Deep Tags: Toward a Quantitative Analysis of Online Pornography

Abstract : The development of the web has increased the diversity of pornographic content, and at the same time the rise of online platforms has initiated a new trend of quantitative research that makes possible the analysis of data on an unpreced- ented scale. This paper explores the application of a quantitative approach to publicly available data collected from pornographic websites. Several analyses are applied to these digital traces with a focus on keywords describing videos and their underlying categorization systems. The analysis of a large network of tags shows that the accumulation of categories does not separate scripts from each other, but instead draws a multitude of significant paths between fuzzy categories. The datasets and tools we describe have been made publicly available for further study.
Type de document :
Article dans une revue
Porn Studies, 2014, 1 (1), pp.80-95. <10.1080/23268743.2014.888214>
Domaine :


https://hal.archives-ouvertes.fr/hal-00937745
Contributeur : Antoine Mazieres <>
Soumis le : lundi 11 août 2014 - 11:25:21
Dernière modification le : mardi 11 octobre 2016 - 15:21:01
Document(s) archivé(s) le : mercredi 26 novembre 2014 - 00:21:02

Fichier

mazieres_pornstudies_2014.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Antoine Mazieres, Mathieu Trachman, Jean-Philippe Cointet, Baptiste Coulmont, Christophe Prieur. Deep Tags: Toward a Quantitative Analysis of Online Pornography. Porn Studies, 2014, 1 (1), pp.80-95. <10.1080/23268743.2014.888214>. <hal-00937745v2>

Exporter

Partager

Métriques

Consultations de
la notice

519

Téléchargements du document

1483