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Abstract

We propose an approximate distribution for the gapped local score of a two sequence com-
parison. Our method stands on combining an adapted scoring scheme that includes the gaps and
an approximate distribution of the ungapped local score of two independent sequences of i.i.d.
random variables. The new scoring scheme is defined onh-tuples of the sequences, using the
gapped global score. The influence ofh and the accuracy of thep-value are numerically studied
and compared with obtainedp-value of BLAST. The numerical experiments emphasize that our
approximatep-values outperform the BLAST ones, particularly for both simulated and real short
sequences.
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1 Introduction
An important step in learning the function of a new biological sequence (DNA or
protein) is to compare the new sequence with existing sequences belonging to a
database whose biological functions are known. So, finding the database sequences
similar to the new sequence can make a guess about its function. This similarity can
mean that these sequences are copied from one generation to another, and undergo
changes (within any population over the course of many generations), as random
mutations, arise and become fixed in the population. Evolutionary theory empha-
sizes that genes/proteins which have a similar function are likely to have evolved
from a common ancestor through mutation. The simplest events that occur during
the course of evolution are substitution of one nucleotide/amino acid by another and
insertion or deletion (gap). In this paper, we are interested in local alignments and
corresponding quality as a similarity factor. It is generally measured from a score
calculated by adding substitution scores, s, for each aligned pair of letters and gap
penalty, δ, for each gap. Then, any local alignment of sequences can be scored and
ranked according to this scoring scheme. The maximum-scoring local alignment is
called the local score.

The main problem of sequence comparison is to evaluate the statistical signifi-
cance of sequences showing a particular level of similarity. That is, whether an
observed score could have arisen by chance under an appropriate model of random
sequence. In this paper, we propose a new approach for assessing the similarity of
sequences when gaps are allowed.

Let A = A1, A2, ..., An and B = B1, B2, ..., Bm be two independent
sequences of i.i.d. random variables on a finite alphabet set A. Let s : A×A → Z

be a scoring function, and δ be a gap penalty. Let Mn,m be the optimal score over
all possible choices of two contiguous regions I and J for I ⊂ {A1, A2, ..., An}
and J ⊂ {B1, B2, ..., Bm}. Formally, the gapped local score is defined (e.g.,
Waterman, 2000) by

Mn,m = max
I,J

S(I, J) (1)

where

S(I, J) = max{−δ(ι − ` + τ − `) +
∑̀

k=1

s(Au(k), Bv(k))} (2)

and the maximum is taken over all global alignments given by two increasing
sequences u(·) and v(·) where ` is the number of pairs of aligned letters and ι, τ
are respectively the lengths of I and J . To apply the affine gap, it is sufficient to

1

Fayyaz movaghar et al.: New Approximate P-Value of Gapped Alignments

Published by The Berkeley Electronic Press, 2007



add a term −∆d into the maximum of (2), where ∆ is the gap opening penalty and
d is the number of gaps of the corresponding alignment.

For the ungapped local score with shift defined as

Hn,m = max
0≤`≤min(n,m)−1

1≤j≤m−`
1≤i≤n−`

∑̀

k=0

s(Ai+k, Bj+k), (3)

the distribution has been asymptotically derived as an extreme-value distribution
(Dembo et al., 1994), when E[s(A,B)] is strictly negative while for finite length,
Mercier and Daudin (2001) have proposed a method without explicit formula nor
constraint on E[s(A,B)] to approximate the ungapped local score of two sequences.

For a long time, for the gapped case, there was a great deal of empirical, rather
than theoretical, evidence (Mott, 1992; Altschul and Gish, 1996; Waterman and
Vingron, 1994; Spang and Vingron, 1998), indicating that the extreme-value theory
underlying the ungapped case carries over, provided the gap penalties are drastic
enough. In practice, several methods for estimating the parameters of the p-value
of Mn,m are used like method of moments (Altschul and Gish, 1996) and maxi-
mum likelihood (see, e.g., Bailey and Gribskov, 2002). The time-consuming in the
gap case results of the lack of explicit formulae for the parameters. Fortunately, it
has been recently improved by means of some conjectures which allow the para-
meters for gapped local alignment to be estimated from global alignment (Chia
and Bundschuh, 2006; Sheetlin et al., 2005; Park et al., 2005; Bundschuh, 2002;
Grossmann and Yakir, 2004). A heuristical approximate p-value, using Greedy
Extension Model, has been proposed by Mott and Tribe (1999): the authors piece
together results for ungapped alignments to obtain useful numerical approximations
for gapped alignments. Recently, an approximate p-value has been theoretically
derived under certain severe conditions on gaps (Siegmund and Yakir, 2000; 2003).
In a way, their approach generalizes both the Dembo et al. (1994) results as well as
Mott and Tribe’s (1999). However, this approximation involves an infinite
sequence of difficult-to-compute parameters even if it is numerically shown that
they can finally be reduced to two (Storey and Siegmund, 2001). Many works (see,
e.g., Mitrophanov and Borodovsky (2006) for a review) use the Karlin and Altschul
(1990) formula, therefore, they are well adapted for long sequences but they are less
efficient for short ones. We rather use the Mercier and Daudin’s (2001) approach
in order to provide a new method that yields appealing results particulary for short
sequences.

In this paper, we insert gaps in the scoring function, in such a way that the
p-value of gapped alignment can be derived from the one of ungapped case, pro-
posed by Mercier and Daudin (2001). Then, we numerically assess the performance
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and quality of the proposed p-value. The theoretical evaluation of this new approxi-
mate p-value is a challenge which deserves serious attention but it is out of the
scope of this paper.

In Section 2, we present our approach. We recall, in Section 2.1, the method for
achieving the approximate p-value in the ungapped case presented by Mercier and
Daudin (2001) for two independent sequences of i.i.d. random variables. In Section
2.2, we suggest a new gapped local score, denoted Mn,m, that approximates Mn,m

in (1) by calculating the ungapped local score of h-tuples of the two sequences
A and B for a given h. This local score is obtained by using the scoring scheme
based on the gapped global score of the h-tuples of A and B derived from (2). Its
approximate p-value is derived by using the approximate distribution of ungapped
local score (Mercier and Daudin, 2001). Section 3 is devoted to simulations. In
Subsection 3.1, we numerically verify that the assumption of independence among
shifts in the ungapped case used in Mercier and Daudin (2001) can be circumvented
without any damage. Then, in Section 3.2, we focus on the accuracy of Mn,m to
approximate Mn,m through a comparison with the approximated gapped local score
proposed by Zhang (1995). The new p-value is then compared with an empirical
one in order to find an appropriate value for h, the length of h-tuples, in Section 3.3.
In Section 3.4 and 3.5, we assess our approximate p-value via a comparison with
BLAST on both simulated and real (SCOP 1.53) database and we finally conclude
in Section 4.

2 Statistical Significance
In this section, we suppose, without loss of generality, that m ≥ n, where n and m
are respectively the lengths of the i.i.d. sequences A and B.

2.1 Ungapped alignments
As mentioned in the introduction, our approach in the gapped case requires the
computation of an approximated p-value derived by Mercier and Daudin (2001).
So, we briefly recall how this p-value is obtained. The p-value of ungapped local
score (with shift), P (Hn,m ≥ a) where Hn,m is defined in (3), is approximated in
(Mercier and Daudin, 2001) by

pu(a) = 1 −

[
∏

i=1,...,n−1

P (Hi < a)2

]
P (Hn < a)m−n+1 (4)
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where Hi is the local score for any two continuous subsequences (E1, . . . , Ei) ⊂ A

and (F1, . . . , Fi) ⊂ B with same length i, i.e.,

Hi((E1, . . . , Ei), (F1, . . . , Fi)) = max
1≤k≤l≤i

l∑

t=k

s(Et, Ft). (5)

The p-value of Hi is derived from the one sequence case in Mercier and Daudin
(2001). This latter method is based on Markov chain theory, particulary Lindley
process. In this case, the distribution is independent of the sign of the expected
score of residues, unlike Karlin and Altschul (1990), and it is shown that

P [Hn < a] = 1 − P1Π
nP ′

a+1 (6)

where Hn = max1≤i≤j≤n

∑j
k=i s̃(Ak) is the local score of sequence A with s̃

defined on A for the one sequence case, a is the observed local score of the studied
sequence, Pi is a vector 1 × (a + 1) whose ith element is one and zero elsewhere
and the (a + 1) × (a + 1) matrix Π is filled by using the letter score distribution as
follows

Π =




F (0) p(0) . . . p(a − 1) 1 − F (a − 1)
...

...
...

F (−t) . . . p(` − t) . . . 1 − F (a − t − 1)
...

...
...

F (1 − a) p(2 − a) . . . p(0) 1 − F (0)
0 0 . . . 0 1




where F (k) = P [s̃(A) ≤ k] and p(k) = P [s̃(A) = k] and 0 ≤ t, ` ≤ a. Note that s̃
takes its values in Z.

This approximated p-value, pu(a), relies on the independence assumption among
shifts. Of course, dependence exists particulary among close shifts and this issue
will be numerically addressed in Section 3.1.

2.2 Gapped alignments
Our aim is to propose a new theoretical approximate p-value, when gaps are
allowed, which stands on a method different from the previous studies (see, e.g.,
Mott and Tribe, 1999; Siegmund and Yakir, 2000; 2003). We extend (4), obtained
for the ungapped alignment, by using the idea of Zhang (1995) who incorporates
gaps through the choice of a scoring function. This scoring function is defined on
the pairs of h-tuples of letters by using the gapped global score S defined in (2): we
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insert the gaps through the scoring function and approximate the exact gapped local
score of two sequences by the ungapped local score of the h-tuples produced from
all possible shifts. We investigate an approach close to the one of Zhang who uses
this scoring function to find an almost sure limit for the gapped local score, Mn,m.
The differences will be highlighted below. Note first that, our work is not asymp-
totic, unlike others on this subject, see, e.g., Karlin and Altschul (1990), Dembo
et al. (1994) and Siegmund and Yakir (2000; 2003).

Figure 1: The h-tuples of a fixed shift α.

First, we define an approximate gapped local score and its p-value will be
derived afterwards. Let α be an integer which assigns a number between 1 − n
and m−1 to each shift: when A1 (respectively B1) is aligned with Bi, i = 1, . . . , n
(resp. Aj, j = 1, . . . ,m), α takes the value 1 − i (resp. j − 1). Let r = r(α) be
the length of the opposite segments of the two sequences for α. For i = 1, . . . , r,
let Aα

i (resp. Bα
i ) be the ith letter of the segment of A (resp. B) relative to shift α.

Given a positive integer h, let Nr = [ r
h
] be the number of created h-tuples on the

opposite subsequences and let Xα = {Xα
i }i=1,...,Nr

and Yα = {Y α
j }j=1,...,Nr

with
Xα

i = (Aα
(i−1)h+1, ..., A

α
ih) and Y α

j = (Bα
(j−1)h+1, ..., B

α
jh). These definitions are

illustrated in Figure 1 and examples are given in Figure 2. Note that Xα and Yα are
independent sequences of h-tuples in Ah, since A and B are independent. It is clear
that for a fixed α, the Xα

i ’s are independent and so are the Y α
j ’s.

Let HNr
be the ungapped local score without shift of the sequences Xα and Yα

defined as follows

HNr
= max

1≤i≤j≤Nr

j∑

k=i

S(Xα
k , Y α

k ). (7)

The latter is a summation on the scoring function which is based on the gapped
global score (2). We approximate the gapped local score of A and B, Mn,m in (1),
by

Mn,m = max
α

HNr
, for 1 − n ≤ α ≤ m − 1. (8)
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A

B

M F K
︷︸︸︷

P V
︷︸︸︷

D F S
E N
︸︷︷︸

T P
︸︷︷︸

A D

X3

1

Y 3

1

X3

2

Y 3

2

r = 5

(a) : h = 2, α = 3

A A

B

M F K P
︷︸︸︷

V D
︷︸︸︷

F S
E N
︸︷︷︸

T P
︸︷︷︸

A D

X4

1

Y 4

1

X4

2

Y 4

2

r = 4

(b) : h = 2, α = 4

Figure 2: These examples indicate how we specify h-tuples of each shift for h = 2.
(a) shows the shift corresponding to α = 3 with opposite subsequences length
r = 5. We have two pairs of h-tuples, i.e. N5 = 2. As it can be observed the letters
pair (S,A) is not used in the calculation of the relative score shift obtained by (7).
(b) similarly corresponds to the shift α = 4 with length r = 4 and N4 = 2. In this
shift, all letters are taken into account in the score shift calculation.

For all h, we clearly have, Mn,m ≤ Mn,m.
Remark: Our local score differs from the one of Zhang (1995) by the way that

the shifts are introduced. Indeed, in his case, the shifts are relative to the h-tuples
(i.e. for X0 and Y0) while, in our work, the shifts are associated to
letters (i.e. for A and B). In other words, we define the h-tuples for each shift α
whereas Zhang considers the shifts on the h-tuples of the initial sequences. For-
mally, the approximate local score of Zhang, denoted by Mn,m, is defined as
Mn,m = maxi,j

∑
1≤i≤j≤Nr(0)

S(X0
i , Y

0
j) that is HNr

for α = 0. From another
point of view, Mn,m corresponds to the maximum in (8) restricted to (1 − n) ≤
α = ±wh ≤ (m − 1) where w is a nonnegative integer. It clearly gives that
Mn,m ≤ Mn,m ≤ Mn,m.

Our approximate p-value of the gapped local alignments is obtained by adapt-
ing (4) for (8). For a given h, the p-value of Mn,m (and the p-value of Mn,m,
P (Mn,m ≥ a)) is estimated by

ph(ba) =1 −






∏

r=h,2h,...,(K/h−1)h

P (HNr
< ba)

2h


P (HNK

< ba)
2(n−K)


×

P (HNn
< ba)

m−n+1, (9)

where K = [n−1
h

]h and ba is the observed value of Mn,m. The first and third terms
in the products in (9) derive straightforwardly from (4). However, the values of
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index r are multiples of h because h consecutive shifts are necessary to move from
Nr to Nr ± 1 (the effect of these h shifts occurs in the power of the probabilities in
the product). In addition, as the common length of the opposite subsequences, r, is
not necessarily a multiple of h, the second term in the products appears in this way
to take into account the end of these opposite segments. The right hand side of (9)
is calculated by using (6) where the matrix Π is filled by replacing s̃(·) with scoring
scheme S(·, ·) defined in (2).

3 Numerical Results

3.1 Study of the assumption of shift independence in the
ungapped case

We numerically verify that relaxing the assumption of independence of shifts does
not affect the results in practice. These simulations complete the results of Park
and Spouge (2002). We independently generate a sample S of size N = 10, 000
pairs of sequences, {(Ak, Bk)}k=1,...,N , for a given distribution of letters and for
different given lengths, n and m. We calculate the exact ungapped local score
of each pair, Hk

n,m = Hn,m(Ak, Bk), using BLOSUM62. The empirical p-values,
pe(a) are calculated by the ratio of the pairs whose ungapped local scores are greater
or equal to a, i.e.,

pe(a) =
Na

N
=

#{(Ak, Bk) : Hk
n,m ≥ a}

N
. (10)

For large values of N , the stability of the empirical distribution pe(a) is almost
reached in practice.

In order to compare pu(a) of (4) with pF (a), the p-value obtained by FASTA, we
consider a subsample of S of size N lower or equal to 60, denoted {(Aτ , Bτ )}τ=1,...,N .
This limitation is imposed by the way FASTA is used here (i.e. to compare couples
of sequences instead of a sequence with a database as usually). The FASTA pro-
gram can be found at the following address: www.infobiogen.fr/services
/analyseq/cgi-bin/fasta_in.pl. They are compared with the corre-
sponding pe(a) by means of a χ2 measure, i.e.,

χ2(pu) =
N∑

τ=1

[pe(aτ ) − pu(aτ )]
2

pe(aτ )
(11)

where aτ is the observed value of Hn,m of the τ th pair of the subsample. Table 1
shows that χ2(pu) is smaller than χ2(pF ) for all of the different lengths and particu-
lary for the short sequences.
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Table 1: COMPARISON BETWEEN THE P -VALUE pu AND FASTA ONE pF

Lengths m 40 57 85 106 561 422
n 25 51 80 92 57 368

χ2(·)
pu 0.651 0.428 1.045 0.423 0.269 0.793
pF 17.741 10.240 8.958 3.912 7.121 10.939

PSE(·)
pu 0.2468 0.2307 0.2412 0.2099 0.0075 0.4114
pF 0.7875 0.9909 0.5231 0.6826 0.4405 0.6726

χ2 and PSE values for the theoretical p-values pu [see (4)] and the ones given by
FASTA, pF , using BLOSUM62.

Similar conclusions are reached by P -value Slope Error (PSE), introduced by
Bailey and Gribskov (2002). This metric allows the accuracy of different local
score distribution methods to be compared. To get PSE, the weighted least-squares
regression line of p-values logarithm, i.e.,

log(pu) = ru log(pe) + b (12)

is calculated. The slope gives an indication of the direction and magnitude of the
errors in the p-values. So, the p-value slope error metric is defined as

PSE(pu) = 1 − ru. (13)

If the PSE value is close to zero, the points (log(pu), log(pe)) lie approximately
along the line x = y, in other words, the estimates of the local score distribution is
accurate. Note that, the PSE is only accurate when the coefficient of determination
is close to 1 and the intercept to 0.

Table 1 also shows the absolute values of the PSE for pu and pF that confirm
the results obtained by (11). In addition, to study the behavior of the p-value
of ungapped alignments, pu, and FASTA one, pF , we plot the logarithm of the
p-values, pu and pF , against the ones of pe (see, e.g., Figure 3). A large disper-
sion among (log(pF ), log(pe))’s also indicates the weak performance of FASTA
(the largest correlation coefficient is 0.82 for the sequence lengths m = 106 and
n = 92), although (log(pu), log(pe))’s can be properly explained as a line which
is close to the line x = y and passes through the origin (the smallest correlation
coefficient is 0.94 for the sequence lengths m = 85 and n = 80).

These results clearly show the accuracy of pu for approximating the empirical
p-value and then, they indicate that the assumption of independence, used to derive
pu(·), does not play a crucial role in its calculation. So, it will be used below.
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Figure 3: Behavior of pu and the p-value obtained by FASTA, pF , are compared
with the empirical p-value for the sequences of lengths m = 422 and n = 368.
This figure is based on the logarithm of the p-values. The correlation coefficients
are 0.99 and 0.68 for log(pu) and log(pF ), respectively.

3.2 The difference between approximate and exact gapped local
score as a function of h

To check the quality of Mn,m, we generate several databases. Each database con-
tains 1,000 pairs of sequences, independently generated with given lengths and a
fixed letter probability which is calculated from the letters frequencies of some
Homo sapiens (human) sequences, common for all databases. According to the
lengths, the databases are classify to three categories: (i) “short” where
max(n,m) < 100, (ii) “medium” for 100 ≤ n,m ≤ 500 and (iii) “long” where
min(n,m) > 500. There are 4 short, 6 medium and 3 long databases. We obtain
Mn,m and Mn,m by using the scoring scheme BLOSUM62 with the penalty of gap
opening and extension -11 and -2, respectively. For h = 2, 3, 4, 6, 9 and 11, the
accuracy of Mn,m is measured by

NMSEh =
1000∑

k=1

(
Mk

n,m − M
k
n,m

Mk
n,m

)2

(14)

where M
k
n,m and Mk

n,m are, respectively, the estimated and the exact local score of
the kth pair of sequences in our database. Table 2 shows that the NMSEh increases
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Table 2: COMPARISON OF Mn,m WITH Mn,m RELATIVELY TO THE EXACT
LOCAL SCORE

NMSEh of Mn,m NMSEh of Mn,m

h \ length category short medium long short medium long
2 0.007 0.010 0.010 0.089 0.057 0.048
3 0.017 0.015 0.015 0.153 0.093 0.071
4 0.027 0.021 0.019 0.211 0.126 0.090
6 0.050 0.032 0.030 0.314 0.185 0.131
9 0.087 0.048 0.041 0.500 0.248 0.180
11 0.113 0.058 0.048 0.692 0.293 0.210

Average of NMSEh defined in (14), for two approximate local scores, Mn,m

defined in (8) and Mn,m, proposed by Zhang (1995). The categories “short”,
“medium” and “long”, respectively, are applied for the pairs of sequences whose
lengths satisfy max(n,m) < 100, 100 ≤ n,m ≤ 500 and min(n,m) > 500.

with h. In other words, Mn,m is more underestimated for the largest values of h
(recall that we have always Mn,m ≤ Mn,m). However, it seems that Mn,m is a near
ideal fit to the exact local score Mn,m.

On the other hand, NMSEh is computed for the approximate local score pro-
posed by Zhang (1995), Mn,m. Table 2 indicates that Mn,m has a behavior similar
to Mn,m. However, Mn,m outperforms Zhang’s one, Mn,m, for all h and this is
consistent with the fact that Mn,m ≤ Mn,m ≤ Mn,m.

Note that, as we are not concerned by asymptotics, our work takes place out of
this framework by considering short sequences as illustrated by the simulations in
which max(n,m) < 850. This can explain the weakness of Mn,m which has been
developed for large values of n, m and h.

3.3 The influence of h on the p-value for different sequence
lengths

To compare ph(ba), defined in (9), and the empirical p-value, pe(a), χ2(ph) is cal-
culated for three different values of h = 2, 3 and 4, with pe(a) defined in (10), but
computed for the exact gapped local score Mn,m and

ph(a) =

∑
Ca

ph(ba)

#Ca

(15)

with Ca = {(Ak, Bk) : Mk
n,m = a} where {(Ak, Bk)} are the kth pair of

sequences of generated database as in the previous subsection. As it leads to
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Table 3: INFLUENCE OF h ON THE NEW P -VALUE
χ2(ph) PSE(ph)

h \ length category short medium long short medium long
2 99.30 581.61 441.93 0.09 0.30 0.26
3 112.25 597.07 431.44 0.10 0.31 0.27
4 164.34 654.30 360.91 0.11 0.33 0.28

Average of χ2(ph) and PSE(ph(a)) defined in (11) and (13), respectively. These
results are calculated for gapped case over all databases in each category. The
categories “short”, “medium” and “long”, respectively, are applied for the pairs
of sequences whose lengths satisfy max(n,m) < 100, 100 ≤ n,m ≤ 500 and
min(n,m) > 500.

stable results for the empirical p-value, we consider a database of 10,000 pairs
of sequences. In addition, to verify the stability of χ2, 10 databases of 10,000 se-
quence pairs have been simulated. Value of χ2(ph) is computed for each one of 10
databases corresponding to a sequence length. We define three categories “short”,
“medium” and “long” in the same way as subsection 3.2. Table 3 shows the average
of χ2(ph) values calculated over all sequence lengths (each length in 10 databases)
in each of the three categories of sequence length. In average, the minimum of χ2 is
reached for h = 2 for the short and medium sequences. For the longest sequences,
h = 4 gives the minimum error, in other words, the more accurate p-values, but the
corresponding running time is substantially longer.

The coefficient of variation (standard deviation/mean) has also been computed
over 10 values of χ2 corresponding to 10 databases of each sequence length. Then,
for each category, the mean of coefficients of variation has been calculated over all
sequence lengths involved in the category. In average, for the longest sequences,
the smallest value is equal to 0.11 and it is realized for h = 4, while for the medium
sequences, it is equal to 0.29 (respectively 0.33 and 0.44) for h = 3 (resp. 2 and
4). For the short sequences, these values are smaller than 0.16 and h = 2 gives the
minimum value 0.14.

We also apply the PSE metric and the results are given in Table 3. They confirm
the ones obtained by the χ2’s, except for the longest sequence for which the smallest
value of the mean of PSE is obtained for h = 2. However, the values of PSE are
very close, so these results do not really contradict the χ2 ones.

These simulations seem to indicate that finally, the choice of h weakly depends
on the lengths of sequences and that, even when h = 4 returns the optimal value,
h = 2 is still a feasible solution. In the following, we will nevertheless work with
the optimal choice, that is, h = 2 or 4 according to the sequence lengths.
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Note, moreover, that for sequences with n � m, simulations (not reported here)
seem to emphasize that the smallest length plays the main role.

3.4 Comparison between the new approximate p-value and
BLAST on simulated database

The previous sections were devoted to the comparison of two sequences. Now,
in order to be more realistic and to compare our approach to a classical software,
BLAST, we aim at comparing a sequence to a database. Then, we compare the
approximate p-value, ph, to the one of BLAST, denoted pB (this latter is obtained
by a heuristics based on extreme-value distribution (Altschul et al., 1997)). We
measure the differences between the above theoretical p-values and the empirical
one on a simulated database.

We consider 10 different sequence lengths (50, 80, 104, 206, 305, 370, 480,
550, 630 and 820) and, for each given sequence length, we simulate a database of
100 sequences with the same distribution of letter as in Subsection 3.2. Let D l,
for l = 1 to 10, be the database corresponding to each length mentioned above
and let D =

⋃10
l=1 D

l, the essential database of our study. Then, D involves 1,000
independent sequences built with 10 different lengths. Also, six queries {Qj}j=1,...,6

of different lengths 82, 150, 307, 485, 638 and 827 are independently generated
with the same distribution as the database D.

On the one hand, the approximate and BLAST p-values, ph and pB respec-
tively, are computed by aligning the queries to the database D. For i = 1 to
100, l = 1 to 10 and j = 1 to 6, this alignment leads us to compute ailj and
bailj

, the observed values of Mn,m and Mn,m of the the jth query when it is com-
pared with the ith sequence of the database Dl. Our p-value, ph, is computed by
using (9). Note that according to the discussion of the previous subsection, we
choose h = 2 when the length of the shortest sequence of comparison is less
than 500 and h = 4 otherwise. For BLAST, the p-value, pB, is approximately
obtained as the e-value, given by BLAST, multiplied by n/N , where n is the
length of the database sequence and N is the edge-corrected cumulative length
of the database sequences, as reported in the program output (Altschul and Gish,
1996; Altschul et al., 2001; Webber and Barton, 2003). The version of BLAST
program that we use is BLAST 2.2.13 and it can be found at the following address:
www.infobiogen.fr/services/analyseq/cgi-bin/blast2_in
.pl. Note that all the parameters of local score computation, scoring scheme
and gap penalty, are identical to the previous subsection.

On the other hand, to obtain the empirical p-value, for each l = 1 to 10, a
database of 10,000 sequences, denoted by Dl = {Al

k}k=1,...,10000, is generated with
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Table 4: COMPARISON BETWEEN THE NEW P -VALUE ph AND THE BLAST
ONE pB

χ2
j Coefficient of determination

Query length ph pB R2
h R2

B

82 39.98 121.74 0.77 0.05
150 72.64 171.34 0.61 0.15
307 55.54 307.94 0.64 0.35
485 105.46 193.96 0.71 0.35
638 66.84 92.57 0.61 0.56
827 176.64 129.37 0.59 0.43

χ2
j(ph), χ2

j(pB) and the coefficient of determination for aligning different queries to
the database where ph is the new approximate p-value defined in (9) and pB is the
p-value obtained by BLAST.

the same distribution as Dl. The above queries {Qj}j=1,...,6, are aligned to each
database Dl in order to calculate the empirical p-values. Thus, from the comparison
of the jth query, Qj , with the database Dl, the empirical p-value pe(a) is defined as
follows

plj
e (a) =

Na

10000
=

#{(Al
k, Qj) : Mn,m ≥ a}

10000
(16)

where Al
k is the kth sequence of Dl and Mn,m is the local score of Al

k and Qj .
For each query Qj , j = 1 to 6, the accuracy of our p-value, ph, is measured by

χ2
j defined as follows

χ2
j(ph) =

10∑

l=1

100∑

i=1

[plj
e (ailj) − ph(bailj

)]2

plj
e (ailj)

. (17)

The accuracy of the p-value obtained by BLAST, pB , is calculated in the same way
by substituting ph(bailj

) with pB(ailj).
This measure is used to compare the new approximate p-value ph to the BLAST

one pB and the results are given in Table 4. For each query, ph outperforms pB ,
except for the longest length 827. The behavior of χ2 for this latter query is probably
due to the sensitivity of χ2 when the empirical p-value is much smaller than the
approximate one. Indeed, for this query, we only have one point such that the
p-value ph is much larger than pe and which leads to a value of χ2 substantially
larger than the BLAST one: removing this sequence leads to χ2

6(ph) = 130.22 that
is a value close to the one of BLAST χ2

6(pB) = 129.36. Moreover, if we focus
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Figure 4: Behavior of χ2(ph) and χ2(pB) according to Dl’s, l = 1, . . . , 10, which
present the databases with the different sequence lengths. This figure corresponds
to the longest query, Q6, with the length equal to 827.

on the behavior of the query with length 827 through each term l of the sum (17),
for l = 1 to 10, we find interesting results displayed in Figure 4. It emphasizes
two cases: the databases with sequence lengths 550 and 630, which lead to the
large value of χ2

6(ph). Globally, for the longest query where BLAST is known to
be relevant, our p-value and the BLAST one have a similar behavior. For shorter
sequences, the p-value ph, appears more accurate than the BLAST one, pB.

Here, PSE is not an appropriate criterion to compare our approach with BLAST.
Indeed, for BLAST p-value, measure of PSE is not meaningful since the regression
of log(pB) over log(pe) does not satisfy a linear model as shown by the coefficient
of determination given in Table 4.

3.5 New approximate p-value and the BLAST one obtained on
real sequences

In this section, we compare the accuracy of ph and pB on real sequences, using
the Structural Classification of Proteins (SCOP) (Murzin et al., 1995) version 1.53.
Sequences are selected using the Astral database (Brenner et al., 2000), removing
similar sequences using an e-value threshold of 10−25. This procedure yields 4352
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Table 5: COMPARISON BETWEEN THE P -VALUE ph AND BLAST ONE pB

ON THE REAL DATABASE SCOP 1.53
Query Length 48 80 103 175 255 309

χ2
j(ph) 41.34 84.56 125.18 52.04 141.79 66.02

χ2
j(pB) 57.74 161.83 163.44 213.62 171.35 273.45

χ2
j values of the p-values ph defined in (9) and the one given by BLAST, pB , relative

to different queries.

distinct sequences, D = {Ak}k=1,...,4352, grouped into families and superfamilies 1.
Six sequences of different lengths are randomly selected from the above database

D defining the queries {Qj}j=1,...,6. They are successively compared with the
remaining sequences D \ {Qj}. Let akj be the observed exact local score corres-
ponding to (Qj, Ak), j = 1 to 6 and k = 1 to 4351. These local scores are obtained
over the scoring scheme BLOSUM62 and the penalty of gap opening and extension
-11 and -1, respectively. The p-value ph is calculated from (9) and pB from BLAST
2.2.15 2. To find the empirical p-value, for each sequences pair (Qj, Ak), j = 1 to
6 and k = 1 to 4351, a database {(Ql

j, A
l
k)}l=1,...,10000 (with the same lengths as

(Qj, Ak)) is independently generated from the letter empirical distribution of the
database D. The empirical p-value pe(a) is computed as

pe(a) =
Na

10000
=

#{(Ql
j, A

l
k) : Mn,m ≥ a}

10000
(18)

where Mn,m is the local score of (Ql
j, A

l
k).

Similarly to the latter subsection, only the χ2 measure is considered since we
have verified (by computing the coefficient of determination R2) that PSE is not
appropriate for both methods. The χ2 is defined as follows

χ2
j(ph) =

d∑

k=1

[pe(ajk) − ph(bajk
)]2

pe(ajk)
(19)

where d is the number of sequences for which BLAST calculates their e-value. We
set the expectation value of BLAST program to 4000 and we get d ' 500 which
varies according to different queries. The χ2 values for BLAST are obtained by
replacing ph(bajk

) with pB(ajk).

1Available from www.cs.columbia.edu/compbio/svm-pairwise.
2The latter address, mentioned in Subsection 3.4, is no more accessible and we then use the

version available from www.ncbi.nlm.nih.gov/BLAST/download.shtml.
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Table 5 shows the values of χ2 for the two p-values ph and pB . As it is seen,
the χ2 values of ph are smaller than the BLAST ones which explains the accuracy
of the new approximate p-value ph. In addition, the variation of χ2(pB)’s is larger
than χ2(ph)’s. Note that these values and the ones of Table 4 for the sequences of
lengths 82, 150 and 307 are nearby. Then, our method appears as a relevant solution
to compute the statistical significance in order to compare a query to a database in
practice.

4 Conclusion and Outlook
In this work, we have introduced a new method for comparing sequences in the
gapped case, based on the statistical significance of gapped alignments. It relies on
h-tuples and h is a crucial parameter that has to be selected in practice. While the
theoretical issue is difficult to address, we have carried out some numerical studies
to outline some tracks to help in the choice of h. The conclusion is that the p-values
are not significantly influenced by the value of h. However, h = 2 seems to be
particularly appealing for short sequences while larger h’s have to be considered
for large sequences. In any case, our method yields appealing results. Nevertheless,
for the large values of h (h ≥ 4), the computation time can be long (this explains
the limitation of our study in this case) and we guess that the choice of a practitioner
will be motivated by a balance between accuracy and computation time.

But, our work focuses on short and medium sequences (n,m ≤ 500). The
comparison with BLAST method, in this case, on both simulated and real database,
shows that our approach is an appropriate alternative to the p-value of BLAST:
while our method is more accurate than BLAST method, we achieve a compar-
able computation time (recall that we use h = 2 in this case). This latter point is
improved by using the direct p-value algorithm presented by Nuel (2006), which
computes the exact value of ph. Then, the proposed method can be considered as a
relevant solution to sequence comparison problems.

The next step will be to classify sequences into predefined families by using
p-values: a small p-value is related to an exceptional similarity and reveals the
closeness to the family candidate. It offers the opportunity to compare the classifi-
cation derived from both our approach and the BLAST one. The quality of classifi-
cation is evaluated, for instance, via the ROC score (Gribskov and Robinson, 1996)
which is based on the true and false positive rates.
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