AN IMPROVED APPROXIMATION FOR ASSESSING THE STATISTICAL SIGNIFICANCE OF MOLECULAR SEQUENCE FEATURES

Sabine Mercier, Dominique Cellier, François Charlot

To cite this version:

Sabine Mercier, Dominique Cellier, François Charlot. AN IMPROVED APPROXIMATION FOR ASSESSING THE STATISTICAL SIGNIFICANCE OF MOLECULAR SEQUENCE FEATURES. Journal of Applied Probability, Applied Probability Trust, 2003, 40, pp.427-441. <hal-00937529>

HAL Id: hal-00937529
https://hal.archives-ouvertes.fr/hal-00937529
Submitted on 28 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
AN IMPROVED APPROXIMATION FOR ASSESSING THE
STATISTICAL SIGNIFICANCE OF MOLECULAR SEQUENCE
FEATURES

MERCIER, S.,∗ University of Toulouse II

CELLIER, D., CHARLOT, D.,∗∗ University of Rouen

Abstract

Using random walk theory, we first establish explicitly the exact distribution of the maximal partial sum of a sequence of independent and identically distributed random variables. This result allows us to obtain a new approximation of the distribution of the local score of one sequence. This approximation improves the one given par Karlin et al., which can be deduced from this new formula. We obtain a more accurate asymptotic expression with additional terms. Examples of application are given.

Keywords: statistical significance, sequence analysis, local score, random walks

AMS 2000 Subject Classification: Primary 60G50

Secondary 60J15, 62P10

1. Introduction

Molecular sequence analysis has become an important tool in molecular biology. Determining what is likely or unlikely to occur by chance may help in identifying interesting patterns in sequences. Let $A_1...A_n$ be an observed sequence (DNA, protein, ...) from a finite alphabet (nucleotides or amino acids). Let σ be a scoring function taking values in \mathbb{Z}. Scoring assignments for nucleotides or amino acids may arise from a variety of considerations like biochemical categorization, physical properties, or association with...
secondary structures. The local score of the sequence $A_1...A_n$ according to the scoring scheme σ is defined as follows:

$$H_n = \max_{1 \leq i \leq j \leq n} \left(\sum_{k=i}^{j} \sigma(A_k) \right).$$

H_n corresponds to a segment of the sequence with maximal aggregate score. The local score has been already studied many times using a random model when successive letters of a sequence are generated independently and with an identical distribution, or with a Markov chain model. For surveys of this subject, see [21] and [10]. Arratia and Waterman [3], proved that for sequences of length n, as $n \to +\infty$, there exists a transition phase: when the average score is positive, there is a “linear growth” of the local score in n, $H_n = O(n)$; and when the average score is negative, it is called the logarithmic case, $H_n = O(\ln n)$. See also [22], [15] and [8] for studies of the logarithmic domain. Arratia, Gordon and Waterman [2], studied approximations of the distribution of counts of matches in the best matching segment of specified length when comparing two long sequences of independent and identically distributed (i.i.d.) letters. The key tools are large deviations inequality and the Chen-Stein method of Poisson approximation, [1].

Karlin and Altschul [13] and Karlin and Dembo [14] presented for the first time a result on the distribution of the local score for one sequence when the average score per letter is non positive. That is for a sequence $X = (X_i)_{i \geq 1}$ of independent and identically distributed random variables with $E[X_1] < 0$ and $H_n = \max_{1 \leq i \leq j \leq n} \left(\sum_{k=i}^{j} X_k \right)$, they proved that

$$P[H_n \leq \frac{\ln n}{\lambda} + x] \sim n \exp \left(-K^* \cdot e^{-\lambda x} \right),$$

where λ and K^* depend only on the parameters of the model of the sequence. Karlin et al. [9], generalized formula (1) to gap-less alignment of two sequences.

The work of Karlin et al. [14] stands on two steps: they first established an approximation for the distribution of the maximal partial sum $M = \max_{k \geq 0} (X_1 + ... + X_k)$, using renewal theory and the work of Iglehart [12]. This last approximation is then used to obtain the result (1) on the distribution of the local score H_n. But it is an usual result that the distribution of M is the unique stationary distribution of a Windley
New approximation for the local score distribution

process W defined as follows:

$$W_n = (W_{n-1} + X_n)^+,$$

see for example [5] (Chapter 3), or [11]. This distribution has never been explicitly given and so can’t have been directly used to deduce a result for the distribution of the local score H_n.

In this article, we are interested in theoretical and explicit formula to assess the statistical significance of sequence analysis. Using the random walk theory, we establish (see Proposition 1) the exact distribution of the maximum of the partial sums of a sequence of independent and identically distributed random variables when the average score per letter is non positive. We don’t have found this result in the litterature; maybe it is due to the fact that our particular case (biological sequence analysis, sequences comparison) is not a very interesting problem for the specialists of waiting file. Some works seem to be very similar, see [5] (Chapter 3), or Wald [20], but they focus on stopping time identities or first passage time probability and don’t go further for the distribution of the maximal partial sums. The explicit distribution of M in Proposition 1, allows us to obtain a more precised approximation for the distribution of the local score of one sequence. This result improves the one given par Karlin et al., [13], [14]: we obtain additional terms which give us a more accurate asymptotic expression.

Daudin and Mercier [19], give a theoretical method to calculate directly the exact distribution of the local score H_n of an i.i.d. sequence in linear or logarithmic domain: using Markov chain theory, the distribution of H_n is given by a power of a matrix. This work does not stand on the study of the partial sum and is independent of the sign of $E[X_1]$. The method is simple and largely usable but does not give the explicit formula of the distribution. It is a very practical method to obtain the statistical significance of local score of short sequences, but the computation for very long sequences can become more fastidious. This work must be put together in a complementary way with the asymptotic result of this article to study the statistical problem of sequence analysis for both long or short sequences.
This article is organized as follows. Section 2 deals with the distribution of the maximum partial sums and an approximation of the distribution of the local score. These results are proved in Section 3. Several examples are developed in Section 4 for scoring functions with non positive drift (see (2)). We give a conclusion in Section 5.

2. Notations and results

The following notations will be used. Let $X = (X_i)_{i \in \mathbb{N}}$ be a sequence of independent and identically distributed random variables from the alphabet $A = \{+u, \ldots, -v\}$.

Let $p_i = P[X_0 = i]$ for $i = 0, 1, \ldots, u$, and $q_j = P[X_0 = -j]$ for $j = 1, \ldots, v$, with $\sum_{i=0}^{u} p_i + \sum_{j=1}^{v} q_j = 1$. The sequence X corresponds to the score sequence: X_i modelizes $\sigma(A_i)$. We suppose

$$E[X_0] = \sum_{i=1}^{u} i \cdot p_i - \sum_{j=1}^{v} j \cdot q_j < 0, \quad (2)$$

so we are in the logarithmic domain. For all $k \in \mathbb{N}^*$, we denote $S_k = \sum_{i=1}^{k} X_i$ the partial sums associated to the sequence X and we set $S_0 = 0$. Let $M = \sup_{k \geq 0} S_k$ be the maximal partial sum.

For a real x, $\lfloor x \rfloor = \max\{k \in \mathbb{Z} : k \leq x\}$ will denote the integer part of x.

For part of our work, we are going to adopt the same blueprint than Karlin et al.; that is, in order to get results on the local score distribution, we are first going to work on the distribution of M.

Let P be the polynomial

$$P(x) = \sum_{i=1}^{u} p_i \cdot x^{u-i} + (p_0 - 1) \cdot x^u + \sum_{j=1}^{v} q_j \cdot x^{u+j}, \quad (3)$$

of degree $u + v$. We have $P(x) = x^u \cdot (E[x^{-X_0} - 1])$.

Proposition 1. (Distribution for the maximal partial sums.)

1. The sum of multiplicities of the roots with modulus strictly smaller than 1 is equal to u, and equal to v for the ones with modulus equal or more than 1.
New approximation for the local score distribution

2. The polynomial P defined in (3) has only two real positive roots that are of simple multiplicity: 1 and R with $0 < R < 1$. For any other root R_i of P such that $|R_i| < 1$, we have $|R_i| < R$.

3. The probability of M is as follows

$$\gamma_k = P[M = k] = \sum_i \delta_i \cdot R_i^k, \quad (4)$$

with R_i the real roots and C_j the complex roots of P with modulus smaller than 1.

Letting $p = P[X_0 \geq 0]$, the (γ_i) (and the (δ_i), $\delta_{R_j}, \delta_{I_j}$ implicitly) are computed with the following linear equations systems:

$$\gamma_k = \sum_{j=1}^v (q_j \cdot \gamma_{k+j}) + \sum_{i=0}^k (p_i \cdot \gamma_{k-i}) \quad (1 \leq k \leq u - 1)$$

and

$$\sum_{k \geq 0} \gamma_k = 1.$$

The method we use to prove this result is also totally different from the way Karlin et al. established their approximation on the distribution of M. Our method stands on Markov chains and random walk theory and brings additional terms that allow us to confirm their approximation, see [14] and also [16]. We then apply our result to the distribution of the local score. Let us define T_1 as the stopping time of the first non positive partial sum. We denote by $S^- = S_{T_1}$ the first non positive partial sum and $\mu = E[T_1]$. Wald’s identity gives us $\mu = E[S^-]/E[X_0]$. The negative drift of X_i, (cf (2)) assures that μ is finite.

Theorem 2.1. (New approximation for local score distribution.) Let

$$H_n = \max_{1 \leq i \leq j \leq n} \left(\sum_{k=i}^j X_k \right).$$

We have the following asymptotic distribution

$$P\left[H_n \leq \frac{\ln n}{\lambda} + x \right] \overset{n \rightarrow +\infty}{\sim} \left[1 - \sum_i \Delta_i^{(a)} \frac{K_i \cdot \rho_i x}{n^{\Gamma_i}} \right]^{\frac{n+1}{\lambda}}, \quad (5)$$

with

$$\lambda = \ln(1/R), \rho_i = |R_i|, \Gamma_i = \ln(\rho_i)/\ln(R),$$
\[\Delta_n^{(i)} = (-1)^{a_n(x)} \text{ for } R_i \neq R \text{ and } 1 \text{ for } R, \]
\[a_n(x) = \left\lfloor \frac{\ln n}{\lambda} + x \right\rfloor, \]
\[K_i = \frac{\delta_i \cdot R_i}{(1 - R_i)} \cdot (1 - E[R_i^{-S^+}]), \]
\[R_i \text{ and } \delta_i \text{ being defined in Proposition 1.} \]

The term in the sum corresponding to the root \(R \) (see Proposition 1 Point 2) is the main term due to the fact that \(|R| \) is the greatest modulus smaller than 1 among the roots of \(P \). Considering only this root corresponds to the result of Karlin et al., and we have \(\lambda = \ln(1/R) \). This will be shown in Section 5.

3. Proofs

3.1. Proposition

3.1.1. Point 1 of Proposition 1 Point 1 can be deduced from [5]. As it is written in [5], Wald [20] has worked on the problem of computing the first passage time probability of a random walk. He suggested an approach using the following martingale \(\hat{f}(x) = E[X^n] \). We have: \(P(x) = x^n \cdot (\hat{f}(1/x) - 1) \).

3.1.2. Point 2 of Proposition 1 Let \(f \) be the following function defined on \(\mathbb{R}^+ \setminus \{0\} \) by:
\[f(x) = E[x^{-X_0}]. \]
We have the following equivalence: \(x \) is a root of \(P \Leftrightarrow x \) is solution of \(f(x) = 1 \).

The function \(f \) is strictly convex. We also have \(f(1) = 1, f'(1) = -E[X_0] > 0 \) and \(\lim_{x \to 0} f(x) = +\infty \). So there exists a unique root \(R \) in \(]0, 1[\).

3.1.3. Point 3 of Proposition 1 As we have already said in the introduction, it is an usual result that the distribution of \(M \) is the unique stationary distribution of the Markov chain \(W \), a Windley process, defined as follows
\[W_n = (W_{n-1} + X_n)^+. \]

See for example [6], [4] and [5].

The equations given in Proposition 1 come from the translation of this result. Let \(\gamma = (\gamma_k)_{k \in \mathbb{N}} \) be the distribution of \(M \) and \(\pi = (\pi_{ij})_{i,j \in \mathbb{N}} \) the probability transition
of W. Due to the distribution of the X_i, and with $p = P[X_0 \geq 0] = \sum_{i=0}^{u} p_i$, the probability π is given by

$$
\pi_{0,0} = P[X_0 \leq 0] = \sum_{i=1}^{v} q_j + p_0,
$$

$$
\pi_{0,i} = p_i \quad (\forall i = 1, \ldots, u),
$$

$$
\pi_{k,0} = \sum_{j=k}^{v} q_j \quad (\forall 1 \leq k \leq v),
$$

$$
\pi_{k,k-j} = q_j \quad (\forall 1 \leq j \leq v) \quad (\forall k > j),
$$

$$
\pi_{k,k+i} = p_i \quad (\forall k \geq 1) \quad (\forall i = 0, \ldots, u),
$$

$$
\pi_{k,l} = 0 \quad \text{else}.
$$

The stationarity of the distribution γ brings us $\gamma \pi = \gamma$, with $\gamma \pi = (\sum_{i \in \mathbb{N}} \gamma_i \pi_{ik})_{k \in \mathbb{N}}$.

Thus, γ satisfies

$$
\gamma_0 = \sum_{k=1}^{v} \left[\left(\sum_{j=k}^{v} q_j \right) \cdot \gamma_k \right] + \left(\sum_{j=1}^{v} q_j + p_0 \right) \cdot \gamma_0, \quad (6)
$$

$$
\gamma_k = \sum_{j=1}^{v} (q_j \cdot \gamma_{k+j}) + \sum_{i=0}^{k} (p_i \cdot \gamma_{k-i}) \quad (1 \leq k \leq u - 1), \quad (7)
$$

$$
\gamma_k = \sum_{j=1}^{v} (q_j \cdot \gamma_{k+j}) + \sum_{i=0}^{u} (p_i \cdot \gamma_{k-i}) \quad (k \geq u). \quad (8)
$$

From the equation (8), we deduce that $(\gamma_k)_{k \in \mathbb{N}}$ is a linear combination of sequences

$$
((R_i^k)_{k \geq 0}),
$$

where R_i are the distinct roots of the polynomial defined in (3), with module less than 1. As γ is a probability, we only consider roots with a modulus smaller than 1.

Point 3. of Proposition 1 is then proved.

The conditions for the δ_i and $(\delta_{R_j}, \delta_{I_j})$ are deduced from the equations (6) and (7) and the fact that $\sum_k \gamma_k = 1$. We can show that (6) is a combination of the $u - 1$ equalities of (7), so we correctly have u equations to solve the u coefficients of the interesting roots of P.

3.2. Proof of Theorem 1

3.2.1. Notations

Using Proposition 1, we are going to establish an approximation for the distribution of the local score H_n. Let T_k be the successive decreasing excursions of the process $\{S_k\}$: $T_0 = 0$ and $T_{k+1} = \inf\{i > T_k : S_i - S_{T_k} < 0\}$. According to the negative drift, the independence and the identical distribution of the X_i, we have

$$(\Sigma_k)_{k \geq 0} = (S_i - S_{T_k}, T_k \leq i < T_{k+1})_{k \geq 0}$$

that are independent and identically distributed. Let’s define as well

$$Q = Q_1 = \max_{0 \leq k < T_1} S_k \quad \text{and} \quad Q_i = \max_{T_i \leq k < T_{i+1}} (S_k - S_{T_i}).$$

The Q_i are i.i.d. random variables. We have

$$\forall m \geq 0 \quad H_{T_m} = \max_{1 \leq i \leq m} Q_i. \quad (10)$$

As in [14], the determination of the distribution of H_{T_m} is obtained in two steps: we first establish the distribution of Q_1 according to the one of M, and then we use the result on Q_1 to get the distribution of H_{T_m}. The second step is easy due to (10) and to the fact that the $(Q_i)_i$ are i.i.d. We have

$$P[H_{T_m} \leq a] = P[\max_{i=1, \ldots, m} Q_i \leq a] = P[\forall i = 1, \ldots, m \quad Q_i \leq a] = (P[Q_1 \leq a])^m. \quad (11)$$

With the notations of Theorem 1 and $S^- = S_{T_1}$ the first non positive partial sum, we have

Lemma 1.

$$P[Q > a] \sim \sum_i K_i R_i^a \quad \text{where} \quad K_i = \frac{\delta_i \cdot R_i}{(1 - R_i)} \cdot (1 - E[R_i^{-S^-}]). \quad (12)$$

Proof

Let $F(y)$ denote the distribution of the maximum $Q = \max_{0 \leq k < T_1} S_k$ and $G(y)$ the one of M: $F(y) = P[Q \leq y]$, $G(y) = P[M \leq y]$. To prove Lemma 1, we employ the
method of Karlin et al. [14]. For $y > 0$, let $\sigma_y = \inf\{k, S_k < 0 \text{ or } S_k > y\}$ be another stopping time. We have

$$1 - G(y) = P[M > y, S_{\sigma_y} > y] + P[M > y, S_{\sigma_y} < 0]$$

$$= P[S_{\sigma_y} > y] + P[M > y, S_{\sigma_y} < 0] .$$

By definition, we have $\{S_{\sigma_y} > y\} = \{Q_1 > y\}$. Thus

$$1 - G(y) = 1 - F(y) + P[M > y, S_{\sigma_y} < 0] ,$$

and

$$P[M > y, S_{\sigma_y} < 0] = \sum_{z \geq 1} P[M > y, S_{\sigma_y} = -z] = \sum_{z \geq 1} P[\max_{k \geq 0} S_k > y, S_{\sigma_y} = -z]$$

$$= \sum_{z \geq 1} P[\max_{k \geq \sigma_y} S_{k} - S_{\sigma_y} > y + z, S_{\sigma_y} = -z]$$

$$= \sum_{z \geq 1} P[\max_{k \geq \sigma_y} \sum_{i=\sigma_y+1}^{k} X_i > y + z, S_{\sigma_y} = -z]$$

$$= \sum_{z \geq 1} P[\max_{k \geq 0} \sum_{i=1}^{k} X_i > y + z] \cdot P[S_{\sigma_y} = -z]$$

$$= \sum_{z \geq 1} P[M > y + z] \cdot P[S_{\sigma_y} = -z]$$

$$= \sum_{z \geq 1} P[M > y + z] \cdot P[S_{\sigma_y} = -z, Q \leq y] .$$

Thus

$$P[Q > y] = P[M > y] - \sum_{z \geq 1} [1 - G(y + z)] \cdot P[S_{\sigma_y} = -z, Q \leq y] . \quad (13)$$

It follows from Proposition 1 that

$$P[M > y] = \sum_{i} \alpha_i R_i^y \text{ with } \alpha_i = \delta_i \cdot R_i/(1 - R_i) .$$

So

$$P[Q > y] = \sum_{i} \alpha_i R_i^y - \sum_{z \geq 1} \left(\sum_{i} \alpha_i R_i^{z+y} \right) P[S_{\sigma_y} = -z, Q \leq y] .$$

Using the following equality

$$P[S_{\sigma_y} = -z, Q \leq y] = P[S^- = -z, Q \leq y] ,$$
we get that
\[
P[Q > y] = \sum_i \alpha_i R_i y \left(1 - \sum_{z \geq 1} R_i z P[S^- = -z, Q \leq y] \right)
= \sum_i \alpha_i R_i y \left(1 - \sum_{z \geq 1} R_i z (P[S^- = -z] - P(S^- = -z, Q > y)) \right)
= \sum_i \alpha_i R_i y (1 - E[R_i^{-S^-}])
+ \sum_i \alpha_i R_i y \left(\sum_{z \geq 1} R_i z P[S^- = -z, Q > y] \right).
\]

(14)

Let
\[
T(y) = \sum_{i=1}^m \alpha_i R_i y \left(\sum_{z \geq 1} R_i z P[S^- = -z, Q > y] \right)
\]
and \(\alpha = \max_{1 \leq i \leq m} |\alpha_i|\). We get
\[
\left| \frac{T(y)}{P[Q > y]} \right| \leq mR_y \cdot \sum_{z \geq 1} R_z = m\alpha \cdot \frac{R_y^{y+1}}{1 - R}.
\]

So
\[
\lim_{y \to +\infty} \frac{T(y)}{P[Q > y]} = 0.
\]

Then
\[
P[Q > y] \overset{y \to +\infty}{\sim} \sum_i K_i R_i y,
\]
with \(K_i = \alpha_i \cdot (1 - E[R_i^{-S^-}]) = \frac{\delta_i \cdot R_i}{1 - R_i} \cdot (1 - E[R_i^{-S^-}])\).

Lemma 1 is proved.

\[\square\]

3.2.2. Distribution of \(H_n\) In this subsection, we will control \(P[Q \leq \lfloor \frac{\ln n}{\lambda} + x \rfloor]\). Let \(\alpha_n(x) = \lfloor \frac{\ln n}{\lambda} + x \rfloor\). From (14), we have
\[
P[Q > \lfloor \frac{\ln n}{\lambda} + x \rfloor] = \sum_{i=1}^m K_i R_i^{\alpha_n(x)+1} + \tilde{T}(n)
\]

(17)

with
\[
\tilde{T}(n) = T(\lfloor \frac{\ln n}{\lambda} + x \rfloor),
\]

(18)
New approximation for the local score distribution

where \mathcal{T} is defined in (15).

Using the notations of Theorem 1 and Lemma 1, we get

$$
P[Q > \left\lfloor \frac{\ln n}{\lambda} + x \right\rfloor n^{-\gamma}] \sim \sum_i K_i \Delta_n(i) \rho_i^{x+1} n^{-\gamma} \frac{K_i R_i^{x+1}}{n}.
$$

Thus

$$
P[Q > \left\lfloor \frac{\ln n}{\lambda} + x \right\rfloor] = O\left(\frac{1}{n}\right).
$$

We need to control $\tilde{T}(n)$ as well. We have

$$
\tilde{T}(n) = \sum_i \alpha_i R_i^{a_n(x)} \left(\sum_{z \geq 1} R_z P[Q > a_n(x), S^- = -z] \right).
$$

Then, with $\Gamma_i = \ln |R_i|/\ln R = -\ln |R_i|/\lambda$,

$$
|\tilde{T}(n)| \leq \sum_i \left(|\alpha_i R_i^{a_n(x)}| \cdot \sum_{z \geq 1} R_z P[Q > a_n(x), S^- = -z] \right)
= \sum_i \left(|\alpha_i| \rho_i^{a_n(x)} \cdot \sum_{z \geq 1} R_z P[Q > a_n(x), S^- = -z] \right)
\leq \sum_i \left(|\alpha_i| \rho_i \cdot \sum_{z \geq 1} R_z P[Q > a_n(x), S^- = -z] \right).
$$

For all i, we have

$$
\sum_{z \geq 1} R_z P[Q > a_n(x), S^- = -z] \leq \sum_{z \geq 1} R_z \cdot P[Q > a_n(x)] = P[Q > a_n(x)] \cdot \frac{R}{1 - R}.
$$

Thus, we obtain that

$$
|\tilde{T}(n)| \leq \frac{R}{1 - R} \cdot P[Q > \left\lfloor \frac{\ln n}{\lambda} + x \right\rfloor] \sum_{i=1}^m |C_i| \cdot \rho_i^{x} \cdot \frac{R_i^{x+1}}{n^{\Gamma_i}}
\leq \frac{mCR^{x+1}}{1 - R} \cdot P[Q > \left\lfloor \frac{\ln n}{\lambda} + x \right\rfloor],
$$

using also the fact that the $\Gamma_i > 1$ and $\Gamma_1 = 1$ in relation with R.

Let $\beta \in \mathbb{R}^+ \setminus \{0\}$. We have

$$
|n^\beta \cdot \tilde{T}(n)| \leq \frac{mCR^{x+1}}{1 - R} \cdot n^{\beta - 1} P[Q > \left\lfloor \frac{\ln n}{\lambda} + x \right\rfloor].
$$
Applying the estimate of \(P \left[Q > \frac{\ln n}{\lambda} + x \right] \) which is provided by (19), we get

\[
\frac{1}{n^2} P \left[Q > \frac{\ln n}{\lambda} + x \right] \sim K_1 R^{x+1} n^{\beta-2}.
\]

Then, for \(\beta < 2 \), we have \(\lim_{n \to +\infty} n^{\beta} \tilde{T}(n) = 0 \). The next result is also proved,

\[
(\forall 0 < \beta < 2) \quad \tilde{T}(n) = o \left(\frac{1}{n^\beta} \right).
\]

Let \(N_n = \sup \{ i \in \mathbb{N} : T_i \leq n \} \) denote the number of decreasing excursions in \(S_1 \ldots S_n \).

By the law of large number we have

\[
\lim_{n \to +\infty} \frac{N_n}{n} = \frac{1}{\mu} \quad \text{as},
\]

where \(\mu = E[T_1] \). One must not forget that \(H_n \) is increasing with \(n \) and we get

\[
P[H_{T_{N_n+1}} \leq a] \leq P[H_n \leq a] \leq P[H_{T_{N_n}} \leq a].
\]

Let \(\epsilon > 0 \). Using (22), we obtain

\[
P[H_{T_{N_n}} \leq a] = P[H_{T_{N_n}} \leq a; n(1/\mu - \epsilon) \leq N_n \leq n(1/\mu + \epsilon)]
\]

\[
+ P[H_{T_{N_n}} \leq a; |N_n/n - 1/\mu| > \epsilon]
\]

\[
\leq P[H_{T_{n(1/\mu - \epsilon)}}] \leq a] + P[|N_n/n - 1/\mu| > \epsilon]
\]

\[
= (P[Q \leq a])^{n(1/\mu - \epsilon)} + o(1).
\]

A similar computation yields

\[
P[H_{T_{N_n+1}} \leq a] = P[H_{T_{N_n+1}} \leq a; n(1/\mu - \epsilon) \leq N_n \leq n(1/\mu + \epsilon)]
\]

\[
+ P[H_{T_{N_n+1}} \leq a; |N_n/n - 1/\mu| > \epsilon]
\]

\[
\geq P[H_{T_{n(1/\mu + \epsilon)}}] \leq a] + P[H_{T_{n(1/\mu + \epsilon)}}] \leq a; |N_n/n - 1/\mu| > \epsilon]
\]

\[
= P[H_{T_{n(1/\mu + \epsilon)}}] \leq a] - P[H_{T_{n(1/\mu + \epsilon)}}] \leq a; |N_n/n - 1/\mu| > \epsilon]
\]

\[
= (P[Q \leq a])^{n(1/\mu + \epsilon)} + o(1)
\]

\[
= (P[Q \leq a])^{n(1/\mu + \epsilon)} + o(1).
\]
So we have
\[
(P[Q \leq z])^{\lfloor n(1/\mu+\epsilon) \rfloor + 1} - o(1) \leq P[H_n \leq z] \leq (P[Q \leq z])^{\lfloor n(1/\mu-\epsilon) \rfloor + 1} + o(1).
\] (23)

Let
\[
z = \lfloor \ln(n)/\lambda + x \rfloor.
\]
We get
\[
G_n(\epsilon) - o(1) \leq P[H_n \leq \lfloor \ln(n)/\lambda + x \rfloor] \leq D_n(\epsilon) + o(1),
\]
with
\[
G_n(\epsilon) = \left(P[Q \leq \lfloor \ln(n)/\lambda + x \rfloor] \right)^{\lfloor n(1/\mu+\epsilon) \rfloor + 1}
\]
and
\[
D_n(\epsilon) = \left(P[Q \leq \lfloor \ln(n)/\lambda + x \rfloor] \right)^{\lfloor n(1/\mu-\epsilon) \rfloor}.
\]

Then, for all \(\epsilon > 0 \)
\[
\frac{G_n(\epsilon) - o(1)}{\left(1 - \sum_i \frac{K_i \Delta p_i}{n+1} \right)^{\frac{n}{\mu} + 1}} \leq \frac{P[H_n \leq \lfloor \ln(n)/\lambda + x \rfloor]}{\left(1 - \sum_i \frac{K_i \Delta p_i}{n+1} \right)^{\frac{n}{\mu} + 1}} \leq \frac{D_n(\epsilon) + o(1)}{\left(1 - \sum_i \frac{K_i \Delta p_i}{n+1} \right)^{\frac{n}{\mu} + 1}},
\]
where \(\Delta = \Delta_n^{(i)} \). In order to prove
\[
\lim_{n \to +\infty} \frac{P[H_n \leq \lfloor \ln(n)/\lambda + x \rfloor]}{\left(1 - \sum_i \frac{K_i \Delta p_i}{n+1} \right)^{\frac{n}{\mu} + 1}} = 1,
\]
it suffices to show
\[
\lim_{\epsilon \to 0} \lim_{n \to +\infty} \frac{D_n(\epsilon) + o(1)}{\left(1 - \sum_i \frac{K_i \Delta p_i}{n+1} \right)^{\frac{n}{\mu} + 1}} = 1,
\]
and a similar expression for \(G_n(\epsilon) \). (17), (20) and (21) give (24).

4. Applications

4.1. The most amphoteric segments

Amphoteric amino acids (mixed charge) can be positively or negatively charged depending on the medium they are. For high-scoring mixed charge segment, we use the scoring scheme given by Karlin et al., [13]: \(\sigma = 2 \) for Aspartate (D), Glutamate (E), Lysine (K), Arginine (R) and \(\ell \)Histidine (H); \(\sigma = -1 \) for the others. Let \(p = P[X_0 = 2] \) be the probability to get the five amino acids cited previously. We have \(E[X_0] = 3p - 1 \).

The probability transition of the Markov chain \(W \) is given by
\[
\pi_{k,k+2} = p,
\]
\[
(0 \leq k \leq 1) \quad \pi_{k,0} = 1 - p,
\]
\[
(\forall k > 1) \quad \pi_{k,k-1} = 1 - p.
\]
So the invariant measure satisfies
\[
\gamma_0 = \frac{1-p}{p} \cdot \gamma_1, \quad \gamma_1 = (1-p) \cdot \gamma_2,
\]
and for \((k \geq 2)\)
\[
\gamma_k = (1-p) \cdot \gamma_{k+1} + p \cdot \gamma_{k-2}.
\]
The polynomial \(P\) is
\[
P[x] = (1-p) \cdot x^3 - x^2 + p,
\]
and the two roots different from 1 are real.

The polynomial
\[
P = \frac{(1-p) \cdot x^3 - x^2 + p}{2(1-p)} < 1,
\]
and
\[
0 < R = \frac{p + \sqrt{p(4-3p)}}{2(1-p)} < 1,
\]
and
\[
-1 < R' = \frac{p - \sqrt{p(4-3p)}}{2(1-p)} < 0.
\]
We have
\[
(\forall a \in \mathbb{N}) \quad P[M = a] = \delta \cdot [R^{a+1} - R'^{a+1}],
\]
with
\[
\delta = \frac{(1-3p)}{\sqrt{p(4-3p)}}.
\]
The scoring function is such that \(S^- = -1\). So Lemma 1 brings
\[
P[Q > a] \xrightarrow{a \to \infty} K_1 \cdot R^a + K_2 \cdot R'^a,
\]
with \(K_1 = \delta R^2 > 0\) and \(K_2 = -\delta R'^2 > 0\).

Example 4.1. The distribution of the local score is approximated by the formula
\[
P \left[H_n \leq \frac{\ln n}{\lambda} + x \right] \xrightarrow{n \to \infty} \left[1 - \frac{K_1 R^x}{n} - (-1)^{a_n(x)} \cdot \frac{K_2 R'^x}{n^x} \right]^{\frac{1}{\mu} + 1},
\]
where \(\rho = |R'|, \Gamma = \ln(\rho)/\ln(R), a_n(x) = \lfloor \frac{\ln n}{\lambda} + x \rfloor, \mu = 1/(1-3p)\), and with \(R, R', K_1, K_2, \delta\) given in (25), (26), (28) and (30).

Let’s deduce Karlin’s formula from this result. We deduce of Example 4.1 with \(a = \frac{\ln n}{\lambda} + x\)
\[
P \left[H_n \leq \frac{\ln n}{\lambda} + x \right] \xrightarrow{n \to \infty} \left[1 - \frac{K_1 R^x}{n} \right]^{\frac{1}{\mu} + 1} \exp \left(-\frac{K_1}{\mu} R^x \right),
\]
and we want to compare the two constants, K_1/μ and K^*, (cf (1)), in order to verify that the two results are compatible. We have, see [13] and [14]

$$P[\mathcal{H}_n \leq \frac{\ln n}{\lambda} + x] \xrightarrow{n \to \infty} \exp\left(-K^* \cdot e^{-\lambda x}\right),$$

with

$$K^* = \left(1 - e^{-\lambda}\right) \cdot e^{-\lambda} \cdot \frac{E[X_0]^2}{E[X_0 \cdot e^{\lambda X_0}]}.$$

Using $\lambda = \ln(1/R)$ and the fact that R is a root of P, we get

$$K^* = \frac{(1 - R)R(1 - 3p)^2}{2p(1/R^2) - (1 - p)R} = \frac{(1 - R)R^3(1 - 3p)^2}{2p - (1 - p)R^3} = \frac{(1 - R)R^3(1 - 3p)^2}{3p - R^2},$$

Our method gives

$$K_1/\mu = \frac{\delta R^2}{\mu} = -\delta R^2 E[X_0] = \delta R^2(1 - 3p) = \frac{(1 - 3p)R^2}{\sqrt{p(4 - 3p)}}.$$

Using (25), It is now easy to show that $K^* = K_1/\mu$.

Our approximation deals with two terms. Taking into account only the main one allows us to obtain by a different way the result of Karlin et al. Numerical investigations indicate that our approximation is better, see [18].

4.2. The most hydrophobic segments

A scoring scheme quite consistent with the Kyte-Doolittle scale of hydrophobicity, (see [17]), takes $\sigma = 2$ for I, L, V; $\sigma = 1$ for F, M, A, C; $\sigma = 0$ for G, S, Y, W, T, P; $\sigma = -1$ for N, Q, H, D, E; $\sigma = -2$ for K, R.

This example of scoring function is proposed in [15] and [14] (Example 3). The polynomial is

$$P(x) = q_2 x^4 + q_1 x^3 + (p_0 - 1)x^2 + p_2 x + p_1.$$

Let $p = P[\sigma \geq 0]$. Only two roots are in $]-1,+1[$, noted R and R', such that $0 < |R'| < R < 1$. The distribution of the maximum M is given by

$$\forall k \leq 2 \quad p_2 \cdot \gamma_{k-2} + p_1 \cdot \gamma_{k-1} + p_0 \cdot \gamma_k + q_1 \cdot \gamma_{k+1} + q_2 \cdot \gamma_{k+2} = \gamma_k$$

$$[p_0 + (1 - p)] \cdot \gamma_0 + (1 - p) \cdot \gamma_1 + q_2 \cdot \gamma_2 = \gamma_0,$$
\(p_1 \cdot \gamma_0 + p_0 \cdot \gamma_1 + q_1 \cdot \gamma_2 + q_2 \cdot \gamma_3 = \gamma_1 \), \hfill (35)

The recurrent equation (33) brings us

\[P[M = k] = \gamma_k = \delta_1 R^k + (-1)^k \delta_2 R'^k, \] \hfill (36)

with \(R_1 = R \) and \(R_2 = -R' \) the two roots of \(P(x) \) satisfying \(|R_i| < 1 \) for \(i = 1, 2 \).

Injecting (36) in (34) and (35) brings the same relation:

\[\delta_1 = R \delta_2 . \]

Using the fact that \(\sum_{k \geq 0} \gamma_k = 1 \), we have also

\[\frac{\delta_1}{1 - R} + \frac{\delta_2}{1 + R'} = 1 . \]

Then we get with

\[\tau = \frac{(1 - R)(1 + R')}{R(1 + R') + R'(1 - R)} , \]

\[\delta_1 = R' \tau, \quad \delta_2 = R \tau . \]

We define \(\Pi_i = P[S^- = -i], i = 1, 2 \). Considering the work of Asmussen [5] (Chapter 3), there is a much more elegant way to get the distribution of \(S^- \) using the \(v \) roots noted \(z_i \) of \(P(x) \) with modulus superior or equal to 1:

\[(P(z_i) = 0, \ |z_i| \geq 1) \Rightarrow E[(z_i)^{-S^-}] = 1 . \] \hfill (37)

Using Asmussen (see Prop. 3.15, [5]), we have exactly 2 roots of \(P(x) \) with \(|R_i| < 1 \) and two roots \(z_i \) with \(|z_i| \geq 1 \). Let’s note \(R_3 = 1 \) and \(R_4 \) the last root of \(P(x) \) with \(|R_4| \geq 1 \). The equation (37) gives

\[\left\{ \begin{array}{l} 1 = \Pi_1 + \Pi_2 \\ 1 = \Pi_1 \cdot R_4 + \Pi_2 \cdot R_4^2 \end{array} \right. . \]

So we get \(\Pi_1 = (1 + R_4)/R_4 \in [0, 1[\), and \(E[S^-] = (1 - R_4)/R_4 \).

This method has the advantage to be generalized to any scoring function taking value in \(\{-v, \ldots, 0, 1, 2, \ldots, +u\} \), with \(\{-1, -2, \ldots, -v\} \) the possible value of \(S^- \). The equation (37) gives a linear system of \(v \) equations to get the \((\Pi_i = P[S^- = -i])_{1 \leq i \leq v} \).
We have then
\[\mu = \frac{E[S^{-}]}{E[X_0]} = \frac{R_1 - 1}{R_4 : [2(p_2 - q_2) + p_1 - q_1]} . \]

Example 4.2. An approximation of the distribution of \(H_n \) is

\[P[H_n \leq \frac{\ln n}{\lambda} + x] \xrightarrow{n \to \infty} \left[1 - \frac{K_1 R^*}{n} - (-1)^{a_n(x)} \frac{K_2 R^*}{n^{\Gamma}} \right]^{\frac{n}{\mu} + 1} , \quad (38) \]

with \(K_1 = \delta_1 R, K_2 = \delta_2 R', R, R', \delta_i, \mu \) given above, and \(\lambda = -\ln R, \Gamma = \ln R'/\ln R \) and \(a_n(x) = \left\lfloor \frac{\ln n}{\lambda} + x \right\rfloor \).

Karlin et al. in [14] (example 3) give

\[K^* = \frac{(1 - \Pi_1 e^{-\lambda} - \Pi_2 e^{-2\lambda})^2 E[X_0]^2}{(2 - \Pi_1)^2(\exp(\lambda) - 1)E[X_0 \exp(\lambda X_0)]} . \]

The two different approximations for the hydrophobic example have been numerically tested and compared with empirical distribution of the local score or with the distribution given by Daudin and Mercier [19], see Figure 1.

5. Conclusion

Proposition 1 deals with the maximal partial sum of a random walk. An approximation of its distribution has been obtained previously using the renewal theory, see [14]. We give explicitly in this paper the exact distribution using classical results of Markov Chain Theory.

The application of this result to the distribution of the local score allows us to get a better approximation of this distribution. Theoretical formulas seems not so easy to manipulate, but applications are practical and simple. This approximation allows us to confirm and improve numerically the result of Karlin et al. [13].

Some work remains to deal with the alignment scoring problem of two sequences but we think that our result can be easily generalized to the case of Markovian dependent sites.

References

Figure 1: Hydrophobic case: comparison between Karlin approximation and the approximation given in this article. The real distribution is calculated with the exact method of Daudin and Mercier [19] instead of empirical distribution that spent more time.
New approximation for the local score distribution

