Hal will be stopped for maintenance from friday on june 10 at 4pm until monday june 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Bifurcation diagram and stability for a one-parameter family of planar vector fields

Abstract : We consider the 1-parameter family of planar quintic systems, $\dot x= y^3-x^3$, $\dot y= -x+my^5$, introduced by A. Bacciotti in 1985. It is known that it has at most one limit cycle and that it can exist only when the parameter $m$ is in $(0.36,0.6)$. In this paper, using the Bendixon-Dulac theorem, we give a new unified proof of all the previous results, we shrink this to $(0.547,0.6)$, and we prove the hyperbolicity of the limit cycle. We also consider the question of the existence of polycycles. The main interest and difficulty for studying this family is that it is not a semi-complete family of rotated vector fields. When the system has a limit cycle, we also determine explicit lower bounds of the basin of attraction of the origin. Finally we answer an open question about the change of stability of the origin for an extension of the above systems.
Document type :
Journal articles
Complete list of metadata

Contributor : Hector Giacomini Connect in order to contact the contributor
Submitted on : Tuesday, January 28, 2014 - 2:10:36 PM
Last modification on : Tuesday, January 11, 2022 - 5:56:07 PM

Links full text




Johanna D. García-Saldaña, Armengol Gasull, Hector Giacomini. Bifurcation diagram and stability for a one-parameter family of planar vector fields. Journal of Mathematical Analysis and Applications, Elsevier, 2014, 413 (1), pp.321-342. ⟨10.1016/j.jmaa.2013.11.047⟩. ⟨hal-00937465⟩



Record views