since a scalar equation generates usually stable waves, the simplest mathematical description relies
on two by two reaction-diffusion systems. Our interest is the extension of the Fisher/KPP equation
to a two species reaction which represents reactant concentration and temperature when used for
flame propagation, bacterial population and nutrient concentration when used in biology.

We study in which circumstances instabilities can occur and in particular the effect of dimension.
It is observed numerically that spherical waves can be unstable depending on the coefficients. A
simpler mathematical framework is to study transversal instability, that means a one dimensional
wave propagating in two space dimensions. Then, explicit analytical formulas give explicitely the
range of paramaters for instability.

Key-words: Traveling waves; Stability analysis; Reaction-diffusion equation; Thermodiffusive sys-
tem.

Mathematical Classification numbers: 35C07; 70K50; 76E17; 80A25; 92C17

1 Introduction

The propagation of unstable interfaces is at the origin of remarkable patterns that can be observed in
nature and in experiments. The phenomena has attracted the attention of physicists, geophysicists,
chemists and biologists and basic mathematical models can account for this type of unstable dynamical
patterns. These models are reaction-diffusion systems and the simplest model is an extension of the
Fisher/KPP equation to a two species reaction. It models reactant concentration and temperature
when used for flame propagation [3, 5], bacterial population and nutrient concentration when used in
biology [13, 8], cancer cells and available oxygen/glucosis when used for tumor growth [2, 16, 14].
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Numerical simulations show that spherical waves can be unstable or stable depending on the model
coefficients. But among the many scenarios of instability, the so-called ‘transversal instabilities’ are
the simplest to analyze and explain this surprising effect of dimension which is to de-stabilize a
stable one dimensional traveling wave. The phenomena was observed and related to Diffusion Limited
Aggregation, with a first analysis, in [11, 18].

Our goal here is to study such a case of transversal instability and more precisely to understand the
modalities of appearance of transversal instabilities for a very simple example given by system. For
this, we consider the following two-component reaction-diffusion system :{

∂tu− α∆u = 1
αh(u)v,

∂tv −∆v = − 1
αh(u)v.

(1)

The parameter α > 0 is called the Lewis number for flame propagation theory, α > 1 is relevant for
combustion and α < 1 is more relevant for applications to bacterial movement.

Two different cases are proposed both for combustion and biology litteratures depending on propertie
of the function h(·)

h ∈ C1(0, 1), h(0) = 0, h(1) = 1, h′(u) > 0 for 0 < u ≤ 1, (KPP type),h(u) = 0 for 0 ≤ u ≤ θ < 1, h(θ+) = h+ ≥ 0,

h(1) = 1, h′(u) ≥ 0 for θ < u ≤ 1,
(Ignition temperature type).

Our interest lies on two dimensional stability of one dimensional traveling waves for this system. A
proof of existence for one dimensional traveling wave solutions can be found in [12] when h(·) is of
KPP type and when α ≥ 1 for ignition temperature type. Also, in [3], the authors prove existence of
traveling waves when h(·) is of ignition temperature type and no restriction on α. More recent results
for KPP type, in a cylinder and covering all Lewis numbers, can be found in [9].

In this paper, we consider a simple example for which we can handle analytical computation. It
corresponds to ignition temperature type and the function h is given by

h(u) =

{
0, for u ≤ θ,
1, for u > θ.

(2)

We first report in Section 2, based on numerical simulations, two dimensional spherical waves which
can be unstable for certain coefficients. Then, we build analytically the one dimensional traveling
waves in Section 3. The analytical formulas are fundamental to handle the spectral problem arising
to study linearized stability of the transversal waves in Section 4.

2 Numerical observations

In two dimensions, numerical simulations of system (1)–(2) exhibit various behaviours depending on
the values of α and θ in (0, 1). We present them here as a motivation for our theoretical study.

These simulations are obtained using the finite element method implemented within the software
FreeFem++ [1, 10]. The computational domain is a disc with radius 4 and we denote by Γ its boundary.
At the boundary, Neumann boundary conditions are implemented for both u and v :

∂νu|Γ = 0, ∂νv|Γ = 0,
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where ν is the outward unit normal. We use a semi-implicit time discretization. Then the resulting
system is discretized thanks to P1 finite element method.

The initial given data is :

u0 = 1{
√
x2+y2≤0.4}; v0 = 1− u0.

The time step is dt = 0.0025 and the number of nodes is 21879. The numerical results are depicted
in Figure 1 and 2 where the computed approximation of u is plotted after several time iterations for
different values of the parameters α and θ. Depending on the values of α and θ, we observe different
patterns in the numerical simulations. Figure 1 displays the numerical simulations for α = 0.25 and for
θ = 0.1 (Left) and θ = 0.5 (Right). In both cases, we observe a wave that invades the computational
domain and the numerical result do not show instabilities. Comparing this two results, we deduce
that the invasion process depends on θ. Figure 2 displays the numerical results obtained for small α :
we choose α = 0.01. In this case, we observe numerical instabilities that create a complex pattern.
Instabilities are much more visible when θ = 0.1 (Figure 2, Left) than when θ = 0.5 (Figure 2, Right).

Figure 1: Numerical simulations for component u in (1). (1) Left: Plot of the computed u at time T = 1 for
α = 0.25 and θ = 0.1. (2) Right: Plot of the computed u at time T = 3 for α = 0.25 and θ = 0.5. In both
cases, we observe the propagation of a stable spherical wave which invades the computational domain.

3 One dimensional traveling waves

One dimensional traveling waves are solutions of the form

u(t, x) = u0(x− σt), v(t, x) = v0(x− σt),

where σ > 0 is a constant representing the traveling wave velocity. They are a convenient way to
understand the propagation phenomena presented in Section 2.
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Figure 2: Numerical simulations for species u in (1). (1) Left: Plot of the computed u at time T = 2 for
α = 0.01 and θ = 0.1. (2) Right: Plot of the computed u at time T = 6 for α = 0.25 and θ = 0.5. When α is
small, numerical instabilities appear which create a complex fingered pattern.

For system (1) traveling waves are determined from the system :
−σu0x − αu0xx = 1

αh(u0)v0,

−σv0x − v0xx = − 1
αh(u0)v0,

(u0, v0)(−∞) = (1, 0), (u0, v0)(+∞) = (0, 1).

(3)

To avoid ambiguity due to the translation invariance of the problem we set

0 < u0(0) = θ < 1. (4)

We say that a traveling wave solution to (3) is monotonic, if each component is monotonic, and then
we can normalize the signs with u′0 < 0 and v′0 > 0.

Proposition 3.1 There exists a unique monotonic traveling wave for system (1)–(2), i.e. a unique
σ > 0 and a pair (u0, v0) ∈ C1,ν(R), ν ∈ (0, 1), solving (3)–(4) with u0 nonincreasing, v0 nondecreasing.

More precisely this traveling wave solution moves with the speed

σ = (1− θ)
√

α

θ2 + αθ(1− θ)
(5)

and is given explicitly by

u0(x) =

{
1− (1− θ)eθx/β , for x < 0,

θe−(1−θ)x/β, for x > 0,
(6)

v0(x) =


α(1−θ)
θ+α(1−θ)e

θx/β , for x < 0,

1− θ
θ+α(1−θ)e

−α(1−θ)x/β, for x > 0,
(7)

where
β =
√
αθ
√
θ + α(1− θ). (8)
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This solution is depicted in Figure 3.

Remark 3.2 We notice that when θ goes to 0, we have that σ ∼
√
α
θ . Then the wave goes faster when

θ is smaller. This remark confirms our observation in Figure 1, where we can notice than the invasion
process of species u is faster when θ is smaller.

Figure 3: The traveling wave solution with u decreasing and v increasing for α = 0.005 and θ = 0.1.

Proof. We recall that we look for a nonincreasing function u and we have denoted u0(0) = θ.
Therefore, from the definition of the nonlinearity h(·) in (2), we have h

(
u0(x)

)
= 0 for x > 0. Then,

the system (3) is reduced to

−σu0x − αu0xx = 0, −σv0x − v0xx = 0, x > 0.

With the boundary condition at +∞ in (3) : (u0, v0)(+∞) = (0, 1), we deduce

u0(x) = θe−σx/α, v0(x) = 1− be−σx, for x > 0, (9)

where b is a constant to be fixed later.
For x < 0, we have h

(
u0(x)

)
= 1, therefore system (3) is reduced to

−σu0x − αu0xx =
v0

α
, σv0x + v0xx −

1

α
v0 = 0.

Solving the second equation, and because the solution is continuous at x = 0 by ellipitic regularity,
leads to

v0(x) = (1− b)eλx, with λ =
1

2

(
− σ +

√
σ2 + 4/α

)
, for x < 0, (10)

where we have used the boundary conditions : (u0, v0)(−∞) = (1, 0). Then, we obtain

u0(x) = 1− (1− θ)eλx, for x < 0, (11)

which is a solution of the equation for u0 provided(
σλ+ αλ2

)
(1− θ) =

1− b
α

.
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This latter equality allows to determine the value of b :

b = 1− α
(
1 + σλ(1− α)

)
(1− θ).

Finally, the continuity of the derivative u′0(0+) = u′0(0−) implies
σθ

α
= λ(1 − θ). Using this relation

and the expression of λ (10) we obtain

σ = (1− θ)
√

α

θ2 + αθ(1− θ)
.

We deduce

λ =

√
θ

√
α
√
θ + α(1− θ)

, σλ =
1− θ

θ + α(1− θ)
, b =

θ

θ + α(1− θ)
. (12)

The conclusions stated in Proposition 3.1 follow directly from the construction and formulas (9)–
(10)–(11).

4 Stability of planar traveling waves

As suggested by the numerical results in Section 2, based on spherical waves, we expect that transversal
instability can occur in two dimensions.

We propose here to study the linear transversal stability. To do so, and in the spirit of [11, 7] for
instance, with ε� 1, we set{

u(t, x, y) = u0(x− σt) + εeλt cos(ωy)u1(x− σt),

v(t, x, y) = v0(x− σt) + εeλt cos(ωy)v1(x− σt).

Substituting this expansion into (1) and keeping only the term of order 1 in ε, we get the linearized
system (in the traveling wave frame){

λu1 − σu′1 − αu′′1 + αω2u1 = 1
α

(
h′(u0)v0u1 + h(u0)v1

)
,

λv1 − σv′1 − v′′1 + ω2v1 = − 1
α

(
h′(u0)v0u1 + h(u0)v1

)
.

(13)

We notice that for ω = 0, the system has the solution λ = 0, u1 = u′0 and v1 = v′0. Notice that ω = 0
also represents the case of dimension one (no transversal effect)s.

Definition 4.1 In two dimensions, we say that the one dimensional traveling wave (u0, v0) for system
(1) in Proposition 3.1 is transversally linearly unstable if there exists ω > 0 and λ with Reλ > 0
such that system (13) admits a non-trivial solution in Cν(R) ∩ L2(R).

Proposition 4.2 Let θ ∈ (0, 1). Let us consider the function h given in (2). Then the following hold:

1. For α small enough, the traveling waves in Proposition 3.1 are linearly stable in one dimension
for all θ ∈ (0, 1).
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2. For each θ ∈ (0, 1) and each small α there exists ω(α, θ) such that λ(ω(α, θ)) < 0 i.e. the traveling
wave is transversally linearly unstable for these values of the parameters in two dimensions.
Moreover ω(α, θ) = O( 1√

α
).

The paper [15] suggests that, in appropriate weighted spaces, one dimensional traveling wave are
nonlinearly stable in the range of parameters when they are linearly stable.

Proof. Since linear stability in one dimension reduces to studying (13) for ω = 0, from now on we
assume more generally that ω ≥ 0. We will look for λ ∈ R, λ = λ(ω) > 0 such that system (13) admits
a non-trivial solution. Note that λ depends on α and θ as well, but we will not make this dependence
explicit unless necessary.

For x > 0, system (13) reduces to (αω2 + λ)u1 − (1−θ)α
β u′1 − αu′′1 = 0,

(λ+ ω2)v1 − (1−θ)α
β v′1 − v′′1 = 0.

We can solve this linear problem and obtain u1(x) = Aer−x, r− = − (1−θ)
2β −

1
2β

√
(1− θ)2 + 4β2(ω2 + λ

α),

v1(x) = Bes−x, s− = − (1−θ)α
2β − 1

2β

√
(1− θ)2α2 + 4β2(ω2 + λ).

(14)

Here, A and B are constants to be determined and r± are the roots of the polynomial

(αω2 + λ)− (1− θ)α
β

r − αr2 = 0. (15)

For x < 0, system (13) reduces to (αω2 + λ)u1 − (1−θ)α
β u′1 − αu′′1 = 1

αv1,(
λ+ ω2 + 1

α

)
v1 − (1−θ)α

β v′1 − v′′1 = 0,

where we have used the expression of σ in (5) recalling that β is given in (8). Then we get

v1(x) = Beµ+x, µ+ = −(1− θ)α
2β

+
1

2β

√
(2θ + α(1− θ))2 + 4β2(ω2 + λ). (16)

Substituting this expression in the equation for u1, we get

u1(x) = Cer+x + γBeµ+x, r+ = −(1− θ)
2β

+
1

2β

√
(1− θ)2 + 4β2(ω2 +

λ

α
), (17)

where C is a constant and we have set(
αω2 + λ− (1− θ)α

β
µ+ − αµ2

+

)
γ =

1

α
.
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The value of the parameter γ follows from the definition of r± as the roots of (15)

γ = − 1

α2(µ+ − r+)(µ+ − r−)
. (18)

Moreover, by continuity at x = 0, we need C + Bγ = A. By definition of the function h and with
(6)–(7), we obtain

h′(u0)v0 =
βα

θ(θ + α(1− θ))
δx=0 =

α2

β
δx=0. (19)

As a consequence, the jump relation for (u′1, v
′
1) at x = 0, which can be deduced from equation (13),

leads to {
−α(u′1(0+)− u′1(0−)) = α

βu1(0),

−v′1(0+) + v′1(0−) = −α
βu1(0).

Writing these equalities in terms of the free parameters, we arrive to the following set of relations
A = C + γB,

A
(
r− + 1

β

)
= Cr+ + γµ+B,

α
βA = Bs− −Bµ+.

Replacing B and C in the second equation, we get

A
(
r− +

1

β

)
= Ar+ +Aγ(µ+ − r+)

α

β(s− − µ+)
.

We conclude that there exists a non trivial solution to (13) provided the following identity holds :

1 = β(r+ − r−) +
1

α(µ+ − r−)(µ+ − s−)
, (20)

where we used the expression (18). We verify straightforwardly that for ω = 0 and λ = 0 relation (20)
is always satisfied.

It remains to compute the value of λ using (20). In this algebraic equation λ is given implicitly
as a function of the parameters α, θ and ω, and in the analysis of this expression we rely on taking
the limit α→ 0 and also on Maple based simulations (in this sense our proof is to some small extent
computer assisted).

First, we consider the case ω = 0 which provides the stability in one dimension. Then we consider
the limit α→ 0 choosing the scale: ω = ω0√

α
, with ω0 > 0 fixed.

Case 1: α→ 0, ω = 0. This case covers Assertion 1 of the propostion. We set

ζ =
√

(1− θ)2 + 4β2λ/α, η =
√

(2θ + α(1− θ))2 + 4β2λ.

Using (14), (16), (17), the identity (20) in the case ω = 0 reduces to

1 = ζ +
4β2

α
(
(1− θ)(1− α) + ζ + η

)
(η + αζ)

. (21)
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Taking α = 0 above, we find that

λ = −1

2

1− θ
θ

.

By continuity, this means in particular that for all sufficiently small α, the traveling wave solution is
linearly stable. Hence, it is tempting to speculate that in fact linear stability is true for any α > 0,
see however Remark 5.2.

Case 2: α→ 0 and ω = ω0√
α

. Calculations are quite similar in this case. Denoting now

ζ =
√

(1− θ)2 + 4θ2(λ+ ω2
0),

we need to solve

1− ζ =
2θ

(
√
ω2

0 + 1 + ω0)(1− θ + 2θ
√
ω2

0 + ζ)
.

Therefore,

ζ =
1

2

(
θ − 2θ

√
ω2

0 + 1 +

√(
θ − 2θ

√
ω2

0 + 1
)2

+ 4− 4θ + 8θω0

)
and then

λ = −ω2
0 +

1

16θ2

(
θ − 2θ

√
ω2

0 + 1 +

√
(θ − 2θ

√
ω2

0 + 1)2 + 4− 4θ + 8θω0

)2
−
(1− θ

2θ

)2
.

In this case, depending on the value of ω0 we may have λ > 0 or λ < 0. Figure 4 illustrates the
situation.

Figure 4: Plot of the region of instability λ = λ(θ, ω0) > 0, marked red.

5 Concluding remarks

Remark 5.1 It has been noted with the numerical simulations of Section2, that for small values of
α, instabilities are more visible when θ is small (see Figure 2). The plot of the region of instability
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in Figure 4 confirms this observation. In fact, we notice on this latter Figure that small values of θ
allows large values of ω0 which can be seen as a frequence of oscillations in the transversal direction.

Remark 5.2 We use formula (21) and denote

F (α, θ, λ) = ζ +
4β2

α
(
(1− θ)(1− α) + ζ + η

)
(η + αζ)

− 1.

Solutions of F (α, θ, λ) = 0 determine the eigenvalues λ = λ(α, θ). It is easy to check that

lim
α→∞

F (α, θ, λ) =∞, ∀λ > 0, θ ∈ (0, 1),

however this limit is not uniform. Indeed there exist a θ∗ such that for any θ ∈ (θ∗, 1) we can find a
value α(θ) > 0 such that F (α, θ, λ) = 0 for some λ > 0. We illustrate this in Figure 5.

Figure 5: (Left) Plot of the level set F (α, θ, λ) = 0. (Right) Plot of the implicitly defined curve θ 7→ α(θ)
where F (α(θ), θ, 0) = 0. It suggests that the instability appears for some θ∗ ∈ (0.7, 0.8) and the corresponding
values of α are larger than 1. This is confirmed by a more refined analysis of the picture on the right.

The fact that the traveling wave in one dimension is unstable for large values of the Lewis number is
somewhat of a surprise and raises a more general question of stability or instability for the problems
with KPP type or ignition type nonlinearities. Note that, in both cases, we are dealing with a prey-
predator system and in particular the linear problem is non-cooperative. This means that methods
based on maximum principle do not work and the known results (see for instance [19])) do not apply.
The special feature of our problem is the monotonicity of the traveling fronts. With this property,
one may expect that they should be stable, as it happens for scalar problems and is seen easily there
from the Krein-Rutman theorem. For systems of equations, there is no general theory that one could
apply but monotone waves are stable in some cases (see for instance [4]). Our example shows that the
question is in fact more subtle.
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Remark 5.3 Writing (20) in the form

0 = −1 + β(r+ − r−) +
1

α(µ+ − r−)(µ+ − s−)
,

we obtain a dispersion relation λ = λ(ω) for any fixed α and θ. Pictures in Figure 6, confirm the
intuitively obvious fact that there should always be the most unstable frequency ω∗, that is a maximum
value of λ and this is relevant of Turing instability.

Figure 6: (Left) Plot of the dispersion curve λ(ω) for θ = 0.4 and α = 0.1 (continuous line), α = 0.4 (dotted
line) and α = 1.3 (dashed line). (Right) Plot of the dispersion curve for θ = 0.1 and α = 0.1 (continuous line)
α = 0.2 (dotted line) α = 0.4 (dashed line).

The intention of this note is to shed some light on the mechanism of the onset of instability of
traveling waves in higher dimension, and in particular to get some idea about the shape of the dispersion
curves for more general problems of KPP and ignition type. We chose to study the planar waves for
a simple problem where explicit solutions are available since, unlike for example in the case of some
activator-inhibitor systems (see [18, 17, 6]), there does not seem to exist a well established methodology
to deal with this issue. Indeed, the usual approach, involving some limit procedure, is based on the fact
that of one of the components of the system becomes more concentrated in space, for example it has
a form of a spike or undergoes a sharp transition, as the small parameter tends to 0. This leads in
many cases to a limiting problem for which the spectrum can be completely understood. However, for
the KPP or ignition type nonlinearities it is not immediately clear what should the limiting problem
be. We believe that the instability of the planar fronts described here is a robust phenomenon with
respect to change of the nonlinearities.
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