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Dynamic crack propagation under mixed-mode
loading – Comparison between experiments and

X-FEM simulations

D. Grégoire, H. Maigre, J. Réthoré, A. Combescure *

Laboratory of Mechanics and Solid Structures, LaMCoS, INSA-LYON, CNRS UMR5259, F69621 Villeurbanne, France

The objective of this paper is to describe a simple dynamic crack propagation experiment which reproduces two phe-
nomena: mixed-mode propagation and crack stop and restart. This experiment is explained and interpreted using X-FEM
simulations. We show that a simple fracture theory which consists in using a dynamic crack initiation toughness, a crack
orientation along the maximum principal stress and a simple equation for the calculation of the crack speed is sufficient to
explain what is observed experimentally.

Keywords: Dynamic crack propagation; Elastic; X-FEM; Experiments; Split Hopkinson Pressure Bar; PMMA; Mixed-mode loading

1. Introduction

The objective of this paper is to propose a methodology for assessing dynamic crack propagation laws
under mixed-mode loading. Unlike quasi-static cases where the loading and the crack position can be easily
established, in dynamic impact cases the loading conditions, the variation of the propagation parameters and
the exact position of the crack are difficult to control. Thus, the determination of relevant constitutive crack
propagation laws from dynamic crack propagation experiments is a rather challenging operation. Therefore, if
one wants to evaluate dynamic crack propagation laws under mixed loading, one must perform numerical sim-
ulations and assess the quality of the laws by comparing numerical simulations using these laws with exper-
imental results. This process requires that the quality of both the numerical simulations and the experiments
be perfectly controlled. The interest of the tests presented in this paper is that they provide a well-controlled
experimental basis against which numerical simulations can be tested.

The eXtended Finite Element Method (X-FEM) (Moës et al., 1999; Dolbow et al., 2000; Belytschko et al.,
2001; Réthoré et al., 2005) is chosen for the simulations because the cracks are not described explicitly by the
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mesh. Furthermore, the implicit description of a crack geometry is compatible with any crack path, even if this
path is a priori unknown. This is typically the case of mixed-mode loading in dynamics: the evolution of the
crack orientation during the propagation is unpredictable. It was also proven and verified numerically by
Réthoré et al. (2005) that contrary to any other existing numerical method the X-FEM does not introduce
or dissipate numerical energy during crack propagation. The objectives of this paper are, first, to check the
applicability of a well-known model and, second, to identify the dynamic fracture parameters of this model
for polymethylmethacrylate (PMMA) through comparison of simulations with experimental test results.

PMMA is chosen for the dynamic crack propagation experiments because this classical material has brittle
fracture behavior under dynamic loading. In these tests, various means if improving the reliability of the sim-
ulations are studied. The propagation laws depend upon three parameters: an initiation parameter which con-
trols the propagation, a mixity parameter which enables the prediction of the direction of the propagation,
and a velocity equation which gives the velocity of the crack tip. These laws are used for the interpretation
of the experimental tests.

Besides the propagation history, the loading conditions are also measured. Direct measurements of stress
intensity factors are not performed. Only purely mechanical quantities are measured and the identification of
the fracture parameters of the material is achieved by fitting the numerical simulations to the experimental
results.

2. Dynamic crack propagation laws

The crack propagation laws are chosen according to the global macroscopic concept of stress intensity
factor (Irwin, 1957) extended to elastodynamics within the framework of (Bui, 1978; Freund, 1990).

Since PMMA is brittle, the fracture phenomenon is assumed to be governed by the intensity of the hoop
stress rhh near the crack tip, which is evaluated using a hoop stress intensity factor khh

khh ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
rhh ð1Þ

where (r,h) are the local polar coordinates of the crack tip.
The maximum hoop stress intensity factor and the corresponding local polar angle are denoted K* and h*

K� ¼ max
h2��p;p½

khh ¼ kh�h� ð2Þ

No propagation initiates as long as the maximum hoop stress intensity factor remains less than a critical value,
the dynamic crack initiation toughness, K1d. As soon as this threshold is reached, the direction of the maxi-
mum hoop stress defines the critical direction hc of the incipient propagation (Maigre and Rittel, 1993). The
crack initiation criterion is

K� < K1d ðno initiationÞ
K� ¼ K1d ; h� ¼ hc ðinitiationÞ

ð3Þ

The dynamic crack initiation toughness is a material property and must be evaluated from experiments. It may
depend on the temperature and the loading rate. Since experiments are made at room temperature and at con-
stant loading rate (Table 2), their influences are considered the same for every experiment and the possible
dependencies are not studied.

Following crack initiation, a different criterion must be determined in order to take the crack growth pro-
cess into account. During the dynamic growth of a crack, the instantaneous maximum hoop stress intensity
factor stays equal to the dynamic crack growth toughness K1D, which can now depend on the velocity _a of
the crack tip

K�ðt; _aÞP K1d ) K�ðt; _aÞ ¼ K1Dð _aÞ ðpropagationÞ ð4Þ
Again, possible dependencies on the loading rate will not be considered whereas the dependencies on the tem-
perature are implicitly studied with the dependencies on the crack tip velocity and the dynamic crack growth
toughness must be characterized through experiments. It is difficult to obtain a relevant estimate of K1D exper-
imentally, but this quantity is necessary in numerical simulations in order to calculate the velocity of the
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crack tip. Therefore, one uses a modified version of the expression given in Kanninen and Popelar (1985), in
which the quasi-static toughness is replaced by the dynamic crack initiation toughness and the dynamic crack
growth toughness is assumed to be

K1Dð _aÞ ¼
K1d

1� _a
cR

� � ð5Þ

where cR, the velocity of the Rayleigh waves, is the theoretical maximum velocity of a crack in a homogeneous
medium.

Some authors (as in Ravi-Chandar, 2004) introduce an additional dynamic crack arrest toughness in order
to account for the observation that the dynamic crack growth toughness does not tend toward the dynamic
crack initiation toughness when the crack tip comes to a stop. This additional parameter is not introduced
here. The same critical value is chosen for crack initiation and crack arrest.

3. Experiments

3.1. Descriptions of the test rig and the specimen

The test rig is a Split Hopkinson Pressure Bar (SHPB) test developed by Kolsky (1949) and primarily used
for the measurement of a material dynamic behavior. It is schematized in Fig. 1.

The test specimen is made of PMMA. The mechanical properties of this transparent, brittle material are
summarized in Table 1. The bars must be chosen in order to guarantee a good waves transmission on their
interfaces with the specimen and a measurable and elastic strain gage response. In our case, nylon is used
for the bars because its mechanical properties are similar to those of PMMA. The material properties of nylon
are summarized in Table 1.

There is no standard for dynamic fracture tests; therefore, we chose a simple, but distinctive, geometry
designed to obtain separate values of the fracture criteria from the experiment. The specimen is shown in
Fig. 2 and its dimensions are given in Fig. 3.

52.5 cm

151cm 39.5 cm

191.5 cm

Input bar

φ 4 cm

Striker bar Output bar

113.3 cm 305cm

Specimen

Fig. 1. Characteristics of the Split Hopkinson Pressure Bar.

Table 1

Mechanical properties of specimens and bars

Mechanical properties Symbols (Units) PMMA nylon

Density q (kg m�3) 1180 1145

Static Young’s modulus ES (GPa) 3.3 3.5

Dynamic Young’s modulus ED (GPa) 4.25 3.6

Poisson’s ratio m (–) 0.42 0.41

Lamé’s constants k (GPa) 7.8 5.8

l (GPa) 1.5 1.3

Velocity of compressive waves cP (m s�1) 3032 2704

Velocity of shear waves cS (m s�1) 1126 1056

Velocity of one-dimensional elastic waves cL (m s�1) 1898 1773

Velocity of Rayleigh waves cR (m s�1) 1064 996

One-dimensional impedance
ffiffiffiffiffiffi
qE

p
(106 kg m�2 s�1) 2.25 2.03

(Karimzada and Maigre, 2000).
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In order to obtain fracture opening modes at the crack tip, the compressive waves must be converted into
tensile waves. Therefore, we used a rectangular specimen with a circular hole to provide direct wave conver-
sion. This configuration produces no friction at the specimen–bar interfaces, which would have generated per-
turbations in the gage signals upon impact of the specimen by a wedge (Karimzada and Maigre, 2000). In
addition, crack arrest is provided by a circular hole as suggested by Karimzada and Maigre (2000): this inter-
esting feature enables one to validate an arrest criterion.

In order to initiate the crack, an initial notch is machined at the border of the hole. Mixed-mode loading
and crack orientation effects during the propagation are included by moving the initial notch upwards by a
constant length Dh = 7.5 mm from the specimen axis of symmetry (Fig. 3).

The geometry was chosen to ensure a useful propagation zone large enough to produce interesting effects.
In the mean time, the initial notch has to be short enough so that the crack is not subjected to boundary effects
during most of its propagation (Fig. 2).

3.2. Measurements

The use of SHPB is attractive in our case because it provides both an accurate measurement of the applied
loading and the global response of the test specimen during the transient experiment, thus enabling good con-
trol of the quality of the experimental tests. Reliable experimental data is necessary to ensure that the simu-
lations are physically meaningful. This is a key to success in comparing numerical simulations with
experiments.

Fig. 4 shows a sketch of the test rig. One can identify:

• the striker bar, input bar and output bar,
• the test specimen between the input and output bars,
• 3 strain gages connected to their amplifiers,
• 4 cameras Proxitronic HF-1 (640 · 288 pixels, 256 grey levels),

Specimen
Striker Input bar Output bar

Initial notch

Zone subject to boundary effects

Useful crack propagation zone

Fig. 2. Specimen with a hole.

Fig. 3. Specimen geometry.

4



• 1 standard flash unit,
• 1 delay line,
• 1 data acquisition adapter (4 channels, 1 MHz),
• 1 optical sensor connected to an oscilloscope,
• 2 computers.

One of our objectives is to obtain the history of the position of the crack tip. Since PMMA is transparent,
optical tools are used. Four cameras with a very short exposure time (1 ls), connected through a delay line,
provide four pictures (one picture per camera). The delay line time step adjustment is one microsecond. The
results are checked to be highly reproducible. Therefore, by carrying out the same tests, repetitively, we are
able to obtain precise paths and detailed histories. Different means of stress intensity factors measurement,
like optical tools, are difficult to implement in this test rig because of lack of space. Therefore, only purely
mechanical quantities are collected and stress intensity factors will be estimated through numerical
simulations.

The loading is adjusted via several experimental parameters: the striker bar velocity, length and shape
enabled us to control the amplitude, the duration and the shape of the loading.

Five experimental tests are performed by shifting the shooting time with the same specimen geometry under
the experimental conditions described in Table 2. Unprocessed gage signals are shown in Fig. 5.

To limit wave superposition, the gages are generally located near the middle of the bars (Fig. 1). Conse-
quently, the waves have to be shifted to the specimen–bar interfaces to obtain forces and velocities at the spec-
imen faces (Fig. 6). Wave dispersion and geometry effects are taken into account in the shifting as in (Zhao and
Gary, 1995) in order to obtain more accurate measurements.

3.3. Experimental results

The graphs shown in Fig. 6 confirm the reproducibility of the experimental tests. Since the duration of the
propagation in a typical experiment is roughly 600 ls, the input and output velocities are drawn from 0 to
600 ls, as used for the numerical simulations.

Input bar

Gage amplier

Optical sensor

Oscilloscope

Striker bar

Flash unit

(Triggering)
Strain gage 1
(Input data)

Strain gage 3Strain gage 2
(Output data)

Trigger Delay line

Trigger

Data acquisition adapter

Gage amplier Gage amplier

4 channels - 1 MHz

Specimen Output bar

Cameras
(µs )

Fig. 4. Experimental test rig.

Table 2

Output velocities of the striker bar for an air gun pressure of 1.2 bar

Test a b c d e

Velocity (m s�1) 12.6 12.5 12.4 12.4 12.4

Uncertainty: 0.08 m s�1.
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The input and output forces at the interfaces are fully represented in Fig. 6 to show that the loading agrees
with the theoretical results of wave propagation through a cylindrical bar. The whole loading duration is
approximately equal to twice the duration of the wave propagation through the length of the striker bar.

The crack evolutions for the five specimens are identical. Fig. 7 shows a post-mortem picture of a crack
path. A crack arrest can be identified by the change in propagation direction. It has been checked that every
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Fig. 5. Unprocessed gage signals.
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Fig. 6. Mechanical quantities at the specimen–bar interfaces.

Fig. 7. Post-mortem view of a crack path.
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crack arrest in every post-mortem specimen appears in the same location. During the propagation, the crack
turns towards the axis of symmetry (maximum stress zone).

The time when compressive waves reach the left-hand face of the specimen is chosen as the reference time.
Fig. 8 shows a sequence of pictures of the cracked specimen taken by the cameras at the beginning of the prop-
agation and before the crack arrest (t = 216 ls, t = 226 ls and t = 246 ls). There are only three pictures
because one of the four cameras does not work sometimes. On each specimen, two marks are machined defin-
ing a reference length on each picture. In this way, a simple commercial software is needed to process the pic-
tures and crack lengths are obtained by a rule of three.

The experimental crack length histories are collected in Fig. 9.
Their consistency inspires confidence in the quality and repeatability of the experiments.
Following the initiation at t � 200 ls, three different propagation phases can be easily observed:

• first, a propagation phase at constant horizontal velocity (VX � 211 m s�1), which corresponds to a max-
imum of the curvilinear velocity of the crack tip _a � 260 m s�1,

• then, the crack stops for 50 ls,
• a second propagation stage at constant horizontal velocity 157 m/s ( _a ¼ 160 m=s) occurs until the final stop
(t � 500 ls).

Graphs 6 and 9 reveal that initiation (t � 200 ls) occurs during a highly transient phase because the delay
between the incident and transmitted signals is of the order of 100 ls. Therefore, the whole propagation

Fig. 8. Pictures of Test d (time: 216, 226 and 246 ls).

7



(initiation, arrest and restart until the final stop) is subject to transient stress waves evolutions in the specimen.
These conditions provide a challenging test of the reliability of the numerical simulations.

Since there is a good impedance match between the output bar and the specimen, the crack arrest is cer-
tainly not due to wave reflection on the output interface. The study of different hole geometries (Karimzada
and Maigre, 2000) indicates the fundamental influence of this parameter during the wave propagation and
crack arrests.

4. Numerical simulations

4.1. The X-FEM method

In order to capture the discontinuity and singularity of the strain field at the crack tip, we use an enrichment
to the classical finite element approximation defined through the partition of unity method developed in (Bab-
uska and Melenk, 1997). This method, called X-FEM, was first developed for quasi-static analysis in (Moës
et al., 1999). Here, the method is used for dynamic crack propagation as in (Réthoré et al., 2005).

Let us consider the two-dimensional problem of a homogeneous, elastic cracked body X in plane strain and
assume that the only change in the material is due to crack propagation. Thus, the problem can be expressed in
the framework of elastodynamics with small strains by adding an unknown a(t), the position of the crack tip.

A classical finite element approximation of the displacement fields eU is

eU ðtÞ ¼
X

i2N
N iðxÞuiðtÞ ð6Þ

where N is the set of the nodes which support the shape functions fN igi2N and ui(t) is the vector of the nodal
degrees of freedom at time t.

The crack is represented by a set of straight segments. For the description of the crack to be independent of
the mesh, discontinuous enrichments are added to the set of the nodes which have their support entirely cut by
the crack, while the set of the nodes which contain the crack tip in their support is enriched by a singular set of
functions, as shown in Fig. 10. When the crack propagates this set is modified as follows: all ancient enrich-
ments are kept. New enrichments corresponding to the new position of the crack are simply added to the
old set.
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The approximation of the displacement fields becomes

eU ðtÞ ¼
X

i2N
N iðxÞuiðtÞ þ

X

i2N e
cutðtÞ

N iðxÞHðxÞaei ðtÞ þ
X

i2N e
tipðtÞ

X

j2s1;4t
N iðxÞBe

jb
e
ijðtÞ ð7Þ

where, at time t, N e
cutðtÞ is the set of the nodes which have had their support entirely cut by the crack, aei ðtÞ are

the nodal degrees of freedom corresponding to the step function H, N e
tipðtÞ is the set of the nodes which have

contained the crack tip in their support, beijðtÞ are the nodal degrees of freedom corresponding to the functions
Be
j which span the near-tip asymptotic fields.
According to Moës et al. (1999):

HðxÞ ¼
þ1 if x is above the crack

�1 if x is below the crack

(
ð8Þ

fBe
jðr; hÞgj2s1;4t ¼

ffiffi
r

p
cos

h

2
;
ffiffi
r

p
cos

h

2
sin h;

ffiffi
r

p
sin

h

2
;
ffiffi
r

p
sin

h

2
sin h

� �
ð9Þ

where (r,h) are the local polar coordinates of the crack tip.
The displacements, velocities and accelerations are discretized through Eq. (7) and the mass and stiff-

ness matrices are calculated using ad hoc integration techniques for X-FEM elements (Moës et al.,
1999).

The discrete equation at time tn is

Mn
€U n þ KnU n ¼ F n ð10Þ

where Mn and Kn are the mass and stiffness matrices at time tn and Fn is the vector of external forces at time tn.

4.2. Discretized energy conservation in the dynamic crack propagation case

During propagation, the new equilibrium at time tn+1 = tn + dt must be calculated by projecting the fields
calculated at time tn with the geometry at time tn onto the new geometry at time tn+1.

It was proved by Réthoré et al. (2005) that if all singular enrichments (Fig. 11) are kept and the new enrich-
ments are initialized to zero (Eq. (11)), using a Newmark scheme, stability and exact conservation of the dis-
cretized energy are guaranteed. Hence, if X i

j is a field (displacement, velocity or acceleration) defined at time tj
with the configuration at time ti, there are two basic steps to be performed:

ae
i (t)

u i(t)

crack’s path
ui(t) : node with standard degrees of freedom

be
i (t)

ae
i (t) : node with discontinuous enrichment at time t

be
i (t) : node with new singular enrichment at time t

crack’s tip at time t

Fig. 10. Enrichment to the classical finite element approximation.
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X n
n �!projection

X nþ1
n �!time stepping

X nþ1
nþ1

With : ½X nþ1
n � ¼

X n
n

0

.

.

.

0

2
66664

3
77775

old degrees of freedomg

new degrees of freedom

with the crack growth

9
>=
>;

ð11Þ

The discretized dynamic Eqs. (10) and (14) are chosen such that they can be integrated numerically using New-
mark’s implicit mean acceleration scheme.

4.3. Boundary conditions

The numerical simulations are carried out using the input velocity collected from the experiments (Fig. 6) as
a boundary condition at the input bar interface (Fig. 13).

The use of the experimental output velocity is difficult because the measurements are intrinsically imprecise.
To achieve the same conditions during simulations and experiments would require perfect synchronization
between input and output loading. Thus, one option would be to mesh the output bar entirely (Fig. 12): this
would prevent the simulation of the specimen response from being affected by reflected waves, but at the
expense of long calculation times.

Instead, we chose to model the output bar as in one-dimensional propagation. It leads the use of a simple
impedance condition (Fig. 13).

At each interface node of the output bar interface, the stress and velocity are assumed to be related by

r:n ¼ �zðv:nÞn on oXInt

z ¼ qbarcbarL

�
ð12Þ

where r and v are the stress and velocity on the specimen face, z is the impedance, oXInt the interface and n a
normal vector, qbar and cbarL are the density and the velocity of 1-D elastic waves in the bar.

2385 four-node elements1134 four-node
elements

Fig. 12. Case of a meshed output bar.

be
i (tn)

be
i (tn+1 )

ae
i (tn+1 )

u i(tn+1 )

crack’s path
ui(tn+1 ) : node with standard degrees of freedom

ae
i (tn+1 ) : node with discontinuous enrichment at time tn+1

be
i (tn) : node with new singular enrichment at time tn

be
i (tn+1 ) : node with new singular enrichment at time tn+1

crack’s tip at time tn+1

Fig. 11. Updating of the enrichment during propagation.
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Then, the impedance matrix is calculated by integrating Condition (12) at the interface

ðZÞij ¼
Z

oXInt

zððN i:nÞnÞ:N j dl ð13Þ

where Z is the impedance matrix, Ni and Nj are the shape functions of the displacement field (Eq. (7)).
Hence, the discrete form of Eq. (10) becomes

Mn
€U n þ KnU n ¼ F n � Zn

_U n ð14Þ

where Mn, Kn and Zn are the mass, stiffness and impedance matrices at time tn and Fn is the vector of external
forces at time tn.

The validity of this impedance condition was checked by numerical comparison with the calculation of a
meshed output bar. The output velocity will be used further on to check the consistency between the exper-
imental and numerical results (Fig. 21).

4.4. Discussion of the material properties of PMMA

PMMA is a viscoelastic material. Therefore, the loading rate affects its behavior and certainly has an influ-
ence on crack propagation. In compression, viscoelasticity tends to reduce the value of the dynamic Young’s
modulus as shown in Saad-Gouider et al. (2006). The same phenomenon appears in traction but in different
proportion.

Our specimen is globally in compression, but the circular hole creates traction zones, which makes it dif-
ficult to characterize the mean effects of viscoelasticity and incorporate them into the model.

Finally, we retain elastic behavior, but choose a uniform dynamic Young’s modulus taking into account the
viscoelasticity of the material globally. Since the experimental tests provided input and output data, the global
dynamic Young’s modulus is chosen in order to have the correct delay between incident and transmitted sig-
nals in the simulations. A secant rather than dynamic Young’s modulus is adopted.

The optimum value Esecant
D ¼ 2:4 GPa is obtained and the resulting global mechanical properties of PMMA

are shown in Table 3. These figures agree with the overall parameters of PMMA identified by Saad-Gouider
et al. (2006).

4.5. Calculation of the fracture parameters

4.5.1. Dynamic stress intensity factors

In the vicinity of the crack tip, the dynamic stress intensity factors in Modes I and II are given (see Freund,
1990 for details) by

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  100  200  300  400  500  600

V
e

lo
c
it
y
 (

m
/s

)

Time (µs)

Input velocity

Test d

x

y

σ xx = − z úx

z = ρbar cbar

At each interface node :
v(t)

stress free

Input velocity

⎧
⎨
⎩

Fig. 13. Boundary conditions.

Table 3

The mechanical properties of PMMA chosen for the analysis

q 1180 kg m�3 k 4.4 GPa cS 846 m s�1

Esecant
D 2.4 GPa l 0.8 GPa cL 1426 m s�1

m 0.42 cP 2279 m s�1 cR 800 m s�1
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K
dyn
I ¼ lim

r!0

ffiffiffiffiffiffiffi
2pr

p
r22ðh ¼ 0Þ and K

dyn
II ¼ lim

r!0

ffiffiffiffiffiffiffi
2pr

p
r12ðh ¼ 0Þ ð15Þ

where (r,h) are the local coordinates of the crack tip, ðKdyn
I ;Kdyn

II Þ are the dynamic stress intensity factors in
Modes I and II.

A domain-independent integral Iint (Réthoré et al., 2005; Réthoré, 2005) is used to calculate dynamic stress
intensity factors. The mixed-mode separation is obtained via a two-field problem consisting of the actual fields
(u,r) and the auxiliary fields (uaux,raux). Then, the Lagrangian conservation law for a virtual crack extension
field q leads to the following expression of Iint (see Réthoré, 2005):

I int ¼�
Z

A

qk;j½ðraux
pq up;q � q _up _u

aux
p Þdkj � ðraux

ij ui;k þ riju
aux
i;k Þ�dS

þ 2

Z

A

qk½ðraux
ij;j ui;k þ q€uiu

aux
i;k Þ þ ðq _uauxi _ui;k þ q _ui _u

aux
i;k Þ�dS

ð16Þ

where A is the area delimited by any contour oA enclosing the crack tip, q is pyramidal and compatible with
the crack (tangent to the crack faces, with kqk = 1 at the tip and kqk = 0 on oA).

Then, a dynamic energy analysis provides an equivalent to Irwin’s relation in plane strain

I int ¼ 2ð1� m2Þ
E

ð f1ð _aÞKdyn
I Kaux

I þ f2ð _aÞKdyn
II Kaux

II Þ ð17Þ

where (Kaux
I ;Kaux

II ) are the stress intensity factors of the auxiliary fields, fi are universal functions of the velocity
of the crack tip

f1ð _aÞ ¼
4b1ð1� b2

2Þ
ðjþ 1ÞDð _aÞ and f 2ð _aÞ ¼

4b2ð1� b2
2Þ

ðjþ 1ÞDð _aÞ ;

bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� _a

ci

� �2
s

and Dð _aÞ ¼ 4b1b2 � ð1þ b2
2Þ

2
;

(c1,c2) are the velocities of the compressive and shear waves.
Eqs. (16) and (17) provide a value of the stress intensity factors Kdyn

I and K
dyn
II by choosing the Westerg-

aard’s exact asymptotic fields for auxiliary fields uaux. (Kdyn
I is evaluated through ðKaux

I ;Kaux
II Þ ¼ ð1; 0Þ and

K
dyn
II through ðKaux

I ;Kaux
II Þ ¼ ð0; 1Þ).

In order to evaluate the stress intensity factors numerically, this interaction integral is calculated using a set
of additional integration cells rich in Gauss points, called the J-domain (Gosz et al., 1998). This J-domain is
independent of the mesh of the body and follows the crack tip and its orientation during the crack growth.

4.5.2. The crack growth criteria

A preferential direction h*, defined as the direction of the maximum hoop stress as developed in Part 1 from
Maigre and Rittel (1993), is assumed for the propagation of the crack. Thus, the preferential direction expres-
sion is obtain by solving

orhh

oh
ðh�Þ ¼ 0 ð18Þ

where (r,h) are the local polar coordinates and rhh and rrh are the local components of the Westergaard
asymptotic stress tensor.

In the initiation case ( _a ¼ 0), it leads to the equation

K
dyn
I tan

h�

2

� �
þ K

dyn
II 1� 2 tan2 h�

2

� ��
¼ 0

�
ð19Þ

and the analytical expression of this preferential direction is
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h� ¼ 2 arctan
1

4

K
dyn
I

K
dyn
II

� signðKdyn
II Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8þ K
dyn
I

K
dyn
II

 !2
vuut

2
64

3
75

0
B@

1
CA ð20Þ

Then, the intensity of the loading near the crack tip is calculated using the maximum hoop stress intensity
factor K* corresponding to kh�h� , the hoop stress intensity factor in the preferential direction, Eq. (2)

K� ¼ cos3
h�

2
< K

dyn
I > � 3

2
cos

h�

2
sin h�Kdyn

II ð21Þ

where < K
dyn
I >, the positive part of Kdyn

I , avoids any closure effect. Crack initiation occurs when this equiv-
alent stress intensity factor K* reaches the dynamic crack initiation toughness K1d.

Once the crack has been initiated, the propagating crack direction depends on the velocity of the crack tip
(Eq. (4)) and there is no analytical solution of the nonlinear problem. Since the velocity of the crack tip is
always small compared to that of Rayleigh waves and since substantial mixity takes place only at the begin-
ning of the propagation, h* and K* are assumed to be given by Eqs. (20) and (21) throughout the propagation.

During the propagation, the velocity of the crack tip adapts itself in such a way that the equivalent stress
intensity factor remains equal to the dynamic crack growth toughness (Eq. (4)). Hence, the velocity of the
crack tip is obtained at each time step by solving Eq. (5)

_a ¼ 1� K1d

K�

� �
� cR ð22Þ

4.5.3. Dynamic crack initiation toughness: simulation with a fixed notch

The previous criteria provided the description of the dynamic propagation of the crack. All that remained
to be found is an evaluation of the dynamic crack initiation toughness K1d. The mixity at initiation is used to
determine this material property through experiments. An initiation angle hc = �37, 5� is measured on a post-
mortem crack path (Fig. 14).

Then, the X-FEM numerical simulation of the dynamic response of the specimen with an initial fixed notch
is performed. The mesh, shown in Fig. 13, consists of 1377 four-node elements with 4 integration points and
the calculation requires 200 time steps with a step size chosen as Dt = 1 ls. Then, the evolutions of the max-
imum hoop stress direction h* and the maximum hoop stress intensity factor K* with time are calculated. The
results are shown in Fig. 15.

The initiation angle (37, 5�) determines the initiation time and the corresponding value of K*, which is pre-
cisely the dynamic crack initiation toughness K1d. For test d, the value of K1d ¼ 1:47 MPa

ffiffiffiffi
m

p
is obtained with

an uncertainty of 0:02 MPa
ffiffiffiffi
m

p
linked to the initiation angle uncertainty and the small gradient of the critical

angle history (Fig. 15).
If the same method is applied to the five specimens, because of an initiation angle dispersion of 5�, the

dynamic crack initiation toughness dispersion is 0:4 MPa
ffiffiffiffi
m

p
.

Since simulations are performed with the loading corresponding to the test d, the dynamic crack initiation
toughness value chosen for the subsequent simulations with propagation is 1:47� 0:01 MPa

ffiffiffiffi
m

p
.

Fig. 14. Initiation angle.
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4.6. Simulations with propagation

The value of the dynamic crack initiation toughness K1d obtained above is used for the propagation crite-
rion given by Eq. (22).

Simulations with propagation are performed using the same mesh (Fig. 13) with a total duration of 500 ls
(100 steps with Dt = 5 ls).

Figs. 16 and 17 show, respectively, the comparison of the experimental and numerical results for the crack
path and the history of the X-coordinate of the crack tip, taking into account the propagation of the crack
(K1d ¼ 1:47 MPa

ffiffiffiffi
m

p
).

As shown in Fig. 16, while the crack path is correct in the initiation phase, the results are less satisfactory
during the propagation phase. Moreover, the crack arrest obtained numerically occurs earlier and lasts longer
than in the experiment.
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Thus, the value K1d ¼ 1:47 MPa
ffiffiffiffi
m

p
seems too high for the proper simulation of the crack propagation. A

simple explanation is that the radius of the initial notch tip is larger than that of the propagating crack tip, as
can be observed on a photograph of the propagating crack (Fig. 18). It has been shown by other means in
Saad-Gouider et al. (2006) for PMMA (and also in (Akourri et al., 2000) for metals) that fracture toughness
increases with an increase in notch radius.

Another explanation is that the crack initiation point is intrinsically not on the curve characterizing the
dynamic crack growth criterion: lim _a!0K1Dð _aÞ 6¼ K1d in Eq. (5) as it has been noticed by Ravi-Chandar (2004).

Figs. 19–21 show, respectively, the comparison of the experimental and numerical results for the crack
path, the history of the X-coordinate of the crack tip and the input and output velocities histories obtained
with a lower value of the dynamic crack initiation toughness (K1d ¼ 1:33 MPa

ffiffiffiffi
m

p
).

On Fig. 19, there is a good matching of the crack paths and the crack arrests occurred at the same time and
in the same location on Fig. 20. Thus, this lower value of the dynamic crack initiation toughness allows a
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better representation of the dynamic crack propagation. The propagation is slightly shorter in the experimen-
tal test, but this might be due to boundary effects which are not taken into account in the simulations.

On Fig. 21, oscillations of the numerical output velocity are noticeable. These are due to numerical noise in
the calculations of the velocity and acceleration after propagation. Before the initiation, the numerical output
velocity match the experimental output velocity. It is a check of the validity of the numerical impedance model
of the output bar.

5. Conclusion

This work shows that a good combination of well-controlled experiments and refined X-FEM simulations
enables one to explain the history of brittle dynamic crack propagation and arrest using simple ingredients.

The principal tensile stress model seems sufficient to explain the direction of the crack propagation, and the
crack velocity seems to verify the set of equations proposed by Kanninen and Popelar (1985).
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Figs. 17 and 20 seem to indicate the need to distinguish between two different crack growth criterion to get
an excellent prediction: a dynamic crack initiation toughness and a dynamic crack arrest toughness. The
higher value (K1d ¼ 1:47 MPa

ffiffiffiffi
m

p
) seems a valid estimate to represent the initiation phase, whereas the lower

value (K1d ¼ 1:33 MPa
ffiffiffiffi
m

p
) is better to represent the crack propagation and arrest.

Since the numerical model has only one parameter, the choice of the lower value is the best compromise to
compute both the initiation and the propagation phases. If the numerical tool had two parameters (a dynamic
crack initiation toughness and a dynamic crack arrest toughness), the value of the dynamic crack propagation
could be perfectly simulated. Finally, the dynamic crack initiation toughness should be evaluated using the
mixity at initiation as developed in the paper but it is necessary to carry out extra experimental tests in order
to further evaluate the dependences of dynamic crack arrest toughness on temperature and loading rate.
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We are grateful to the Laboratoire de Mécanique des Solides, École Polytechnique, France where the exper-
iments were performed.

This work was sponsored by ANR/CNRS Grant DYNRUPT(JC05_45254).

References

Akourri, O., Louah, M., Kifani, A., Gilgert, G., Pluvinage, G., 2000. The effect of notch radius on fracture toughness jIc. Engineering

Fracture Mechanics 65 (4), 491–505.

Babuska, I., Melenk, J., 1997. The partition of unity method. International Journal for Numerical Methods in Engineering 40, 727–758.
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