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LINEAR KOSZUL DUALITY AND FOURIER TRANSFORM

FOR CONVOLUTION ALGEBRAS

IVAN MIRKOVIĆ AND SIMON RICHE

Abstract. In this paper we prove that the linear Koszul duality isomorphism for convolution
algebras in K-homology of [MR3] and the Fourier transform isomorphism for convolution alge-
bras in Borel–Moore homology of [EM] are related by the Chern character. So, Koszul duality
appears as a categorical upgrade of Fourier transform of constructible sheaves. This result
explains the connection between the categorification of the Iwahori–Matsumoto involution for
graded affine Hecke algebras in [EM] and for ordinary affine Hecke algebras in [MR3].

Introduction

0.1. This article is a sequel to [MR1, MR2, MR3]. It links two kinds of “Fourier” transforms
prominent in mathematics, the Fourier transform for constructible sheaves and the Koszul du-
ality. This is done in a particular situation which is of interest in representation theory, namely
the context of convolution algebras.

0.2. Chern character map. Our geometric setting consists of two vector subbundles F1, F2

of a trivial vector bundle X × V over a (smooth and proper) complex algebraic variety X. We
consider the fiber product F1×V F2 as well as the dual object – the fiber product F⊥

1 ×V ∗ F⊥
2 of

orthogonal complements of F1 and F2 inside the dual vector bundle X × V ∗. The linear Koszul
duality mechanism from [MR1, MR2, MR3] is a geometric version of the standard Koszul duality
between graded modules over the symmetric algebra of a vector space and graded modules over
the exterior algebra of the dual vector space. Here, this formalism provides an equivalence of

categories of equivariant coherent sheaves on the derived fiber products F1

R
×V F2 and F

⊥
1

R
×V ∗ F⊥

2

(in the sense of dg-schemes). In particular we get an isomorphism of equivariant K-homology
groups of algebraic varieties F1×V F2 and F

⊥
1 ×V ∗F⊥

2 .1 On the other hand, the Fourier transform
for constructible sheaves provides an isomorphism of equivariant Borel–Moore homologies of fiber
products F1 ×V F2 and F⊥

1 ×V ∗ F⊥
2 , see [EM].

Our main result shows that the maps in K-homology and in Borel–Moore homology are related
by the Chern character map (the “Riemann–Roch map”) from equivariant K-homology to (com-
pleted) equivariant Borel–Moore homology.2 In this way, linear Koszul duality appears as a
categorical upgrade of the topological Fourier transform.

1Note that K-homology does not distinguish the derived fiber product from the usual fiber product of varieties,
see [MR3].

2For simplicity we work under a technical assumption on Fi’s which is satisfied in all known applications.
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2 IVAN MIRKOVIĆ AND SIMON RICHE

0.3. Convolution algebras. In Representation Theory the above setting provides a geometric
construction of algebras. Indeed, when F1 = F2 =: F then the equivariant K-homology and
Borel–Moore homology of F ×V F have structures of convolution algebras; for simplicity in
this introduction we denote these AK(F ) and ABM(F ). The Chern character provides a map of

algebras AK(F ) → ÂBM(F ) from the K-homology algebra to a completion of the Borel–Moore
homology algebra [CG, Kat]. This gives a strong relation between their representation theories:
one obtains results on the representation theory of the (more interesting) algebra AK(F ) through
the relation to the representation theory of the algebra ABM(F ) which is more accessible.3 In
this setting, the maps

ıK : AK(F )
∼
−→ AK(F

⊥), ıBM : ABM(F )
∼
−→ ABM(F⊥)

induced respectively by linear Koszul duality and by Fourier transform are isomorphisms of
algebras.

An important example of this mechanism appears in the study of affine Hecke algebras, see
[KL, CG]. The Steinberg variety Z of a complex connected reductive algebraic group G (with
simply connected derived subgroup) is of the above form F ×V F where the space X is the flag
variety B of G, the vector space V is the dual g∗ of the Lie algebra g of G, and F is the cotangent
bundle T ∗B. The G×Gm-equivariant K-homology and Borel–Moore homology of the Steinberg
variety Z are then known to be realizations of the affine Hecke algebra Haff of the dual reductive
group Ǧ (with equal parameters) and of the corresponding graded affine Hecke algebra Haff . In
this case the dual version F⊥ ×V ∗ F⊥ turns out to be another – homotopically equivalent –
version of the Steinberg variety Z. Therefore, ıK and ıBM are automorphisms of Haff and Haff ,
respectively. In fact these are (up to minor “correction factors”) geometric realizations of the
Iwahori–Matsumoto involution of Haff (see [EM]) and Haff (see [MR3]). The Chern character
map can also be identified, in this case, with (a variant of) a morphism constructed (by algebraic
methods) by Lusztig [L1]. So, in this situation, Theorem 1.9.1 explains the relation between
results of [MR3] and [EM].

0.4. Character cycles and characteristic cycles. In [Kas], Kashiwara introduced for a
group G acting on a space X an invariant of a G-equivariant constructible sheaf F on X. This
is an element chG(F) of the Borel–Moore homology of the stabilizer space GX := {(g, x) ∈
G×X | g · x = x}. He “linearized” this construction to an element chg(F) of the Borel–Moore
homology of the analogous stabilizer space gX for the Lie algebra g of the group G. Under some
assumptions (that put one in the above geometric setting) he proved that the characteristic
cycle of F is the image of chg(F) under a Fourier transform map in Borel–Moore homology
(see [Kas, §1.9]). This work is the origin of papers on Iwahori–Matsumoto involution [EM] and
linear Koszul duality [MR1]. From this point of view, the present paper is a part of the effort
to categorify Kashiwara’s character cycles.

0.5. Conventions and notation. In the body of the paper we will consider many morphisms
involving K-homology and Borel–Moore homology. We use the general convention that mor-
phisms involving only K-homology are denoted using bold letters, those involving only Borel–
Moore homology are denoted using fraktur letters, and the other ones are denoted using “sans
serif” letters.

3The reason is the powerful machinery of perverse sheaves that one can use in the topological setting, see [CG].
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If X is a complex algebraic variety endowed with an action of a reductive algebraic group A, we
denote by CohA(X) the category of A-equivariant coherent sheaves on X. If Y ⊂ X is an A-

stable closed subvariety we denote by CohAY (X) the subcategory consisting of sheaves supported
set-theoretically on Y ; recall that DbCohAY (X) identifies with a full subcategory in DbCohA(X).
When considering Gm-equivariant coherent sheaves, we denote by 〈1〉 the functor of tensoring
with the tautological 1-dimensional Gm-module.

0.6. Organization of the paper. In Section 1 we define all our morphisms, and state our
main result (Theorem 1.9.1). In Section 2 we study more closely the case of convolution algebras,
and even more closely the geometric setting for affine Hecke algebras; in this case we make all
the maps appearing in Theorem 1.9.1 explicit. In Sections 3 and 4 we prove some compatibility
statements for our constructions, and we apply these results in Section 5 to the proof of Theorem
1.9.1. Finally, Appendix A contains the proofs of some technical lemmas needed in other sections.

0.7. Acknowledgements. We thank Roman Bezrukavnikov for useful conversations, and the
referee for helpful suggestions and for insisting on making the application to Hecke algebras
more explicit.

I.M. was supported by NSF Grants. S.R. was supported by ANR Grants No. ANR-09-JCJC-
0102-01, ANR-2010-BLAN-110-02 and ANR-13-BS01-0001-01.

1. Definitions and statement

1.1. Equivariant homology and cohomology. If A is a complex linear algebraic group act-
ing on a complex algebraic variety Y , we denote by DA

const(Y ) the A-equivariant derived category
of constructible complexes on Y with complex coefficients, see [BL]. Let CY , respectively DY ,
be the constant, respectively dualizing, sheaf on Y . These are objects of DA

const(Y ). We also

denote by DY : DA
const(Y )

∼
−→ DA

const(Y )op the Grothendieck–Verdier duality functor.

IfM is in DA
const(Y ), the i-th equivariant cohomology of Y with coefficients inM is by definition

HiA(Y,M) := ExtiDA
const(Y )

(CY ,M).

In particular, the equivariant cohomology and Borel–Moore homology of Y are defined by

HiA(Y ) := HiA(Y,CY ), HAi (Y ) := H−i
A (Y,DY ).

We will also use the notation

H•
A(Y ) :=

⊕

i∈Z

HiA(Y ), Ĥ•
A(Y ) :=

∏

i∈Z

HiA(Y ),

HA• (Y ) :=
⊕

i∈Z

HAi (Y ), ĤA• (Y ) :=
∏

i∈Z

HAi (Y ).

(By construction of the equivariant derived category, see [BL, §2.2], these definitions coincide –
up to grading shift – with the definitions used e.g. in [L2, EG2, BZ] using some “approximations”
of EA.) Note that with our conventions, one can have HAi (Y ) 6= 0 for i < 0. We will use the
general convention that we denote by the same symbol an homogeneous morphism between
vector spaces of the form HA• (·) or H•

A(·) and the induced morphism between the associated

vector spaces ĤA• (·) or Ĥ
•
A(·).
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The vector spaces H•
A(Y ) and HA• (Y ) have natural gradings, and most morphisms between such

spaces that will occur in this paper will be homogeneous. We will sometimes write a morphism
e.g. as H•

A(Y ) → H•+d
A (Y ′) to indicate that it shifts degrees by d.

There exists a natural (right) action of the algebra H•
A(Y ) on HA• (Y ) induced by composition of

morphisms in DA
const(Y ); it extends to an action of the algebra Ĥ•

A(Y ) on ĤA• (Y ).

We will also denote by KA(Y ) the A-equivariant K-homology of Y , i.e. the Grothendieck group
of the category of A-equivariant coherent sheaves on Y .

We will frequently use the following classical constructions. If Z is another algebraic variety
endowed with an action of A, and if f : Z → Y is a proper A-equivariant morphism, then there
exist natural “proper direct image” morphisms

pdif : K
A(Z) → KA(Y ), resp. pdif : H

A
• (Z) → HA• (Y ),

see [CG, §5.2.13], resp. [CG, §2.6.8].4 Each of these maps satisfies a projection formula; in
particular for c ∈ H•

A(Y ) and d ∈ HA• (Z) we have

(1.1.1) pdif (d · f
∗(c)) = pdif (d) · c,

where f∗ : H•
A(Y ) → H•

A(Z) is the natural pullback morphism.

On the other hand, if Y is smooth, Y ′ ⊂ Y is an A-stable smooth closed subvariety, and Z ⊂ Y
is a not necessarily smooth A-stable closed subvariety, then we have “restriction with supports”
morphisms

res : KA(Z) → KA(Z ∩ Y ′), resp. res : HA• (Z) → HA•−2 dim(Y )+2 dim(Y ′)(Z ∩ Y ′)

associated with the inclusion Y ′ →֒ Y , see [CG, p. 246], resp. [CG, §2.6.21]. (The definition of
the second morphism is recalled in §A.5.) Note that the morphism res satisfies the formula

(1.1.2) res(c · d) = res(c) · i∗(d)

for c ∈ HA• (Z) and d ∈ H•
A(Z), where i : Z ∩ Y ′ →֒ Z is the embedding and i∗ is the pullback

in cohomology as in (1.1.1). (In the non-equivariant setting, this follows from [CG, Equa-
tion (2.6.41)] and the definition of res in [CG, §2.6.21]; the equivariant case follows using the
remark in Footnote 4.)

Finally, if E → Y is an A-equivariant vector bundle, then we have the Thom isomorphism

HA• (E) ∼= HA•−2rk(E)(Y ).

1.2. Fourier–Sato transform. Let again A be a complex linear algebraic group, and let Y
be an A-variety. If r : E → Y is an A-equivariant (complex) vector bundle, we equip it with an
A × Gm-action where t ∈ Gm acts by multiplication by t−2 along the fibers of r. We denote
by E⋄ the A×Gm-equivariant dual vector bundle (so that t ∈ Gm acts by multiplication by t2

along the fibers of the projection to Y ), and by E∗ the dual A-equivariant vector bundle, which
we equip with a Gm-action where t ∈ Gm acts by multiplication by t−2 along the fibers. We
denote by ř : E∗ → X the projection.

4Only non-equivariant Borel–Moore homology is considered in [CG]. However, the constructions for equivariant
homology are deduced from these, since the equivariant homology of Y can be described in terms of ordinary
homology of various spaces of the form U ×A Y where U is an “approximation” of EA, see e.g. [EG1, §2.8].
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The Fourier–Sato transform defines an equivalence of categories

(1.2.1) FE : DA×Gm

const (E)
∼
−→ DA×Gm

const (E⋄).

This equivalence is constructed as follows (see [KS, §3.7]; see also [AHJR, §2.7] for a reminder
of the main properties of this construction). Let Q := {(x, y) ∈ E ×Y E

⋄ | Re(〈x, y〉) ≤ 0}, and
let q : Q→ E, q̌ : Q→ E⋄ be the projections. Then we have

FE := q̌!q
∗.

(This equivalence is denoted (·)∧ in [KS]; it differs by a cohomological shift from the equivalence
TE of [AHJR].)

Inverse image under the automorphism of A × Gm which sends (g, t) to (g, t−1) establishes an
equivalence of categories

(1.2.2) DA×Gm

const (E⋄)
∼
−→ DA×Gm

const (E∗),

see [BL, Chap. 6]. We will denote by

FE : DA×Gm

const (E)
∼
−→ DA×Gm

const (E∗)

the composition of (1.2.1) and (1.2.2).

Let F ⊂ E be an A-stable subbundle, and denote by F⊥ ⊂ E∗ the orthogonal to F . Then one
can consider the constant sheaf CF as an object of DA×Gm

const (E). (Here and below, we omit direct
images under closed inclusions when no confusion is likely.) Similarly, we have the object CF⊥

of DA×Gm

const (E∗). The following result is well known; we reproduce the proof for future reference.

Lemma 1.2.3. There exists a canonical isomorphism

FE(CF )
∼= CF⊥ [−2rk(F )].

Proof. It is equivalent to prove a similar isomorphism for FE. For simplicity we denote F⊥ by
the same symbol when it is considered as a subbundle of E⋄.

By definition of FE we have a canonical isomorphism

FE(CF )
∼= q̌F !CQF

,

where QF := q−1(F ) ⊂ Q and q̌F is the composition of q̌ with the inclusion QF →֒ Q. There
is a natural closed embedding iF : F ×Y F

⊥ →֒ QF ; we denote by UF the complement and by

jF : UF →֒ QF the inclusion. The natural exact triangle jF !CUF
→ CQF

→ iF∗CF×XF⊥

+1
−−→

provides an exact triangle

qF !jF !CUF
→ qF !CQF

→ qF!
iF !CF×XF⊥

+1
−−→ .

Using the fact that H•
c(R≥0;C) = 0, one can easily check that qF !jF !CUF

= 0, so that the second

map in this triangle is an isomorphism. Finally, qF ◦ iF : F ×Y F⊥ → E⋄ identifies with the
composition of the projection F ×X F⊥ → F⊥ with the embedding F⊥ →֒ E⋄. We deduce a
canonical isomorphism

qF !CQF

∼= CF⊥[−2rk(F )],

which finishes the proof. �
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We will mainly use these constructions in the following situation. Let V be an A-module (which
we will consider as an A-equivariant vector bundle over the variety pt := Spec(C)), and let
E := V × Y , an A-equivariant vector bundle over Y . We denote by p : E → V , p̌ : E∗ → V ∗ the
projections. As above, let F ⊂ E be an A-stable subbundle.

Corollary 1.2.4. There exists a canonical isomorphism

(1.2.5) FV (p!CF )
∼= p̌!CF⊥ [−2rk(F )].

Proof. By [KS, Proposition 3.7.13] (see also [AHJR, §A.4]) we have a canonical isomorphism of
functors

FV ◦ p! ∼= p̌! ◦ FE .

In particular we deduce an isomorphism FV (p!CF )
∼= p̌!FE(CF ). Then the result follows from

Lemma 1.2.3. �

1.3. Equivariant homology as an Ext-algebra. From now on we let G be a complex con-
nected reductive algebraic group, X be a smooth and proper complex algebraic variety, and V
be a finite dimensional G-module. Let E := V ×X, considered as a G×Gm-equivariant vector
bundle as in §1.2, and let F1, F2 be G-stable subbundles of the vector bundle E over X. As in
§1.2, we denote by p : E → V the projection, and by F⊥

1 , F
⊥
2 ⊂ E∗ the orthogonals to F1 and

F2. Then there exists a canonical isomorphism

canF1,F2 : H
G×Gm

• (F1 ×V F2)
∼
−→ Ext

2 dim(F2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
).

Let us explain (for future reference) how this isomorphism can be constructed, following [CG, L3].
Consider the cartesian diagram

E ×V E
� � j

//

µ

��

E × E

p×p

��
V � � ∆ // V × V

where ∆ is the diagonal embedding. Then in [CG, Equation (8.6.4)] (see also [L3, §1.15 and
§2.4]) the authors construct a canonical and bifunctorial isomorphism

µ∗j
!(DE(A1)⊠A2) ∼= RHomC(p!A1, p!A2)

for A1, A2 in DG×Gm

const (E). Applying equivariant cohomology, we obtain an isomorphism

(1.3.1) Ext•
DG×Gm

const (V )
(p!A1, p!A2) ∼= H•

G×Gm

(
E ×V E, j

!(DE(A1)⊠A2)
)
.

Setting A1 = CF1
, A2 = CF2

we deduce an isomorphism

Ext•
DG×Gm

const (V )
(p!CF1

, p!CF2
) ∼= H•

G×Gm

(
E ×V E, j

!(DF1
⊠ CF2

)
)
.

Let a : F1 × F2 →֒ E ×E be the inclusion, and consider the cartesian diagram

F1 ×V F2
� � b //

� _

k
��

E ×V E� _

j

��
F1 × F2

� � a // E × E.
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Then using the base change isomorphism we obtain

H•
G×Gm

(
E ×V E, j

!(DF1
⊠ CF2

)
)
∼= H•

G×Gm

(
E ×V E, j

!a∗(DF1
⊠ CF2

)
)

∼= H•
G×Gm

(
E ×V E, b∗k

!(DF1
⊠ CF2

)
)
∼= H•

G×Gm

(
F1 ×V F2, k

!(DF1
⊠ CF2

)
)
.

Now we use the canonical isomorphisms CF2
∼= DF2

[−2 dim(F2)] (since F2 is smooth) and

k!(DF1
⊠DF2

) ∼= k!(DF1×F2
) ∼= DF1×V F2

to obtain the isomorphism canF1,F2 .

1.4. The Fourier isomorphism. We continue with the setting of §1.3, and denote by p̌ : E∗ →
V ∗ the projection. Then we have canonical isomorphisms

canF1,F2 : H
G×Gm

• (F1 ×V F2)
∼
−→ Ext

2 dim(F2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
);

canF⊥
1 ,F

⊥
2
: HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 )
∼
−→ Ext

2 dim(F⊥
2 )−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
).

On the other hand, through the canonical isomorphisms FV (p∗CFi
) ∼= p̌∗CF⊥

i
[−2rk(Fi)] for

i = 1, 2 (see (1.2.5)), the functor FV induces an isomorphism

Ext•
DG×Gm

const (V )
(p!CF1

, p!CF2
)

∼
−→ Ext

•−2rk(F2)+2rk(F1)

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
).

We denote by

FourierF1,F2
: HG×Gm

• (F1 ×V F2)
∼
−→ H

G×Gm

•+2dim(F⊥
2 )−2 dim(F1)

(F⊥
1 ×V ∗ F⊥

2 )

the resulting isomorphism. This isomorphism, considered in particular in [EM], was the starting
point of our work on linear Koszul duality.

1.5. Linear Koszul duality. Let us recall the definition and main properties of linear Koszul
duality, following [MR1, MR2, MR3]. In this paper we will only consider the geometric situation
relevant for convolution algebras, as considered in [MR3, §4]. However we will allow using two
different vector bundles F1 and F2; the setting of [MR3, §4] corresponds to the choice F1 = F2.

We continue with the setting of §1.3, and denote by ∆V ⊂ V × V the diagonal copy of V . We
will consider the derived category

Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F1 × F2)
)

as defined in [MR3, §3.1]. By definition this is a subcategory of the derived category of G×Gm-
equivariant quasi-coherent dg-modules over a certain sheaf of OX×X -dg-algebras on X × X,
which we will denote by AF1,F2 . Note that the derived intersection

(∆V ×X ×X)
R

∩E×E (F1 × F2)

is quasi-isomorphic to the derived fiber product F1
R

×V F2 in the sense of [BR, §3.7].

Similarly we have a derived category

Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥
1 × F⊥

2 )
)
.
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We denote by ωX the canonical line bundle on X. Then by [MR3, Theorem 3.1] there exists a
natural equivalence of triangulated categories

KF1,F2 : D
c
G×Gm

(
(∆V ×X ×X)

R

∩E×E (F1 × F2)
)

∼
−→ Dc

G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥
1 × F⊥

2 )
)op

.

More precisely, [MR3, Theorem 3.1] provides an equivalence of categories

κF1,F2 : D
c
G×Gm

(
(∆V ×X ×X)

R

∩E×E(F1 × F2)
)

∼
−→ Dc

G×Gm

(
(∆V ⋄ ×X ×X)

R

∩E⋄×E⋄(F⊥
1 × F⊥

2 )
)op

where ∆V ⋄ ⊂ V ⋄ × V ⋄ is the antidiagonal copy of V ⋄. (The construction of [MR3] depends on

the choice of an object E in DbCohG×Gm(X ×X) whose image in DbCoh(X ×X) is a dualizing
object; here we take E = OX ⊠ωX [dim(X)].) Then KF1,F2 is the composition of κF1,F2 with the
natural equivalence

Dc
G×Gm

(
(∆V ⋄ ×X ×X)

R

∩E⋄×E⋄ (F⊥
1 × F⊥

2 )
) ∼
−→ Dc

G×Gm

(
(∆V ⋄ ×X ×X)

R

∩E⋄×E⋄ (F⊥
1 × F⊥

2 )
)

(see [MR3, §4.3]) and the natural equivalence

Dc
G×Gm

(
(∆V ⋄ ×X ×X)

R

∩E⋄×E⋄ (F⊥
1 × F⊥

2 )
) ∼
−→ Dc

G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗ (F⊥
1 × F⊥

2 )
)

induced by the automorphism of Gm sending t to t−1.

Note that we have H0(AF1,F2) = (πF1,F2)∗OF1×V F2 , where πF1,F2 : F1 ×V F2 → X × X is
the projection (which is an affine morphism). Hence, using [MR3, Lemma 5.1] and classical
facts on affine morphisms, one can canonically identify the Grothendieck group of the category

Dc
G×Gm

(
(∆V ×X×X)

R

∩E×E (F1×F2)
)
with KG×Gm(F1×V F2). We have a similar isomorphism

for F⊥
1 and F⊥

2 ; hence the equivalence KF1,F2 induces an isomorphism

KoszulF1,F2 : K
G×Gm(F1 ×V F2)

∼
−→ KG×Gm(F⊥

1 ×V ∗ F⊥
2 ).

1.6. Duality and parity conjugation in K-homology. To obtain a precise relation between
the maps FourierF1,F2 of §1.4 and KoszulF1,F2 of §1.5 we will need two auxiliary maps in K-
homology.

Our first map has a geometric flavour, and is induced by Grothendieck–Serre duality. More
precisely, consider the “duality” equivalence

DG×Gm

F⊥
1 ,F

⊥
2
: DbCohG×Gm(F⊥

1 × F⊥
2 ) → DbCohG×Gm(F⊥

1 × F⊥
2 )op

associated with the dualizing complex OF⊥
1
⊠ ωF⊥

2
[dim(F⊥

2 )], which sends G to

RHomO
F⊥
1

×F⊥
2

(G, OF⊥
1
⊠ ωF⊥

2
)[dim(F⊥

2 )]

(see e.g. [MR3, §2.1] and references therein). (Here, ωF⊥
2

is the canonical line bundle on F⊥
2 ,

endowed with its natural G×Gm-equivariant structure.) This equivalence induces a (contravari-

ant) auto-equivalence of the subcategory DbCoh
G×Gm

F⊥
1 ×V ∗F⊥

2
(F⊥

1 ×F⊥
2 ), which we denote similarly.

We denote by

DF⊥
1 ,F

⊥
2
: KG×Gm(F⊥

1 ×V ∗ F⊥
2 )

∼
−→ KG×Gm(F⊥

1 ×V ∗ F⊥
2 )
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the induced automorphism at the level of Grothendieck groups.

Our second map is a “correction factor”, with no interesting geometric interpretation. Namely,
the direct image functor under the projection πF⊥

1 ,F
⊥
2
: F⊥

1 ×V ∗ F⊥
2 → X × X (an affine mor-

phism) induces an equivalence between CohG×Gm(F⊥
1 ×V ∗F⊥

2 ) and the category of locally finitely
generated G×Gm-equivariant modules over the OX×X -algebra (πF⊥

1 ,F
⊥
2
)∗OF⊥

1 ×V ∗F⊥
2
. Since Gm

acts trivially on X×X, one can consider (πF⊥
1 ,F

⊥
2
)∗OF⊥

1 ×V ∗F⊥
2
as a graded G-equivariant OX×X -

algebra, and this grading is concentrated in even degrees. Hence if F is any module over this
algebra, then we have F = Feven ⊕ Fodd where Feven, resp. Fodd, is concentrated in even,
resp. odd, degrees. We denote by

iF⊥
1 ,F

⊥
2
: KG×Gm(F⊥

1 ×V ∗ F⊥
2 )

∼
−→ KG×Gm(F⊥

1 ×V ∗ F⊥
2 )

the automorphism which sends the class of a module F = Feven ⊕ Fodd as above to [Feven] −
[Fodd].

1.7. Reminder on the equivariant Riemann–Roch theorem. Let us recall the definition
and the main properties of the “equivariant Riemann–Roch morphism” for a complex algebraic
variety, following [EG2]. (See also [BZ] for a more direct treatment, without much details.) Let
A be a complex linear algebraic group, acting on a complex algebraic variety Y . Then we have
a “Riemann–Roch” morphism

τAY : KA(Y ) → ĤA• (Y ).

More precisely, we define this morphism as the composition

(1.7.1) KA(Y ) −→
∏

i≥0

Q⊗Z CHiA(Y ) −→
∏

i∈Z

HAi (Y ) = ĤA• (Y ),

where CHiA(Y ) is the i-th equivariant Chow group, see [EG2, §1.2], the first arrow is the mor-
phism constructed in [EG2, Section 3], and the second morphism is induced by the “equivariant
cycle map” of [EG1, §2.8].

Remark 1.7.2. It follows from [EG2, Theorem 4.1] that the first morphism in (1.7.1) induces an
isomorphism between a certain completion of Q ⊗Z KA(Y ) and

∏
i≥0 Q ⊗Z CHiA(Y ). Hence, if

the equivariant cycle map is an isomorphism, a similar claim holds for our morphism τAY .

Below we will use the following properties of the map τAY , which follow from the main results
of [EG2].

Theorem 1.7.3 (Equivariant Riemann–Roch theorem). If f : Y → Y ′ is an A-equivariant
proper morphism, then we have

τAY ′ ◦ pdif = pdif ◦ τ
A
Y .

Proof. By [EG2, Theorem 3.1(b)], the first arrow in (1.7.1) is compatible with proper direct
image morphisms (in the obvious sense). And by [Fu, p. 372] the second arrow is also com-
patible with proper direct image morphisms, completing the proof. (More precisely, only the
non-equivariant setting is considered in [Fu], but the equivariant case follows, using the same
arguments as in Footnote 4.) �
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If F is an A-equivariant vector bundle over Y , then one can define its (cohomological) equivariant

Chern classes in H•
A(Y ), and define a (cohomological) equivariant Todd class tdA(F ) ∈ Ĥ•

A(Y ),
see [EG2, Section 3] or [BZ, §3] for similar constructions. This element is invertible in the

algebra Ĥ•
A(Y ). If Y is smooth, we denote by TdAY the equivariant Todd class of the tangent

bundle of Y .

The following result can be stated and proved under much weaker assumptions, but only this
particular case will be needed.

Proposition 1.7.4. Let Y be a smooth A-variety, and let f : Z →֒ Y be the embedding of a
smooth subvariety with normal bundle N . Then we have

resf ◦ τ
A
Y (x) =

(
τAZ ◦ resf (x)

)
· tdA(N)

for any x ∈ KA(Y ), where resf : H
A
• (Y ) → HA•−2 dim(Y )+2 dim(Z)(Z) and resf : K

A(Y ) → KA(Z)

are the “restriction with supports” morphisms.

Proof. A similar formula for the first arrow in (1.7.1) follows from [EG2, Theorem 3.1(d)]. To
deduce our result we need to check that the equivariant cycle map commutes with restriction
with supports and with multiplication by a Todd class. In the non-equivariant situation, the
first claim follows from [Fu, Example 19.2.1] and the second one from [Fu, Proposition 19.1.2].
The equivariant case follows, using the same arguments as in Footnote 4. �

Remark 1.7.5. Note that, in the setting of Proposition 1.7.4, we have f∗TdAY = TdAZ · tdA(N),
where f∗ is as in (1.1.1). (In fact, this formula easily follows from the compatibility of Chern
classes with pullback and extensions of vector bundles.)

Finally we will need the following fact, which follows from [EG2, Theorem 3.1(d)] applied to the
projection Y → pt (see also [BZ, Theorem 5.1]).

Proposition 1.7.6. If Y is smooth, then

τAY (OY ) = [Y ] · TdAY ,

where [Y ] is the equivariant fundamental class of Y (i.e. the image of the fundamental class in
the Chow group from [EG1, §2.2] under the cycle map).

1.8. Riemann–Roch maps. Following [CG, §5.11], we consider the “bivariant Riemann–Roch
maps”

RRF1,F2
: KG×Gm(F1 ×V F2) → ĤG×Gm

• (F1 ×V F2),

RRF⊥
1 ,F

⊥
2
: KG×Gm(F⊥

1 ×V ∗ F⊥
2 ) → ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 )

defined by

RRF1,F2
(c) = τG×Gm

F1×V F2
(c) ·

(
1⊠ (TdG×Gm

F2
)−1

)
,

RRF⊥
1 ,F

⊥
2
(d) = τG×Gm

F⊥
1 ×V ∗F⊥

2
(d) ·

(
(TdG×Gm

F⊥
1

)−1 · TdG×Gm

X ⊠ (TdG×Gm

X )−1
)
.

In the expression for RRF1,F2
, 1⊠ (TdG×Gm

F2
)−1 is considered as an element of Ĥ•

G×Gm

(F1×V F2)
through the composition

Ĥ•
(G×Gm)2(F1 × F2) → Ĥ•

G×Gm

(F1 × F2) → Ĥ•
G×Gm

(F1 ×V F2)
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where the first morphism is the restriction morphism associated with the diagonal embedding
of G × Gm, and the second morphism is the pullback in equivariant cohomology. In the ex-

pression for RRF⊥
1 ,F

⊥
2
, first we consider TdG×Gm

X as an element of Ĥ•
G×Gm

(E∗) using the Thom

isomorphism H•
G×Gm

(E∗)
∼
−→ H•

G×Gm

(X); then the same conventions as above allow to consider

(TdG×Gm

F⊥
1

)−1 · TdG×Gm

X ⊠ (TdG×Gm

X )−1 as an element in Ĥ•
G×Gm

(F⊥
1 ×V ∗ F⊥

2 ).

1.9. Statement. The main result of this paper is the following.

Theorem 1.9.1. Assume that the proper direct image morphism

(1.9.2) HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → HG×Gm

• (F⊥
1 ×V ∗ E∗)

induced by the inclusion F⊥
2 →֒ E∗ is injective. Then the following diagram commutes:

KG×Gm(F1 ×V F2)
i
F⊥
1

,F⊥
2
◦D

F⊥
1

,F⊥
2
◦KoszulF1,F2

//

RRF1,F2
��

KG×Gm(F⊥
1 ×V ∗ F⊥

2 )

RR
F⊥
1

,F⊥
2

��

ĤG×Gm

• (F1 ×V F2)
FourierF1,F2 // ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).

The proof of Theorem 1.9.1 is given in §5.3. It is based on compatibility (or functoriality) results
for all the maps considered in the diagram, which are stated in Sections 3 and 4; some of these
results might be of independent interest. Let us point out that our assumption is probably not
needed for the result to hold.

Remark 1.9.3. (Injectivity assumption.) The fiber product F⊥
1 ×V ∗ E∗ is isomorphic to F⊥

1 ×X,
hence is a vector bundle over X2. In particular, by the Thom isomorphism we have

(1.9.4) HG×Gm

• (F⊥
1 ×V ∗ E∗) ∼= H

G×Gm

•−2rk(F⊥
1 )

(X ×X).

Moreover, by [CG, Lemma 5.4.35] the following diagram commutes:

(1.9.5)

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) //

��

HomH•
G×Gm

(pt)

(
HG×Gm

• (F⊥
2 ),HG×Gm

•−2 dim(F⊥
2 )

(F⊥
1 )

)

≀
��

H
G×Gm

•−2rk(F⊥
1 )

(X ×X) // HomH•
G×Gm

(pt)

(
H
G×Gm

•−2rk(F⊥
2 )

(X),HG×Gm

•−2 dim(F⊥
2 )−2rk(F⊥

1 )
(X)

)
.

Here the horizontal arrows are induced by convolution, the left vertical arrow is the composition
of (1.9.2) and the isomorphism (1.9.4), and the right vertical arrow is induced by the respective
Thom isomorphisms. Assume now that Hodd

c (X) = 0 (e.g. that X is paved by affine spaces).
Then one can easily check that the lower horizontal arrow in diagram (1.9.5) is an isomorphism.
Hence in this case our assumption is equivalent to injectivity of the upper horizontal arrow. If
moreover F1 = F2 = F , then HG×Gm

• (F⊥ ×V ∗ F⊥) is an algebra and HG×Gm

• (F⊥) is a module
over this algebra. In this case our assumption amounts to the condition that the action on this
module is faithful.
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1.10. An injectivity criterion for (1.9.2). The following result gives an easy criterion which
ensures that the assumption of Theorem 1.9.1 is satisfied.

Proposition 1.10.1. Assume that Hodd
c (F⊥

1 ×V ∗ F⊥
2 ) = 0. Then the proper direct image mor-

phism
HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → HG×Gm

• (F⊥
1 ×V ∗ E∗)

induced by the inclusion F⊥
2 →֒ E∗ is injective.

Proof. Let T be a maximal torus of G. Then we have a commutative diagram

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) //

��

HG×Gm

• (F⊥
1 ×V ∗ E∗)

��

HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) // HT×Gm

• (F⊥
1 ×V ∗ E∗)

where horizontal arrows are proper direct image morphisms, and vertical arrows are forgetful
maps. The left vertical arrow is injective: indeed, by our assumption and [L2, Proposition 7.2],
there exist (non-canonical) isomorphisms

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) ∼= H−•
G×Gm

(pt)⊗C H•(F
⊥
1 ×V ∗ F⊥

2 ),(1.10.2)

HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) ∼= H
−•
T×Gm

(pt)⊗C H•(F
⊥
1 ×V ∗ F⊥

2 )(1.10.3)

such that our forgetful morphism is induced by the natural morphism H•
G×Gm

(pt) → H•
T×Gm

(pt),
which is well known to be injective. Hence, to prove that the upper horizontal arrow is injective
it is sufficient to prove that the lower horizontal arrow is injective.

If Q denotes the fraction field of H := H•
T×Gm

(pt), then using again isomorphism (1.10.3), the
natural morphism

HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → Q⊗H HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 )

is injective. We deduce that to prove the proposition it suffices to prove that the induced
morphism

Q⊗H HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → Q⊗H HT×Gm

• (F⊥
1 ×V ∗ E∗)

is injective. Let Y := (X ×X)T denote the T -invariants in X ×X. Then we have

Y = (F⊥
1 ×V ∗ F⊥

2 )T×Gm = (F⊥
1 ×V ∗ E∗)T×Gm .

Consider the commutative diagram

HT×Gm

• (F⊥
1 ×V ∗ F⊥

2 )
α // HT×Gm

• (F⊥
1 ×V ∗ E∗)

HT×Gm

• (Y )

β

iiRRRRRRRRRRRRR γ

66lllllllllllll

where all morphisms are proper direct image morphisms in homology. Then by the localization
theorem (see [L3, Proposition 4.4] or [EM, Theorem B.2]) both β and γ become isomorphisms
after applying Q⊗H (·). Hence the same is true for α; in particular idQ ⊗H α is injective, which
finishes the proof. �

Remark 1.10.4. Using a non-equivariant variant of isomorphism FourierF1,F2 , one can check that

the condition Hodd
c (F⊥

1 ×V ∗ F⊥
2 ) = 0 is equivalent to the condition Hodd

c (F1 ×V F2) = 0.
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2. The case of convolution algebras

In this subsection we study more closely the case F1 = F2. In this case, as we will explain, all the
objects appearing in the diagram of Theorem 1.9.1 are equipped with convolution products, and
all the maps are compatible with these products. In a particular case, these algebras are related
to affine Hecke algebras, and our diagram explains the relation between the categorifications of
Iwahori–Matsumoto involutions obtained in [EM] and [MR3], via maps introduced in [L1].

None of the results of this section are used in the proof of Theorem 1.9.1.

2.1. Convolution. We set F := F1 = F2. As explained in [CG, §5.2.20] or [MR3, §4.1], the
group KG×Gm(F ×V F ) can be endowed with a natural (associative and unital) convolution
product ⋆. In fact, for c, d ∈ KG×Gm(F ×V F ), with our notations this product satisfies5

c ⋆ d = pdip1,3 ◦ res(c⊠ d)

where c⊠ d ∈ KG×Gm

(
(F ×V F )× (F ×V F )

)
is the exterior product of c and d,

res : KG×Gm

(
(F ×V F )× (F ×V F )

)
→ KG×Gm(F ×V F ×V F )

is the restriction with supports morphism associated with the inclusion F 3 →֒ F 4 sending (x, y, z)
to (x, y, y, z), and p1,3 : F ×V F ×V F → F ×V F is the (proper) projection on the first and
third factors. (See [MR3, §4.2] for a similar description at the categorical level.) The unit in
this algebra is the structure sheaf O∆F of the diagonal ∆F ⊂ F ×V F . The same constructions
provide a left, resp. right, action of the algebra KG×Gm(F×V F ) on the group KG×Gm(F ) defined
by

c ⋆ d = pdip1 ◦ resl(c⊠ d), resp. d ⋆ c = pdip2 ◦ resr(d⊠ c)

for c ∈ KG×Gm(F ×V F ) and d ∈ KG×Gm(F ). Here p1, p2 : F ×V F → F are the projections on
the first and second factor respectively, the exterior products are defined in the obvious way,
and

resl : K
G×Gm

(
(F ×V F )× F

)
→ KG×Gm(F ×V F ),

resp. resr : K
G×Gm

(
F × (F ×V F )

)
→ KG×Gm(F ×V F ),

is the restriction with supports morphism associated with the inclusion F 2 →֒ F 3 sending (x, y)
to (x, y, y), resp. to (x, x, y).

Of course we have similar constructions for the subbundle F⊥ ⊂ E∗, and we will use the same
notation in this context.

Lemma 2.1.1. The morphisms KoszulF,F , DF⊥,F⊥ and iF⊥,F⊥ are (unital) algebra isomor-
phisms.

Proof. The case of KoszulF,F follows from [MR3, Propositions 4.3 & 4.5].6 The case of DF⊥,F⊥

is not difficult, and left to the reader (see [L4, Lemma 9.5] for a similar statement, with slightly
different conventions in the definition of Grothendieck–Serre duality). Finally, the case of iF⊥,F⊥

is obvious. �

5Note that our convention for the definition of the convolution product is opposite to the one adopted in [MR3].
6In [MR3] we use the dualizing complex ωX ⊠OX [dim(X)] instead of OX ⊠ωX [dim(X)]. But the results cited

remain true (with an identical proof) with our present conventions.
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This convolution construction has a natural analogue in equivariant Borel–Moore homology, see
e.g. [CG, §2.7] or [L3, §2]. In fact, the convolution product on HG×Gm

• (F ×V F ), which we will
also denote ⋆, satisfies

c ⋆ d = pdip1,3 ◦ res(c⊠ d),

where res is defined as for res above (replacing K-homology by Borel–Moore homology). The
unit for this convolution product is the equivariant fundamental class [∆F ] of the diagonal
∆F ⊂ F ×V F . We also have a left and a right module structure on HG×Gm

• (F ), defined via the
formulas

c ⋆ d = pdip1 ◦ resl(c⊠ d), resp. d ⋆ c = pdip2 ◦ resr(d⊠ c)

for c ∈ HG×Gm

• (F×V F ) and d ∈ HG×Gm

• (F ). Finally we have similar structures for the subbundle
F⊥ ⊂ E∗.

Lemma 2.1.2. The morphism FourierF,F is a (unital) algebra isomorphism.

Proof. One can also show that the isomorphism canF,F is a (unital) algebra isomorphism,
where the right-hand side is endowed with the Yoneda product; see [CG, Theorem 8.6.7], [L3,
Lemma 2.5] or [Kat, Theorem 4.5] for similar statements. Then the claim follows from the fact
that FourierF,F is induced by a functor. �

2.2. Compatibility for the Riemann–Roch maps.

Lemma 2.2.1. Assume7 that Hodd
c (F ×V F ) = 0. Then the morphisms RRF,F and RRF⊥,F⊥

are unital algebra morphisms.

Proof. We only treat the case of RRF,F ; the case of RRF⊥,F⊥ is similar. (Note that, by Re-

mark 1.10.4, our “odd vanishing” assumption implies that Hodd
c (F⊥×V ∗ F⊥) = 0 also.) The fact

that our morphism sends the unit to the unit follows from Theorem 1.7.3 and Proposition 1.7.6,
using the projection formula (1.1.1). It remains to prove the compatibility with products.

To prove the lemma we use “projective completions,” namely we set V := P(V ⊕ C) and let
F be the projective bundle associated with the vector bundle F × C over X. Then we have a
projection F → V , and open embeddings F →֒ F , V →֒ V . Note that F ×V F = F ×V F , so

that F ×V F is a closed subvariety in F × F . Similarly, one can identify F ×V F with a closed
subvariety in F × F , so that we have proper direct image morphisms

ı1 : H
G×Gm

• (F ×V F ) → HG×Gm

• (F × F ), ı2 : H
G×Gm

• (F ×V F ) → HG×Gm

• (F × F ),

ı3 : H
G×Gm

• (F ×V F ) → HG×Gm

• (F × F ).

Using the same arguments as in the proof of Proposition 1.10.1, one can check that the morphism
ı3 is injective under our assumption. There exists a natural convolution product

⋆ : HG×Gm

• (F × F )× HG×Gm

• (F × F ) → HG×Gm

• (F × F )

defined by
c ⋆ d = pdip′1,3

◦ res′(c⊠ d),

7This assumption is probably unnecessary. However, to avoid it one would need a more general variant of
Proposition 1.7.4 (as in [CG, Theorem 5.8.14], for instance) for which we could not find any reference or easy
proof.
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where p′1,3 : F × F × F → F × F is the (proper) projection on the first and third factors, and

res : HG×Gm

• (F × F × F × F ) → HG×Gm

• (F × F × F ) is the restriction with supports morphism
associated with the inclusion sending (x, y, z) to (x, y, y, z). Moreover one can check (using in
particular Lemma A.5.1) that for c, d ∈ HG×Gm

• (F ×V F ) we have

ı3(c ⋆ d) = ı1(c) ⋆ ı2(d).

We have a similar construction of a convolution product in equivariant K-homology, for which we
will use similar notations. Hence, using the injectivity of ı3, Theorem 1.7.3 and the projection
formula (1.1.1), to prove the lemma it is enough to prove that

(2.2.2) RR3(c ⋆ d) = RR1(c) ⋆ RR2(d)

for c ∈ KG×Gm(F × F ) and d ∈ KG×Gm(F × F ), where

RR1 : K
G×Gm(F × F ) → ĤG×Gm

• (F × F )

is defined by

RR1(d) = τG×Gm

F×F
(d) ·

(
1⊠ (TdG×Gm

F
)−1

)
,

and RR2 and RR3 are defined similarly.

Now we have

RR3(c ⋆ d) = τG×Gm

F×F (pdip′1,3 ◦ res
′(c⊠ d)) · (1⊠ (TdG×Gm

F )−1)

= pdip′1,3

(
τG×Gm

F×F×F
(res′(c⊠ d))

)
· (1⊠ (TdG×Gm

F )−1)

= pdip′1,3

(
τG×Gm

F×F×F
(res′(c⊠ d)) · (1⊠ 1⊠ (TdG×Gm

F )−1)
)

= pdip′1,3

(
res′ ◦ τG×Gm

F×F×F×F
(c⊠ d) · tdG×Gm(N) · (1⊠ 1⊠ (TdG×Gm

F )−1)
)
,

where N is the normal bundle to the embedding F × F × F →֒ F × F
2
× F . (Here the second

equality follows from Theorem 1.7.3, the third one from the projection formula (1.1.1), and the
last equality from Proposition 1.7.4.) On the other hand we have

RR1(c) ⋆ RR2(d) = pdip′1,3
◦ res′

(
τG×Gm

F×F×F×F
(c⊠ d) · (1⊠ (TdG×Gm

F
)−1)⊠ 1⊠ (TdG×Gm

F )−1)
)
.

Now the normal bundle N is canonically isomorphic to the restriction to F × F × F of the

pullback of the tangent bundle of F under the projection F ×F
2
×F → F on the second factor.

Using (1.1.2) and comparing the formulas for RR3(c⋆d) and for RR1(c)⋆RR2(d) obtained above,
we deduce (2.2.2). �

2.3. Compatibility for the actions on the natural modules. In §2.1 we have defined (left
and right) actions of the algebra KG×Gm(F×V F ), resp. K

G×Gm(F⊥×V ∗F⊥), resp. HG×Gm(F×V

F ), resp. HG×Gm(F⊥ ×V ∗ F⊥), on the module KG×Gm(F ), resp. KG×Gm(F⊥), resp. HG×Gm(F ),
resp. HG×Gm(F⊥). We now define “bivariant Riemann–Roch maps”

RRF : KG×Gm(F ) → ĤG×Gm

• (F ), RRF⊥ : KG×Gm(F⊥) → ĤG×Gm

• (F⊥)

by the formulas

RRF = τG×Gm

F , RRF⊥(c) = τG×Gm

F⊥ (c) · (TdG×Gm

X )−1
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(where use the same conventions as in §1.8). The following technical lemma will be used to
compute explicitly some Riemann–Roch maps in §2.6.

Lemma 2.3.1. Assume that Hodd
c (F×V F ) = 0. Then the morphisms RR and RR are compatible

with the module structures, in the sense that for c ∈ KG×Gm(F ×V F ) and d ∈ KG×Gm(F ),
resp. for c ∈ KG×Gm(F⊥ ×V ∗ F⊥) and d ∈ KG×Gm(F⊥), we have

RRF (c ⋆ d) = RRF,F (c) ⋆ RRF (d), resp. RRF⊥(d ⋆ c) = RRF⊥(d) ⋆ RRF⊥,F⊥(c).

Proof. We only prove the first equality; the second one can be proved by similar arguments.
First, we claim that

(2.3.2) τG×Gm

F×V F
◦ resl(c⊠ d) =

(
resl ◦ τ

G×Gm

F×V F×F (c⊠ d)
)
· tdA(N)−1,

where N is the normal bundle to the inclusion F ×F →֒ F ×F ×F considered in the definition
of resl. Indeed, as in the proof of Lemma 2.2.1, our assumption ensures that the proper direct
image morphism

ı : HG×Gm

• (F ×V F ) → HG×Gm

• (F × F )

is injective. Hence it is enough to prove that the image under ı of both sides in (2.3.2) are equal.
Now by the projection formula (1.1.1), Theorem 1.7.3 and Lemma A.5.1 we have

ı
((

resl ◦ τ
G×Gm

F×V F
(c⊠ d)

)
· tdA(N)−1

)
= ı

(
resl ◦ τ

G×Gm

F×V F×F (c⊠ d)
)
· tdA(N)−1

=
(
res′l ◦ τ

G×Gm

F×F×F (ı(c)⊠ d)
)
· tdA(N)−1,

where

res′l : H
G×Gm

• (F × F × F ) → HG×Gm

• (F × F )

is the restriction with supports morphism associated with the embedding F 2 →֒ F 3 considered
in the definition of resl.

On the other hand, by Theorem 1.7.3 and the obvious K-theoretic analogue of Lemma A.5.1 we
have

ı
(
τG×Gm

F×V F
◦ resl(c⊠ d)

)
= τG×Gm

F×F ◦ res′l(ı(c) ⊠ d),

where res′l is defined as for res′l. Hence the desired equality follows from Proposition 1.7.4.

Now we have

RRF (c ⋆ d) = τG×Gm

F (pdip1 ◦ resl(c⊠ d))

= pdip1 ◦ τ
G×Gm

F×V F
◦ resl(c⊠ d)

= pdip1

((
resl ◦ τ

G×Gm

F×V F×F (c⊠ d)
)
· tdA(N)−1

)

= pdip1

(
resl

(
(τG×Gm

F×V F
(c)⊠ τG×Gm

F (d)) · (1⊠ (TdAF )
−1

⊠ 1)
))

= RRF,F (c) ⋆RRF (d).

(Here the second equality follows from Theorem 1.7.3, the third one from (2.3.2), and the fourth
one from (1.1.2).) This concludes the proof. �
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2.4. Affine Hecke algebras and their graded versions. From now on in this section we
restrict to the case of the affine Hecke algebra and its graded version. Our notation mainly
follows [L1]. Namely, we fix a semisimple and simply connected complex algebraic group G,
with fixed maximal torus T and Borel subgroup B with T ⊂ B. We denote by W the Weyl
group of (G,T ), and by S ⊂ W the set of Coxeter generators determined by the choice of B.
We also denote by X the lattice of characters of T , and by R ⊂ X the root system of (G,T ).
We denote by R+ ⊂ R the system of positive roots consisting of the roots opposite to the roots
of B. Then the affine Hecke algebra Haff (with equal parameters) attached to these data is the
Z[v, v−1]-algebra generated by elements Ts for s ∈ S and θx for x ∈ X, subject to the following
relations (where ms,t is the order of st in W ):

(1) (Ts + 1)(Ts − v2) = 0 for s ∈ S;
(2) TsTt · · · = TtTs · · · for s, t ∈ S (with ms,t factors on each side);
(3) θxθy = θx+y for x, y ∈ X;
(4) θ0 = 1;

(5) Ts · θx − θsx · Ts = (v2 − 1)θx−θsx1−θ−α
for s ∈ S, where α ∈ R is the corresponding simple

root.

Remark 2.4.1. (1) Relations (3) and (4) imply that the subalgebra generated by the gener-
ators θx for x ∈ X is isomorphic to the group algebra Z[v, v−1][X]; then the quotient in
the right-hand side in (5) denotes the quotient in this integral ring.

(2) The present notation differs slightly from the notation in [MR3]. In fact the element
denoted Ts here coincides with the element denoted tα in [MR3, §5.2] (for α the corre-
sponding simple root).

The following reformulation of relation (5) (see [L1, Proposition 3.9]) will be useful:

(2.4.2) (Ts + 1) · θx − θsx · (Ts + 1) = (θx − θsx) · G (α) with G (α) =
v2θα − 1

θα − 1
.

The subalgebra of Haff generated by the elements Ts (s ∈ S) can be identified with the Hecke
algebra HW of the Coxeter group (W,S). We will consider the left module sgnl of this subalgebra
which is (canonically) free of rank one over Z[v, v−1], and where Ts acts by −1. The same recipe
also defines a right module sgnr over HW . Then we can define the “antispherical” left, resp. right,
module over Haff as

Masph
l := Haff ⊗HW

sgnl, Masph
r := sgnr ⊗HW

Haff .

For both modules, we will simply denote by 1 the “base point” 1⊗ 1.

We will also consider the associated graded affine Hecke algebra Haff (again, with equal param-
eters). This algebra is the C[r]-algebra generated by O(t) = S(t∗) (where t is the Lie algebra of
T ) and elements tw for w ∈W , subject to the following relations:

(1) t1 = 1;
(2) tvtw = tvw for v,w ∈W ;
(3) ts ·φ−s(φ)ts = (φ−s(φ)) · (g(α)−1) for s ∈ S, where α ∈ R is the corresponding simple

root.



18 IVAN MIRKOVIĆ AND SIMON RICHE

Here following [L1] we have used the notation

g(α) =
α̇+ 2r

α̇
,

where α̇ ∈ t∗ is the differential of the root α. In this case also, one can reformulate relation (3)
in the following form, see [L1, 4.6(c)]:

(2.4.3) (ts + 1) · φ− s(φ) · (ts + 1) = (φ− s(φ)) · g(α).

The subalgebra of Haff generated by the elements tw (for w ∈W ) identifies with the group alge-
bra HW = C[r][W ]. As above one can define a “sign” left, resp. right, module over this algebra
(where ts acts by −1 for s ∈ S), which we will denote by sgnl, resp. sgnr, and corresponding
“antispherical” modules

M
asph
l := Haff ⊗HW

sgnl, M
asph
r := sgnr ⊗HW

Haff .

Let m ⊂ O(t)[r] = O(t×A1) denote the maximal ideal associated with the point (0, 0) ∈ t×A1,

and let Ô(t)[r] be the m-adic completion of O(t)[r]. Then Ĥaff := Ô(t)[r] ⊗O(t)[r] Haff has a

natural algebra structure extending the structure on Haff . With this notation introduced, the
algebras Haff and Haff are related by the Lusztig morphism

Lr : Haff → Ĥaff

defined in [L1, §9].8 Let us recall the definition of this morphism. First, we denote by Y := X∗(T )
the lattice of cocharacters of T , and consider the map

e :

{
t = Y⊗Z C → T = Y⊗Z C×

λ∨ ⊗ a 7→ λ∨ ⊗ exp(a)
.

This map induces a map

Z[v, v−1][X] → Ô(t)[r]

sending x ∈ X to (the power series expansion of) x ◦ e and v to exp(r), which can be used to
define Lr on the subalgebra of Haff generated by the elements θx (x ∈ X), see Remark 2.4.1.
Then the description of Lr is completed by the formula

Lr(Ts + 1) = (ts + 1) · g(α)−1 · G̃ (α), where G̃ (α) = Lr(G (α)).

In more concrete terms, we have (see [L1, Proof of Lemma 9.5]):

g(α)−1 · G̃ (α) =
exp(α̇+ 2r)− 1

α̇+ 2r
·

α̇

exp(α̇)− 1
.

From the defining relations of Haff (resp. Haff) one can see that there exists an anti-involution
of Haff (resp. Haff) as a Z[v, v−1]-algebra (resp. C[r]-algebra), which fixes all generators Ts for

8The setting considered in [L1, §9] is much more general than the case considered in the present paper. With

Lusztig’s notation, we only consider the case v0 = 1 (which is covered by [L1, §9.7]), r0 = 0, t0 = 1, Σ = {0}.
This case suffices (except in the case when v is specialized to a non trivial root of unity) for the study of the
representation theory of Haff via the (more accessible) study of the representation theory of Haff ; see [L1] for
details.
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s ∈ S and θx for x ∈ X (resp. the generators ts for s ∈ S and the elements of O(t)). Conjugating
the morphism Lr with these anti-involutions we obtain a second Lusztig morphism

Ll : Haff → Ĥaff

which satisfies

Ll(θx) = Lr(θx), Ll(v) = Lr(v), Ll(Ts + 1) = g(α)−1 · G̃ (α) · (ts + 1).

2.5. Geometric realization of Haff and its antispherical module(s). Let B := G/B be
the flag variety of G. Then we can consider the constructions of §2.1 for the data X = B,
V = g∗, and with F being the subbundle

Ñ := {(ξ, gB) ∈ g∗ × B | ξ|g·b = 0},

where b is the Lie algebras of B. (This variety is isomorphic to the Springer resolution of the
nilpotent cone of G.) We will also consider

g̃ := {(ξ, gB) ∈ g∗ × B | ξ|g·[b,b] = 0}.

(This variety is isomorphic to the Grothendieck simultaneous resolution.) Note that the Killing
form defines a G-equivariant isomorphism (g∗)∗ ∼= g∗, hence a G×Gm-equivariant isomorphism
E ∼= E∗. Via this isomorphism, F⊥ identifies with g̃.

The Steinberg variety is the fiber product

Z := Ñ ×g∗ Ñ .

If α is a simple root, we denote by Pα ⊂ G the corresponding minimal standard parabolic
subgroup, and by Pα := G/Pα the associated partial flag variety. Then as in [Ri]9 we set

S′
α := {(X, g1B, g2B) ∈ g∗ × (B ×Pα B) | Xg1·b+g2·b = 0}.

In other words, S′
α is the inverse image of B×Pα B under the projection Z → B×B. This scheme

is reduced but not irreducible: its two irreducible components are the diagonal ∆Ñ and

Yα := {(X, g1B, g2B) ∈ g∗ × (B ×Pα B) | Xg1·pα = 0},

where pα is the Lie algebra of Pα.

With these definitions, we obtain algebras KG×Gm(Z) and HG×Gm

• (Z). It follows from work of
Kazhdan–Lusztig [KL], Ginzburg [CG] and Lusztig [L4] that there exists an algebra isomor-
phism10

(2.5.1) Haff
∼
−→ KG×Gm(Z)

which satisfies

v 7→ [O∆Ñ 〈1〉], θx 7→ [O∆Ñ (x)], Ts 7→ −[OYα(−ρ, ρ− α)]− [O∆Ñ ] = −[OS′
α
].

(In the middle term, O∆Ñ (x) is (the direct image of) the line bundle on ∆Ñ obtained by
pullback of the line bundle on B naturally associated with x. In the third term, α is the simple

9Due to a typo, the subscript “Pα” is missing in the fiber product in the description of S′
α in [Ri, §6.1].

10Due to our change of convention in the definition of the convolution product (see Footnote 5), the isomor-
phism (2.5.1) is the composition of the isomorphism considered in [MR3, §5.2] with the anti-involution considered
at the end of §2.4.
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root associated with s, and ρ is the half-sum of the positive roots; the equality follows from [Ri,
Lemma 6.1.1].)

We also have isomorphisms of Z[v, v−1]-modules

(2.5.2) Masph
l

∼
−→ KG×Gm(Ñ ), resp. Masph

l
∼
−→ KG×Gm(Ñ ),

where vnθx · 1, resp. 1 · v
nθx, corresponds to [OÑ (x)〈n〉] (for x ∈ X).

Lemma 2.5.3. The isomorphisms (2.5.2) are isomorphisms of left and right Haff -modules re-
spectively.

Proof. It is enough to prove that for α a simple root we have

[OS′
α
] ⋆ [OÑ ] = [OÑ ] = [OÑ ] ⋆ [OS′

α
].

By symmetry the two equalities are equivalent, so we restrict to the first one. By definition we
have [OS′

α
] ⋆ [OÑ ] = [Rp1∗(OS′

α
)]. If Sα ⊂ g̃ × g̃ is the subvariety defined in [Ri, §1.4], in the

derived category of (equivariant) coherent sheaves on g̃× g̃, by [Ri, Lemma 4.1] we have

OÑ×g̃

L

⊗Og̃×g̃
OSα

∼= OS′
α
.

Then, by the (non flat) base change theorem (e.g. in the form of [BR, Proposition 3.7.1]), to
prove our equality it is enough to prove that

Rq1∗OSα
∼= Og̃,

where q1 : g̃× g̃ → g̃ is the projection on the first factor. This is proved in [BR, Lemma 2.7.2].11

�

One also has a similar geometric realization using g̃ instead of Ñ . In fact, if we set

Z := g̃×g∗ g̃,

as explained in [MR3, Lemma 5.2], restriction with supports associated with the inclusion Ñ ×

g̃ →֒ g̃ × g̃ induces an algebra isomorphism KG×Gm(Z)
∼
−→ KG×Gm(Z). Therefore, we have an

algebra isomorphism

(2.5.4) Haff
∼
−→ KG×Gm(Z)

which satisfies

v 7→ [O∆g̃〈1〉], θx 7→ [O∆g̃(x)], Ts 7→ −[OSα ].

(Here we use conventions similar to those for Ñ , and Sα is defined in [Ri, §1.4].) As in
Lemma 2.5.3, we also have isomorphisms of left, resp. right, Haff -modules

Masph
l

∼
−→ KG×Gm(g̃), resp. Masph

r
∼
−→ KG×Gm(g̃).

11The subvariety Sα is denoted Zs in [BR], where s is the corresponding simple reflection. Also, in [BR, §2] the
base field is assumed to be of positive characteristic; but the proof of the cited lemma works over any algebraically
closed field of coefficients.
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2.6. Geometric realization of Haff and its antispherical module(s). Following [L2, L3],
replacing K-theory by Borel–Moore homology in the constructions of §2.5 one obtains a geometric
realization ofHaff ; in fact, applying [L3, Theorem 8.11] in our situation (i.e. for the Levi subgroup
T , its nilpotent orbit {0}, and the cuspidal local system C{0} on {0}), we obtain an algebra
isomorphism

(2.6.1) Haff
∼
−→ HG×Gm

• (Z)

such that the subalgebra O(t)[r] is obtained as the image (under proper direct image) of

(2.6.2) HG×Gm

• (∆g̃) ∼= HG×Gm

• (B) ∼= HB×Gm

• (pt) ∼= HT×Gm

• (pt) ∼= O(t)[r].

(More concretely, if x ∈ X, then ẋ ∈ t∗ corresponds to [∆g̃] · cG×Gm

1 (Og̃(x)), where c
G×Gm

1 (−) is
the first equivariant Chern class.) The image of C[W ] is obtained via the “Springer isomorphism”

C[W ]
∼
−→ Hom

DG×Gm

const (g∗)
(p!Cg̃, p!Cg̃) →֒ HG×Gm

• (Z).

(Here the inclusion is induced by the isomorphism cang̃,g̃ of §1.3.) As in (2.6.2) we also have a
natural isomorphism of C[r]-modules

(2.6.3) M
asph
l

∼
−→ HG×Gm

• (g̃), resp. M
asph
r

∼
−→ HG×Gm

• (g̃),

where ẋ · 1, resp. 1 · ẋ, corresponds to [g̃] · cG×Gm

1 (Og̃(x)).

Lemma 2.6.4. The isomorphisms (2.6.3) are isomorphisms of left and right Haff -modules re-
spectively.

Proof. As in Lemma 2.5.3, by symmetry it is enough to prove the equivariance in the first case.
Using similar constructions as for HG×Gm

• (g̃), one can construct an action by convolution of
HG×Gm

• (Z) on HG×Gm

• (B), where B is seen as the zero section of g̃; see [CG, Corollary 2.7.41]

in the non-equivariant setting. Moreover, the Thom isomorphism HG×Gm

• (g̃)
∼
−→ HG×Gm

• (B)
is equivariant for this action. Therefore, it is enough to prove that the natural isomorphism

O(t)[r]
∼
−→ HG×Gm

• (B) induces an isomorphism of left Haff -modules M
asph
l

∼
−→ HG×Gm

• (B).
And for this it is enough to prove that ts · [B] = −[B] for s ∈ S. Now the forgetful mor-

phism H
G×Gm

2 dim(B)(B) → H2 dim(B)(B) is an isomorphism, and so is the morphism H
G×Gm

2 dim(Z)(Z) →

H2 dim(Z)(Z). Hence we have reduced our question to a claim about non-equivariant Borel–Moore
homology, which can be solved using Springer theory.

By [CG, Proposition 8.6.16], if i0 : {0} →֒ g̃ denotes the inclusion, there exists a canonical

isomorphism H•(B)
∼
−→ H2 dim(g)−•(i!0p!Cg̃), which identifies the action of H•(Z) with the natural

action of Hom•
Db

const(g
∗)
(p!Cg̃, p!Cg̃) via the non-equivariant analogue of the isomorphism cang̃,g̃.

Hence what we have to show is that the 1-dimensional W -module

H2 dim(B)(B) ∼= H2 dim(g)−2 dim(B)(i!0p!Cg̃)

is the sign representation. This fact is well known, see e.g. [AHJR, Lemmas 4.5 & 4.6]. �

As in §2.5, we have a similar story when g̃ is replaced by Ñ . In fact, constructions similar to
those in [MR3, Lemma 5.2] show that restriction with supports induces an algebra isomorphism

HG×Gm

• (Z)
∼
−→ HG×Gm

• (Z). (This property can also be extracted from [L2, L3]; it is used
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implictly in [EM].) Therefore, we obtain isomorphisms of algebras and modules over these
algebras

(2.6.5) Haff
∼
−→ HG×Gm

• (Z), M
asph
l

∼
−→ HG×Gm

• (Ñ ), M
asph
r

∼
−→ HG×Gm

• (Ñ ).

Proposition 2.6.6. (1) Under the isomorphisms (2.5.1) and (2.6.5), the morphism RRÑ ,Ñ
identifies with Ll.

(2) Under the isomorphisms (2.5.4) and (2.6.1), the morphism RRg̃,g̃ identifies with the

morphism c 7→ eB · Lr(c) · e
−1
B , where

eB :=
∏

α∈R+

α̇

1− exp(−α̇)
.

Proof. First, we note that Z and Z are paved by affine spaces, so that the “parity vanishing”
assumptions in some of our statements above are satisfied in these cases.

(1) Both of our maps are algebra morphisms (see Lemma 2.2.1), so it is enough to check that
they coincide on the generators of Haff . The case of v is obvious (see [EG2, §3.3]), and the case
of θx follows from Proposition 1.7.6. It remains to consider the case of Ts; in fact it will be
simpler (but equivalent) to prove that

(2.6.7) RRÑ ,Ñ (1 + Ts) = Ll(1 + Ts) = g(α)−1 · G̃ (α) · (ts + 1).

By Remark 1.9.3 and Proposition 1.10.1, HG×Gm

• (Ñ ) is faithful as a module over HG×Gm

• (Z).
Therefore, the same is true for the completions, and to prove (2.6.7) it is enough to prove that

both sides act similarly on ĤG×Gm

• (Ñ ). However, by Lemma 2.5.3 and (2.4.2), for x ∈ X we

have (1 + Ts) · (θx · 1) =
(
(θx − θsx) · G (α)

)
· 1. By Lemma 2.3.1, this implies that in M

asph
l we

have

RRÑ ,Ñ (1 + Ts) · (exp(ẋ) · 1) =
(
(exp(ẋ)− exp(sẋ)) · G̃ (α)

)
· 1.

Using (2.4.3), this coincides with the action of g(α)−1 · G̃ (α) · (ts+1). Since the elements of the

form rn exp(ẋ) · 1 form a topological basis of ĤG×Gm

• (Ñ ), we deduce the equality in (2.6.7).

(2) The proof is similar to the proof of (1), using the right action on ĤG×Gm

• (g̃), and using the
fact that

TdG×Gm

B =
∏

α∈R+

α̇

1− exp(−α̇)
in Ĥ•

G×Gm

(g̃) = Ô(t)[r]

(as follows from [EG2, §3.3], since the tangent bundle on B has a filtration with associated
graded the sum of the line bundles OB(α) for α ∈ R+). �

Remark 2.6.8. In [L1, §0.3], Lusztig explains that his morphism Lr “is of the same nature as
the Chern character from K-theory to homology.” Proposition 2.6.6 is a concrete justification of
this claim.
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2.7. Commutative diagram for affine Hecke algebras. Finally we can consider the dia-
gram of Theorem 1.9.1 in the geometric setting of §§2.5–2.6:

(2.7.1)

KG×Gm(Z)
Koszul

Ñ ,Ñ
//

RR
Ñ ,Ñ

��

KG×Gm(Z)
ig̃,g̃◦Dg̃,g̃

// KG×Gm(Z)

RRg̃,g̃

��

ĤG×Gm

• (Z)
Fourier

Ñ ,Ñ
// ĤG×Gm

• (Z).

Note that Proposition 1.10.1 ensures that the assumption of Theorem 1.9.1 is satisfied in this
case, since Z is paved by affine spaces, and that the results of §2.1–2.2 ensure that all the maps
in this diagram are unital algebra morphisms. Using Proposition 2.6.6 and the results of [EM]
and [MR3] we can describe explicitly all the maps in this diagram, and hence illustrate the
content of Theorem 1.9.1 in this particular situation.

The morphism KoszulÑ ,Ñ was studied in [MR3, §5.3]. In particular, [MR3, Theorem 5.4]

describes this automorphism algebraically, and shows that it is closely related to the Iwahori–
Matsumoto involution of Haff . Using the identifications (2.5.1) and (2.5.4), we have

KoszulÑ ,Ñ (Ts) = θρ(−v
2T−1

s )θ−ρ, KoszulÑ ,Ñ (θx) = θ−x, KoszulÑ ,Ñ (v) = −v

for s ∈ S a simple root and x ∈ X.12

Concerning the map Dg̃,g̃, one can check that, with the identification (2.5.4), it satisfies

Dg̃,g̃(Ts) = T−1
s , Dg̃,g̃(θx) = θ−x, Dg̃,g̃(v) = v−1.

(See [L4, Lemma 9.7] for a similar computation, with different conventions.) Finally, the mor-
phism ig̃,g̃ is the same as the involution ι of [MR3, §5.3]; it satisfies

ig̃,g̃(Ts) = Ts, ig̃,g̃(θx) = θx, ig̃,g̃(v) = −v.

On the Borel–Moore homology side, the map FourierÑ ,Ñ was studied in [EM]. In that paper it

was shown to be closely related to the Iwahori–Matsumoto involution of Haff ; more precisely it
satisfies

FourierÑ ,Ñ (tw) = (−1)ℓ(w)tw, FourierÑ ,Ñ (φ) = φ, FourierÑ ,Ñ (r) = −r

for w ∈W and φ ∈ O(t).

Using these formulas one can check the commutativity of (2.7.1) by hand. For instance, for the
element 1 + Ts, the commutativity of the diagram amounts to the following equality in Haff :

exp(α̇− 2r)− 1

α̇− 2r

α̇

exp(α̇)− 1
(−ts + 1) =

1− exp(−ρ̇− 2r)eB

(
(ts + 1)

exp(α̇+ 2r)− 1

α̇+ 2r

α̇

exp(α̇)− 1
− 1

)
e−1
B exp(ρ̇).

12As noted in Footnote 6, the conventions in the definition of K
Ñ ,Ñ

used in the present paper differ slightly from

the conventions used in [MR3]. Our identification of KG×Gm(Z) is also slightly different, see [MR3, Comments at
the end of §5.2]. This explains the differences with the formulas in [MR3].
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3. Compatibility of the Fourier isomorphism with inclusions

In this section and the next one we will consider compatibility properties of our morphisms in
two geometric situations. We use the same setting and notation as in §§1.3–1.9.

3.1. Further notation. First we will consider a situation which we will refer to as Setting (A):
here we are given an additional subbundle F ′

2 ⊂ E containing F2 and such that F2, F
′
2 and E

can be locally simultaneously trivialized. Then we have “restriction with supports” morphisms
associated with the embedding F2 →֒ F ′

2, both in K-homology and in Borel–Moore homology,
which we denote as follows:

res
F1,F

′
2

F1,F2
: KG×Gm(F1 ×V F

′
2) → KG×Gm(F1 ×V F2);

res
F1,F

′
2

F1,F2
: HG×Gm

• (F1 ×V F
′
2) → H

G×Gm

•−2rk(F ′
2)+2rk(F2)

(F1 ×V F2).

We also have proper direct image morphisms associated with the embedding (F ′
2)

⊥ →֒ F⊥
2 , again

both in K-homology and in Borel–Moore homology, which we denote as follows:

pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

: KG×Gm(F⊥
1 ×V ∗ (F ′

2)
⊥) → KG×Gm(F⊥

1 ×V ∗ F⊥
2 );

pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

: HG×Gm

• (F⊥
1 ×V ∗ (F ′

2)
⊥) → HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).

Secondly, we will consider a situation which we will refer to as Setting (B): here we are given
an additional subbundle F ′

1 ⊂ E containing F1 and such that F1, F
′
1 and E can be locally

simultaneously trivialized. Then we have proper direct image morphisms associated with the
embedding F1 →֒ F ′

1, both in K-homology and in Borel–Moore homology, which we denote as
follows:

pdiF1,F2

F ′
1,F2

: KG×Gm(F1 ×V F2) → KG×Gm(F ′
1 ×V F2);

pdi
F1,F2

F ′
1,F2

: HG×Gm

• (F1 ×V F2) → HG×Gm

• (F ′
1 ×V F2).

We also have “restriction with supports” morphisms associated with the embedding (F ′
1)

⊥ →֒
F⊥
1 , again both in K-homology and in Borel–Moore homology, which we denote as follows:

res
F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
: KG×Gm(F⊥

1 ×V ∗ F⊥
2 ) → KG×Gm((F ′

1)
⊥ ×V ∗ F⊥

2 );

res
F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
: HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → H
G×Gm

•−2rk(F⊥
1 )+2rk((F ′

1)
⊥)
((F ′

1)
⊥ ×V ∗ F⊥

2 ).

3.2. Convolution algebras and inclusion of subbundles. Consider Setting (A) of §3.1.
Then we have natural morphisms induced by adjunction

adj∗F2,F ′
2
: CF ′

2
→ CF2

and adj!
(F ′

2)
⊥,F⊥

2
: C(F ′

2)
⊥ → CF⊥

2
[2rk(F⊥

2 )− 2rk((F ′
2)

⊥)].

The proof of the following result being rather technical (and the details not needed), it is
postponed to the appendix (see §§A.6–A.7).
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Proposition 3.2.1. (1) The following diagram commutes:

HG×Gm

• (F1 ×V F
′
2)

canF1,F
′
2

∼
//

res
F1,F

′
2

F1,F2

��

Ext
2 dim(F ′

2)−•

DG×Gm

const (V )
(p!CF1

, p!CF ′
2
)

(p!adj
∗

F2,F
′
2
)◦(·)

��

H
G×Gm

•−2rk(F ′
2)+2rk(F2)

(F1 ×V F2)
canF1,F2

∼
// Ext

2 dim(F ′
2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
).

(2) The following diagram commutes:

HG×Gm

• (F⊥
1 ×V ∗ (F ′

2)
⊥)

can
F⊥
1 ,(F ′

2)
⊥

∼
//

pdi
F⊥
1 ,(F ′

2)
⊥

F⊥
1

,F⊥
2

��

Ext
2 dim((F ′

2)
⊥)−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!C(F ′

2)
⊥)

(p̌!adj
!

(F ′
2)

⊥,F⊥
2
)◦(·)

��

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 )
can

F⊥
1

,F⊥
2

∼
// Ext

2 dim(F⊥
2 )−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
).

Consider now Setting (B) of §3.1. We have natural morphisms induced by adjunction

adj∗F1,F ′
1
: CF ′

1
→ CF1

and adj!
(F ′

1)
⊥,F⊥

1
: C(F ′

1)
⊥ → CF⊥

1
[2rk(F⊥

1 )− 2rk((F ′
1)

⊥)].

The proof of the following proposition is similar to that of Proposition 3.2.1, and is therefore
omitted.

Proposition 3.2.2. (1) The following diagram commutes:

HG×Gm

• (F1 ×V F2)
canF1,F2

∼
//

pdi
F1,F2
F ′
1
,F2

��

Ext
2 dim(F2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
)

(·)◦(p!adj
∗

F1,F
′
1
)

��

HG×Gm

• (F ′
1 ×V F2)

canF ′
1
,F2

∼
// Ext

2 dim(F2)−•

DG×Gm

const (V )
(p!CF ′

1
, p!CF2

).

(2) The following diagram commutes:

HG×Gm

•
(F⊥

1 ×V ∗ F⊥
2 )

can
F⊥
1 ,F⊥

2

∼
//

res
F⊥
1 ,F⊥

2

(F ′
1
)⊥,F⊥

2

��

Ext
2 dim(F⊥

2 )−•

D
G×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
)

(·)◦(p̌!adj
!

(F ′
1
)⊥,F⊥

1
)

��

H
G×Gm

•−2rk(F⊥
1 )+2rk((F ′

1)
⊥)
((F ′

1)
⊥ ×V ∗ F⊥

2 )
can

(F ′
1
)⊥,F⊥

2

∼
// Ext

2 dim(F⊥

2 )+2rk(F⊥

1 )−2rk((F ′

1)
⊥)−•

D
G×Gm

const (V ∗)
(p̌!C(F ′

1)
⊥ , p̌!CF⊥

2
).

3.3. Fourier transform and inclusion of subbundles. In the next lemma G can be replaced
by any linear algebraic group, X by any smooth G-variety, and E by any G-equivariant vector
bundle over X. We consider subbundles F ⊂ F ′ ⊂ E which can be locally simultaneously
trivialized. (In practice, E and X will be as above, and we will take F = Fi, F

′ = F ′
i for

i ∈ {1, 2}.) Adjunction induces morphisms

adj∗F,F ′ : CF ′ → CF and adj!(F ′)⊥,F⊥ : C(F ′)⊥ → CF⊥ [2rk(F⊥)− 2rk((F ′)⊥)].
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Lemma 3.3.1. The following diagram is commutative:

FE(CF ′)

≀

��

FE(adj∗
F,F ′)

// FE(CF )

≀

��

C(F ′)⊥ [−2rk(F ′)]
adj!

(F ′)⊥,F⊥

// CF⊥ [−2rk(F )],

where vertical isomorphisms are provided by Lemma 1.2.3.

Proof. It is equivalent to prove a similar isomorphism for FE; for simplicity we still denote by
F⊥, (F ′)⊥ the orthogonals viewed in E⋄, and by ř : E⋄ → X the projection. By the construction
in the proof of Lemma 1.2.3 we have natural isomorphisms

FE(CF ′) ∼= q̌!CQF ′
and FE(CF )

∼= q̌!CQF
,

where QF ′ := q−1(F ′), QF := q−1(F ). It follows from the definitions that the morphism
FE(adj

∗
F,F ′) is the image under q̌! of the morphism CQF ′

→ CQF
induced by adjunction (for the

inclusion QF →֒ QF ′). Hence what we have to show is that the morphism ϕ in the following

diagram coincides with adj!(F ′)⊥,F⊥ , where the upper arrow is induced by adjunction as above,

and the vertical isomorphisms are as in the proof of Lemma 1.2.3:

q̌!CQF ′
//

≀
��

q̌!CQF

≀
��

q̌!CF ′×X(F ′)⊥

≀
��

q̌!CF×XF⊥

≀
��

C(F ′)⊥ [−2rk(F ′)]
ϕ

// CF⊥ [−2rk(F )].

Now we have canonical isomorphisms

ř!
(
C(F ′)⊥ [−2rk(F ′)]

)
∼= CX [−2rk(E)], ř!

(
CF⊥ [−2rk(F )]

)
∼= CX [−2rk(E)],

and one can check that the functor ř! induces an isomorphism

HomDG×Gm

const (E⋄)

(
C(F ′)⊥ [−2rk(F ′)],CF⊥[−2rk(F )]

) ∼
−→

HomDG×Gm

const (X)

(
CX [−2rk(E)],CX [−2rk(E)]

)

sending adj!(F ′)⊥,F⊥[−2rk(F ′)] to the identity morphism of CX [−2rk(E)]. Hence it is enough to

prove that ř!ϕ[2rk(E)] is the identity of CX (through the canonical isomorphisms above). The
latter statement is about sheaves (and not complexes), so that we can forget about equivariance
and check the claim locally over X. (This is allowed by combining [BL, Proposition 2.5.3] and
[Le, Proposition 4.2.7].) By local triviality, one can then assume that X = pt (i.e. that E is a
vector space and that F,F ′ ⊂ E are subspaces).



LINEAR KOSZUL DUALITY AND FOURIER TRANSFORM 27

In this case the claim boils down to the fact that the dotted arrow in the following diagram is
the identity:

H
2 dim(E)
c (F ′ × (F ′)⊥)

≀

��

H
2 dim(E)
c (Q)

∼ //∼oo H
2 dim(E)
c (F × F⊥)

≀

��
C // C.

To prove this fact we regard E × E∗ as a real vector space, endowed with the non-degenerate
quadratic form given by q(x, ξ) := Re(〈ξ, x〉). The orthogonal group H of this form stabilizes

Q, hence acts on H
2 dim(E)
c (Q), and this action factors through the group of components H/H◦.

Now F × F⊥ and F ′ × (F ′)⊥ are conjugate under the action of H◦, with finishes the proof. �

In the following proposition we get back to the assumption that E = V ×X, and we let p : E → V
be the projection. The following result is an immediate consequence of Lemma 3.3.1 and the
isomorphism of functors FV ◦ p! ∼= p̌! ◦ FE , see the proof of Corollary 1.2.4.

Proposition 3.3.2. The following diagram is commutative:

FV (p!CF ′)

(1.2.5) ≀

��

FV (p!(adj
∗

F,F ′))
// FV (p!CF )

(1.2.5)≀

��

p̌!C(F ′)⊥ [−2rk(F ′)]
p̌!(adj

!
(F ′)⊥,F⊥

)
// p̌!CF⊥ [−2rk(F )].

3.4. The Fourier isomorphism and inclusion of subbundles. We come back to Setting
(A) of §3.1.

Proposition 3.4.1. We have an equality

FourierF1,F2
◦ res

F1,F ′
2

F1,F2
= pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦ FourierF1,F ′
2

of morphisms HG×Gm

• (F1 ×V F
′
2) → H

G×Gm

•+2 dim((F ′
2)

⊥)−2 dim(F1)
(F⊥

1 ×V ∗ F⊥
2 ).

Proof. By functoriality the following diagram commutes, where horizontal maps are induced by
the functor FV :

Ext
2 dim(F ′

2)−•

DG×Gm

const (V )
(p!CF1

, p!CF ′
2
)

(p!adj
∗

F2,F
′
2
)◦(·)

��

∼
// Ext

2 dim(F ′
2)−•

DG×Gm

const (V ∗)
(FV (p!CF1

),FV (p!CF ′
2
))

FV (p!adj
∗

F2,F
′
2
)◦(·)

��

Ext
2 dim(F ′

2)−•

DG×Gm

const (V )
(p!CF1

, p!CF2
) ∼

// Ext
2 dim(F ′

2)−•

DG×Gm

const (V ∗)
(FV (p!CF1

),FV (p!CF2
)).
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Now by Proposition 3.3.2 the following diagram commutes, where vertical maps are induced by
the isomorphisms FV (p!CF )

∼= p̌!CF⊥ [−2rk(F )] for F = F1, F2 or F ′
2 (see (1.2.5)):

Ext
2 dim(F ′

2)−•

DG×Gm

const (V ∗)
(FV (p!CF1

),FV (p!CF ′
2
))

FV (p!adj
∗

F2,F
′
2
)◦(·)

��

∼
// Ext

2 dim(F1)−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!C(F ′

2)
⊥)

(p̌!adj
!

(F ′
2
)⊥,F⊥

2

)◦(·)

��

Ext
2 dim(F ′

2)−•

DG×Gm

const (V ∗)
(FV (p!CF1

),FV (p!CF2
)) ∼

// Ext
2 dim(F1)+2 dim(F ′

2)−2 dim(F2)−•

DG×Gm

const (V ∗)
(p̌!CF⊥

1
, p̌!CF⊥

2
).

Pasting these diagrams with the ones of Proposition 3.2.1 we obtain the desired equality. �

Now we consider Setting (B) of §3.1. The proof of the following proposition is similar to that of
Proposition 3.4.1 (replacing Proposition 3.2.1 by Proposition 3.2.2), and is therefore omitted.

Proposition 3.4.2. We have an equality

FourierF ′
1,F2

◦ pdiF1,F2

F ′
1,F2

= res
F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
◦ FourierF1,F2

of morphisms HG×Gm

• (F1 ×V F2) → H
G×Gm

•+2 dim(F⊥
2 )−2 dim(F ′

1)

(
(F ′

1)
⊥ ×V ∗ F⊥

2

)
.

4. Compatibility of the remaining constructions with inclusions

4.1. Compatibilities for linear Koszul duality. Consider Setting (A) of §3.1. Then we
have equivalences of triangulated categories KF1,F2 and KF1,F ′

2
constructed as in §1.5. We also

have natural morphisms of dg-schemes

f : (∆V ×X ×X)
R

∩E×E(F1 × F2) → (∆V ×X ×X)
R

∩E×E(F1 × F ′
2),

g : (∆V ∗ ×X ×X)
R

∩E∗×E∗(F⊥
1 × (F ′

2)
⊥) → (∆V ∗ ×X ×X)

R

∩E∗×E∗(F⊥
1 × F⊥

2 )

associated with the inclusions F2 →֒ F ′
2 and (F ′

2)
⊥ →֒ F⊥

2 respectively, and associated functors

Lf∗ : Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E(F1 × F ′
2)
)
→ Dc

G×Gm

(
(∆V ×X ×X)

R

∩E×E(F1 × F2)
)
,

Rg∗ : D
c
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗(F⊥
1 × (F ′

2)
⊥)

)
→

Dc
G×Gm

(
(∆V ∗ ×X ×X)

R

∩E∗×E∗(F⊥
1 × F⊥

2 )
)

(see [MR3, §§3.2–3.3] for details). By [MR3, Proposition 3.5] there exists an isomorphism of
functors

KF1,F2 ◦ Lf
∗ ∼= Rg∗ ◦ KF1,F ′

2
.

It easily follows from definitions that the following diagram commutes:

Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E(F1 × F ′
2)
) Lf∗

//

��

Dc
G×Gm

(
(∆V ×X ×X)

R

∩E×E(F1 × F2)
)

��

DbCohG×Gm(F1 × F ′
2)

// DbCohG×Gm(F1 × F2).
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(Here the lower horizontal arrow is the usual pullback functor associated with the embedding
F1 × F2 →֒ F1 × F ′

2. The right vertical arrow is induced by the “restriction of scalars” functor
associated with the embedding A0

F1,F2
→֒ AF1,F2 , where the dg-algebra AF1,F2 is defined in

§1.5; note that A0
F1,F2

is the direct image of the structure sheaf under the affine morphism

F1 × F2 → X ×X. The left vertical arrow is defined similarly.) We deduce that the morphism

induced by Lf∗ in K-homology is res
F1,F ′

2
F1,F2

. Similarly, the morphism induced by Rg∗ in K-

homology is pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

(see the proof of [MR3, Lemma 3.3]). We deduce the following result.

Proposition 4.1.1. We have an equality

KoszulF1,F2 ◦ res
F1,F ′

2
F1,F2

= pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦KoszulF1,F ′
2

of morphisms KG×Gm(F1 ×V F
′
2) → KG×Gm(F⊥

1 ×V ∗ F⊥
2 ).

Now, consider Setting (B) of §3.1. The same considerations as above allow to prove the following
result.

Proposition 4.1.2. We have an equality

KoszulF ′
1,F2

◦ pdiF1,F2

F ′
1,F2

= res
F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
◦KoszulF1,F2

of morphisms KG×Gm(F1 ×V F2) → KG×Gm

(
(F ′

1)
⊥ ×V ∗ F⊥

2

)
.

4.2. Compatibilities for the other maps in K-homology. Consider Setting (A) of §3.1.

Proposition 4.2.1. We have equalities

DF⊥
1 ,F

⊥
2
◦ pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

= pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦DF⊥
1 ,(F

′
2)

⊥ ,

iF⊥
1 ,F

⊥
2
◦ pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

= pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦ iF⊥
1 ,(F

′
2)

⊥

of morphisms KG×Gm(F⊥
1 ×V ∗ (F ′

2)
⊥) → KG×Gm(F⊥

1 ×V ∗ F⊥
2 ).

Proof. The second equality is easy, and left to the reader. Let us consider the first one. We
denote the inclusion morphism by

hA : F
⊥
1 × (F ′

2)
⊥ →֒ F⊥

1 × F⊥
2 ,

and consider the duality functor

DG×Gm

F⊥
1 ,F

⊥
2
: DbCoh

G×Gm

F⊥
1 ×V ∗F⊥

2
(F⊥

1 × F⊥
2 ) → DbCoh

G×Gm

F⊥
1 ×V ∗F⊥

2
(F⊥

1 × F⊥
2 )op

defined as in §1.6, and similarly for DG×Gm

F⊥
1 ,(F

′
2)

⊥
. Then the result follows from the natural isomor-

phism
R(hA)∗ ◦D

G×Gm

F⊥
1 ,(F

′
2)

⊥
∼= DG×Gm

F⊥
1 ,F

⊥
2
◦R(hA)∗

provided by the duality theorem [Ha, Theorem VII.3.3]. More precisely we need an equivariant
version of the duality theorem, which can be derived from the non-equivariant version by the
arguments of [MR3, §2.1]. �

Consider now Setting (B) of §3.1.



30 IVAN MIRKOVIĆ AND SIMON RICHE

Proposition 4.2.2. We have equalities

D(F ′
1)

⊥,F⊥
2
◦ res

F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2

= res
F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
◦DF⊥

1 ,F
⊥
2
,

i(F ′
1)

⊥,F⊥
2
◦ res

F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
= res

F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
◦ iF⊥

1 ,F
⊥
2

of morphisms KG×Gm(F⊥
1 ×V ∗ F⊥

2 ) → KG×Gm((F ′
1)

⊥ ×V ∗ F⊥
2 ).

Proof. The second equality is easy, and left to the reader. Let us consider the first one. We
denote the inclusion morphism by

hB : (F ′
1)

⊥ × F⊥
2 →֒ F⊥

1 × F⊥
2 ,

and consider the duality functors DG×Gm

F⊥
1 ,F

⊥
2

and DG×Gm

(F ′
1)

⊥,F⊥
2

defined as in §1.6. The claim follows

from an isomorphism of functors

L(hB)
∗ ◦DG×Gm

F⊥
1 ,F

⊥
2

∼= DG×Gm

(F ′
1)

⊥,F⊥
2
◦ L(hB)

∗

which can be proved by arguments similar to those of [Ha, Proposition II.5.8], taking into
account our assumption that X is a smooth variety (so that F⊥

1 ×F⊥
2 and (F ′

1)
⊥ × F⊥

2 are also
smooth), which implies that every object of the bounded derived category of coherent sheaves
is isomorphic to a bounded complex of locally free sheaves. �

4.3. Compatibilities for RR. First, consider Setting (A) of §3.1.

Proposition 4.3.1. Assume that the proper direct image morphism

HG×Gm

• (F1 ×V F2) → HG×Gm

• (F1 × F2)

is injective. Then we have an equality

RRF1,F2
◦ res

F1,F ′
2

F1,F2
= res

F1,F ′
2

F1,F2
◦ RRF1,F ′

2

of morphisms KG×Gm(F1 ×V F
′
2) → ĤG×Gm

• (F1 ×V F2).

Proof. Consider the following cube:

KG×Gm(F1 ×V F
′
2)

res
F1,F

′
2

F1,F2

��

pdi

))SS
SS

SS
SS

SS
SS

SS
S

RRF1,F
′
2 // ĤG×Gm

• (F1 ×V F
′
2)

res
F1,F

′
2

F1,F2
��

pdi

))SS
SS

SS
SS

SS
SS

SS

KG×Gm(F1 × F ′
2)

res

��

(1)
// ĤG×Gm

• (F1 × F ′
2)

res

��

KG×Gm(F1 ×V F2)

pdi

))SS
SS

SS
SS

SS
SS

SS
S

RRF1,F2 // ĤG×Gm

• (F1 ×V F2)
pdi

))SS
SS

SS
SS

SS
SS

SS

KG×Gm(F1 × F2)
(2)

// ĤG×Gm

• (F1 × F2).

Here the labels res and res, resp. pdi and pdi, indicate restriction with supports (always with
respect to the morphism induced by F2 →֒ F ′

2), resp. proper direct image, the arrow labelled



LINEAR KOSZUL DUALITY AND FOURIER TRANSFORM 31

by (1) is given by τG×Gm

F1×F ′
2
·
(
1 ⊠ (TdG×Gm

F ′
2

)−1
)
, and the arrow labelled by (2) by τG×Gm

F1×F2
·
(
1 ⊠

(TdG×Gm

F2
)−1

)
. The upper and lower faces of this cube commute by Theorem 1.7.3 and the

projection formula (1.1.1). The left face commutes by definition, and the right one by Lemma
A.5.1. The front face commutes by Proposition 1.7.4, Remark 1.7.5 and formula (1.1.2). Using
our assumption, we deduce the commutativity of the back face, which finishes the proof. �

Now, consider Setting (B) of §3.1. The following proposition follows from Theorem 1.7.3 and
the projection formula (1.1.1).

Proposition 4.3.2. We have an equality

RRF ′
1,F2

◦ pdiF1,F2

F ′
1,F2

= pdi
F1,F2

F ′
1,F2

◦ RRF1,F2

of morphisms KG×Gm(F1 ×V F2) → ĤG×Gm

• (F ′
1 ×V F2).

4.4. Compatibilities for RR. The proofs in this subsection are analogous to those of the
corresponding statements in §4.3; they are therefore omitted.

First, consider Setting (A) of §3.1.

Proposition 4.4.1. We have an equality

RRF⊥
1 ,F

⊥
2
◦ pdi

F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

= pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦ RRF⊥
1 ,(F

′
2)

⊥

of morphisms KG×Gm(F⊥
1 ×V ∗ (F ′

2)
⊥) → ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).

Now, consider Setting (B) of §3.1.

Proposition 4.4.2. Assume that the proper direct image morphism

HG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ) → HG×Gm

• ((F ′
1)

⊥ × F⊥
2 )

is injective. Then we have an equality

RR(F ′
1)

⊥,F⊥
2
◦ res

F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
= res

F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
◦ RRF⊥

1 ,F
⊥
2

of morphisms KG×Gm(F⊥
1 ×V ∗ F⊥

2 ) → ĤG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ).

5. Proof of Theorem 1.9.1

5.1. A particular case. In this subsection we study the case when F1 = E and F2 = X
(considered as the zero-section of E) so that F⊥

1 = X, F⊥
2 = E∗. In this case, the assumption

of Theorem 1.9.1 is trivially satisfied.

Lemma 5.1.1. Under the identifications E ×V X = X ×X = X ×V ∗ E∗, the isomorphism

FourierE,X : HG×Gm

• (E ×V X)
∼
−→ HG×Gm

• (X ×V ∗ E∗)

coincides with the automorphism of HG×Gm

• (X×X) induced by the involution of G×Gm sending
(g, t) to (g, t−1).
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Proof. The lemma is equivalent to the statement that the isomorphism HG×Gm

• (E ×V X)
∼
−→

HG×Gm

• (X×V ⋄E⋄) induced by the equivalence FV of §1.2 is the identity morphism of HG×Gm

• (X×
X).

Using the canonical isomorphism of §1.3 in the case V = {0}, F1 = F2 = X we obtain an
isomorphism

α : HG×Gm

• (X ×X)
∼
−→ Ext

2 dim(X)−•

DG×Gm

const (pt)

(
(p0)!CX , (p0)!CX

)
,

where p0 : X → pt is the projection. Then the composition

HG×Gm

• (X ×X) = HG×Gm

• (E ×V X) ∼= Ext
2 dim(X)−•

DG×Gm

const (V )
(p!CE, p!CX)

sends each c ∈ H
G×Gm

i (X ×X) to the morphism

p!CE = CV ⊠ (p0)!CX
ϕ⊠α(c)
−−−−→ C{0} ⊠ (p0)!CX [2 dim(X)− i] = p!CX [2 dim(X)− i]

where ϕ : CV → C{0} is the (∗, ∗)-adjunction morphism for the inclusion {0} →֒ V , and we use
the identification V = V × pt. Similarly, the composition

HG×Gm

• (X ×X) = HG×Gm

• (X ×V ⋄ E⋄) ∼= Ext
2 dim(E∗)−•

DG×Gm

const (V ⋄)
(p̌!CX , p̌!CE⋄)

sends each c ∈ H
G×Gm

i (X ×X) to the morphism

p̌!CX = C{0} ⊠ (p0)!CX
ψ⊠α(c)
−−−−→ CV ⋄ ⊠ (p0)!CX [2 dim(E∗)− i]

where ψ : C{0} → CV ⋄ [2 dim(V ∗)] is the (!,
!)-adjunction morphism for the inclusion {0} →֒ V ⋄,

and we use the identification V ⋄ = V ⋄ × pt. Now using Lemma 3.3.1 we obtain that FV sends
ϕ⊠ α(c) to ψ ⊠ α(c), and the lemma follows. �

With this result in hand we can prove Theorem 1.9.1 in our particular case.

Lemma 5.1.2. Theorem 1.9.1 holds in the case F1 = E, F2 = X.

Proof. We have F1 ×V F2 = X × X, and also F⊥
1 ×V ∗ F⊥

2 = X × X. There exists a natural
morphism of dg-schemes

(∆V ×X ×X)
R

∩E×E(E ×X) → (X ×X)
R

∩X×X(X ×X)

associated with the morphism of vector bundles p × p : E × E → X × X, see [MR3, §3.2]. In
our case it is easily checked that this morphism is a quasi-isomorphism, hence it induces an
equivalence of triangulated categories

LΦ∗ : Dc
G×Gm

((X ×X)
R

∩X×X(X ×X))
∼
−→ Dc

G×Gm

((∆V ×X ×X)
R

∩E×E(E ×X)),

see [MR1, Proposition 1.3.2]. Moreover by definition the left-hand side coincides with the

category DbCohG×Gm(X × X), so that LΦ∗ can (and will) be considered as an equivalence

from DbCohG×Gm(X ×X) to Dc
G×Gm

((∆V ×X ×X)
R

∩E×E(E ×X)). It is easily checked that

the induced automorphism of KG×Gm(X ×X) is the identity.

Similarly, the morphism dual to p× p induces a quasi-isomorphism

(X ×X)
R

∩X×X(X ×X) → (∆V ∗ ×X ×X)
R

∩E∗×E∗(X × E∗),
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hence an equivalence of triangulated categories

RΨ∗ : D
bCohG×Gm(X ×X)

∼
−→ Dc

G×Gm

((∆V ∗ ×X ×X)
R

∩E∗×E∗(X × E∗)),

which induces the identity morphism in K-homology.

If KX,X denotes the linear Koszul duality equivalence defined as in §1.5 (in the case V = {0},
F1 = F2 = E = X), by [MR3, Proposition 3.4] there exists an isomorphism

KE,X ◦ LΦ∗ ∼= RΨ∗ ◦ KX,X .

Using the remarks above and the definition of the equivalence KX,X , we deduce that, if G is in

DbCohG(X ×X) (considered as an object of DbCohG×Gm(X ×X) with trivial Gm-action), the
morphism KoszulE,X sends the class of G〈m〉 to the class of

RHomOX×X
(G,OX ⊠ ωX)〈m〉[dim(X) +m].

Using the compatibility of Grothendieck–Serre duality with proper direct images (as in the proof
of Proposition 4.2.1) one easily checks that, with similar notation, DX,E∗ sends the class of G〈m〉
to the class of

RHomOX×X
(G,OX ⊠ ωX)〈−m〉[dim(X)].

We deduce that DX,E∗◦KoszulE,X sends the class of G〈m〉 to the class of G〈−m〉[−m], and then

that iX,E∗ ◦DX,E∗ ◦ KoszulE,X identifies with the automorphism of KG×Gm(X × X) induced
by the involution of G×Gm sending (g, t) to (g, t−1).

The statement in the lemma follows from this description, Lemma 5.1.1, and the compatibility
of the Riemann–Roch maps with inverse image (in K-homology and Borel–Moore homology)
under an automorphism of G×Gm. �

5.2. Compatibility with inclusion. Consider first Setting (A) of §3.1.

Proposition 5.2.1. (1) We have an equality

RRF⊥
1 ,F

⊥
2
◦ iF⊥

1 ,F
⊥
2
◦DF⊥

1 ,F
⊥
2
◦KoszulF1,F2 ◦ res

F1,F ′
2

F1,F2
=

pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦ RRF⊥
1 ,(F

′
2)

⊥ ◦ iF⊥
1 ,(F

′
2)

⊥ ◦DF⊥
1 ,(F

′
2)

⊥ ◦KoszulF1,F ′
2

of morphisms KG×Gm(F1 ×V F
′
2) → ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).
(2) Assume that the proper direct image morphism

HG×Gm

• (F1 ×V F2) → HG×Gm

• (F1 × F2)

is injective. Then we have an equality

FourierF1,F2
◦ RRF1,F2

◦ res
F1,F ′

2
F1,F2

= pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

◦ FourierF1,F ′
2
◦ RRF1,F ′

2

of morphisms KG×Gm(F1 ×V F
′
2) → ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ).

Proof. (1) follows from Propositions 4.1.1, 4.2.1 and 4.4.1. (2) follows from Propositions 4.3.1
and 3.4.1. �

Consider now Setting (B) of §3.1.
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Proposition 5.2.2. (1) Assume that the proper direct image morphism

HG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ) → HG×Gm

• ((F ′
1)

⊥ × F⊥
2 )

is injective. Then we have an equality

RR(F ′
1)

⊥,F⊥
2
◦ i(F ′

1)
⊥,F⊥

2
◦D(F ′

1)
⊥,F⊥

2
◦KoszulF ′

1,F2
◦ pdiF1,F2

F ′
1,F2

= res
F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
◦ RRF⊥

1 ,F
⊥
2
◦ iF⊥

1 ,F
⊥
2
◦DF⊥

1 ,F
⊥
2
◦KoszulF1,F2

of morphisms KG×Gm(F1 ×V F2) → ĤG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ).

(2) We have an equality

FourierF ′
1,F2

◦ RRF ′
1,F2

◦ pdiF1,F2

F ′
1,F2

= res
F⊥
1 ,F

⊥
2

(F ′
1)

⊥,F⊥
2
◦ FourierF1,F2 ◦RRF1,F2

of morphisms KG×Gm(F1 ×V F2) → ĤG×Gm

• ((F ′
1)

⊥ ×V ∗ F⊥
2 ).

Proof. (1) follows from Propositions 4.1.2, 4.2.2 and 4.4.2. (2) follows from Propositions 4.3.2
and 3.4.2. �

5.3. Proof of Theorem 1.9.1. By assumption, the proper direct image morphism

HG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → HG×Gm

• (F⊥
1 ×V ∗ E∗)

is injective. Hence the same is true for the induced morphism

ĤG×Gm

• (F⊥
1 ×V ∗ F⊥

2 ) → ĤG×Gm

• (F⊥
1 ×V ∗ E∗).

By Proposition 5.2.1 applied to the inclusion X ⊂ F2, we deduce that it suffices to prove the
theorem in the case F2 = X. (Note that the inclusion F1 ×V X →֒ F1 × X is the inclusion of
the zero section in the vector bundle F1 ×X over X ×X. Hence the injectivity assumption in
Proposition 5.2.1(2) holds by Lemma A.8.2.)

Now consider the inclusion of vector subbundles F1 ⊂ E (again with F2 = X). In this case, the
morphism

res
F⊥
1 ,E

∗

X,E∗ : HG×Gm

• (F⊥
1 ×V ∗ E∗) → H

G×Gm

•−2rk(F⊥
1 )

(X ×V ∗ E∗) = H
G×Gm

•−2rk(F⊥
1 )

(X ×X)

is the Thom isomorphism for the vector bundle F⊥
1 ×V ∗ E∗ ∼= F⊥

1 ×X over X×X; in particular
it is injective. Using Proposition 5.2.2 we deduce that it suffices to prove the theorem in the
case F1 = E, F2 = X. (Note that in our situation the inclusion E⊥ ×V ∗ X⊥ →֒ E⊥ ×X⊥ is the
inclusion of the zero section in the vector bundle X × E∗ over X × X, so that the injectivity
assumption in Proposition 5.2.2(1) holds by Lemma A.8.2.) In this case the theorem holds by
Lemma 5.1.2, hence our proof is complete.

Appendix A. Proofs of some technical results

A.1. Conventions. In §§A.2–A.4 we work in the A-equivariant constructible derived category
of some complex algebraic A-varieties (for some arbitrary complex linear algebraic group A). If
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X,Y,Z are A-varieties and f : X → Y , g : Y → Z are A-equivariant morphisms, then there exist
canonical “composition” isomorphisms

g∗f∗ ∼= (g ◦ f)∗, g!f! ∼= (g ◦ f)!, f∗g∗ ∼= (g ◦ f)∗, f !g! ∼= (g ◦ f)!,

which we will all indicate by (Comp). Similarly, given a cartesian square

Y ′

g′

��

f ′
//

�

Z ′

g

��
Y

f
// Z

of A-equivariant morphisms, there exist canonical “base change” isomorphisms

f∗g! ∼= (g′)!(f
′)∗, f !g∗ ∼= (g′)∗(f

′)!,

which we will indicate by (BC).

A.2. Some commutative diagrams. Consider a commutative diagram of A-varieties and
A-equivariant morphisms

Y
g

//
a

''NN
NN

NN
N

c

��

Z
d

&&NN
NN

NN
N

f ��

Y ′ g′
//

b

xxppp
pp
p

Z ′

exxqqq
qq
q

Y ′′ g′′
// Z ′′

where all squares are cartesian. The following lemma is a restatement of [AHR, Lemma B.7(d)].

Lemma A.2.1. The following diagram of isomorphisms of functors commutes:

(g′′)!f∗
(Comp)

∼
//

(BC) ≀
��

(g′′)!e∗d∗
(BC)

∼
// b∗(g

′)!d∗

(BC)≀
��

c∗g
!

(Comp)

∼
// b∗a∗g

!.

Now, consider A-equivariant morphisms

W
f

// X
g

// Y
h // Z.

The following lemma is a restatement of [AHR, Lemma B.4(a) & Lemma B.4(d)].

Lemma A.2.2. The following diagrams of isomorphisms of functors commute:

h∗g∗f∗
(Comp)

∼
//

(Comp) ≀

��

h∗(g ◦ f)∗

(Comp)≀
��

(h ◦ g)∗f∗
(Comp)

∼
// (h ◦ g ◦ f)∗,

f !g!h!
(Comp)

∼
//

(Comp) ≀

��

f !(h ◦ g)!

(Comp)≀
��

(g ◦ f)!h!
(Comp)

∼
// (h ◦ g ◦ f)!.
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A.3. Base change and adjunction. Consider a cartesian diagram

(A.3.1)

Y ′

g′

��

f ′
//

�

Z ′

g

��
Y

f
// Z

of A-varieties and A-equivariant morphisms. Then there exists a canonical morphism of functors

(A.3.2) (f ′)!(g
′)! → g!f!

which can be defined equivalently as the composition

(f ′)!(g
′)! → (f ′)!(g

′)!f !f!
(Comp)
−−−−−→

∼
(f ′)!(f ◦ g′)!f!

(Comp)
−−−−−→

∼
(f ′)!(f

′)!g!f! → g!f!

or as the composition

(f ′)!(g
′)! → g!g!(f

′)!(g
′)!

(Comp)
−−−−−→

∼
g!(g ◦ f ′)!(g

′)!
(Comp)
−−−−−→

∼
g!f!(g

′)!(g
′)! → g!f!

where the unlabelled arrows are induced by the appropriate adjunction morphisms. (We leave
it to the reader to check that these compositions coincide.)

As stated in [KS, Exercise III.9], the following diagram is commutative, where vertical arrows
are induced by the canonical morphisms f! → f∗ and (f ′)! → (f ′)∗:

(f ′)!(g
′)!

(A.3.2)
//

��

g!f!

��

(f ′)∗(g
′)!

(BC)

∼
// g!f∗.

We deduce the following.

Lemma A.3.3. If f (hence also f ′) is proper, then the base change isomorphism (f ′)∗(g
′)! ∼= g!f∗

coincides, under the natural identifications f! = f∗ and (f ′)! = (f ′)∗, with morphism (A.3.2).

A.4. Some consequences. Consider again a cartesian diagram (A.3.1), and assume that f
(hence also f ′) is proper.

First, one can consider the diagram of morphisms of functors

(A.4.1)

(f ′)∗(g
′)!f !

(Comp)≀
��

∼

(BC)
// g!f∗f

!

��

(f ′)∗(f ◦ g′)!

(Comp)≀
��

(f ′)∗(f
′)!g! // g!

where the right vertical arrow is induced by the adjunction morphism f∗f
! = f!f

! → id and the
lower horizontal arrow is induced by the adjunction morphism (f ′)∗(f

′)! = (f ′)!(f
′)! → id.

Lemma A.4.2. Diagram (A.4.1) is commutative.
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Proof. The claim follows from Lemma A.3.3 (using the first description of morphism (A.3.2))
and the fact that the composition of adjunction morphisms

f ! → f !f!f
! → f !

is the identity. �

One can also consider the diagram of morphisms of functors

(A.4.3)

g!(f
′)∗(g

′)!

(Comp)≀
��

∼

(BC)
// g!g

!f∗

��

(g ◦ f ′)!(g
′)!

(Comp)≀
��

f∗(g
′)!(g

′)! // f∗

where unlabelled arrows are induced by adjunction, and in the left-hand side we use the identi-
fications f! = f∗ and (f ′)! = (f ′)∗.

Lemma A.4.4. Diagram (A.4.3) is commutative.

Proof. The claim follows from Lemma A.3.3 (using the second description of morphism (A.3.2))
and the fact that the composition of adjunction morphisms

g! → g!g
!g! → g!

is the identity. �

A.5. Restriction with supports in Borel–Moore homology. As in §1.1, let A be a com-
plex linear algebraic group, let Y be a smooth complex A-variety, and let Y ′ ⊂ Y be a smooth
A-stable closed subvariety. Consider another A-stable closed subvariety Z ⊂ Y , not necessarily
smooth, and set Z ′ := Z ∩ Y ′. Then we have a cartesian diagram of closed inclusions

Z ′ � � i′ //
� _

g

��

Y ′
� _

f

��
Z � � i // Y.

Set N := 2dim(Y )− 2 dim(Y ′). The “restriction with supports” morphism

resZZ′ : HA• (Z) → HA•−N (Z
′)

associated with the inclusion Y ′ →֒ Y is defined as follows. Consider the composition

i! → i!f∗f
∗ (BC)
−−−→

∼
g∗(i

′)!f∗

where the first morphism is induced by the adjunction morphism id → f∗f
∗. Then applying

this composition to DY and using the isomorphisms

i!DY
∼= DZ , f∗DY

∼= f∗CY [2 dim(Y )] ∼= CY ′ [2 dim(Y )] ∼= DY ′ [N ], and (i′)!DY ′
∼= DZ′
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we obtain a morphism

DZ → g∗DZ′ [N ].

Taking (equivariant) cohomology provides our morphism resZZ′ .

The same construction, applied to the subvariety Y ′ ⊂ Y instead of Z, provides another mor-
phism

resYY ′ : HA• (Y ) → HA•−N (Y
′)

Lemma A.5.1. The following diagram is commutative:

HA• (Z)
resZ

Z′
//

pdii
��

HA•−N (Z
′)

pdii′

��

HA• (Y )
resY

Y ′
// HA•−N (Y

′).

Proof. Consider the following diagram:

i!i
! //

��

i!i
!f∗f

∗ (BC)

∼
//

��<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

i!g∗(i
′)!f∗

(‡)≀
��

f∗(i
′)!(i

′)!f∗

��
id // f∗f

∗.

Here the unlabelled arrows are induced by the appropriate adjunction morphisms, and the arrow
labelled with (‡) is induced by the composition of natural isomorphisms

i!g∗ ∼= i!g!
(Comp)
−−−−−→

∼
(i ◦ g)!

(Comp)
−−−−−→

∼
f!(i

′)! ∼= f∗(i
′)!.

The left part of the diagram is clearly commutative, and the right part is commutative by Lemma
A.4.4. Hence the diagram as a whole is commutative. Now, when applied to DY and after taking
equivariant cohomology, this diagram induces the diagram of the lemma, hence these remarks
finish the proof. (In this argument we also use the left diagram in Lemma A.2.2, which allows to
forget about the “(Comp)” isomorphisms in the right-hand side of the diagram once equivariant
cohomology is taken.) �

A.6. Proof of Proposition 3.2.1(1). By functoriality of isomorphism (1.3.1) the following
diagram commutes, where the right vertical morphism is induced by adj∗F2,F ′

2
:

(A.6.1)

Ext•
DG×Gm

const (V )
(p∗CF1

, p∗CF ′
2
)

(p∗adj
∗

F2,F
′
2
)◦(·)

��

(1.3.1)

∼
// H•
G×Gm

(E ×V E, j
!(DF1

⊠ CF ′
2
))

��

Ext•
DG×Gm

const (V )
(p∗CF1

, p∗CF2
)

(1.3.1)

∼
// H•
G×Gm

(E ×V E, j
!(DF1

⊠ CF2
)).
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Now, consider the following diagram, where all squares are cartesian and all morphisms are
closed inclusions:

F1 ×V F2
c //

k

��

b

((
F1 ×V F

′
2

k′

��

b′ // E ×V E

j

��
F1 × F2

d //

a

66F1 × F ′
2

a′ // E × E.

Then under the natural identifications

H•
G×Gm

(E ×V E, j
!(DF1

⊠ CF2
)) ∼= H•

G×Gm

(E ×V E, j
!a∗(DF1

⊠ CF2
)),

H•
G×Gm

(E ×V E, j
!(DF1

⊠ CF ′
2
)) ∼= H•

G×Gm

(E ×V E, j
!(a′)∗(DF1

⊠ CF ′
2
)),

the right vertical morphism in (A.6.1) identifies with the morphism

(A.6.2) H•
G×Gm

(
E ×V E, j

!(a′)∗(DF1
⊠ CF ′

2
)
)
→ H•

G×Gm

(
E ×V E, j

!a∗(DF1
⊠ CF2

)
)

induced by the adjunction morphism id → d∗d
∗ (through the “composition” isomorphism

(a′)∗d∗ ∼= a∗).

Consider the following diagram of morphisms of functors:

j!(a′)∗
(BC)

∼
//

��

(⋆)

&&

(b′)∗(k
′)!

��

(†)

zz

j!(a′)∗d∗d
∗ (BC)

∼
//

(Comp) ≀
��

(b′)∗(k
′)!d∗d

∗

(BC)≀
��

j!a∗d
∗ (BC)

∼
// b∗k

!d∗
(Comp)

∼
// (b′)∗c∗k

!d∗.

Here the upper vertical arrows are induced by the adjunction morphism id → d∗d
∗, and other

arrows are either base change or composition isomorphisms as indicated. The upper square is
clearly commutative, and the lower square is commutative by Lemma A.2.1. Hence the whole
diagram is commutative, which allows to define the dotted arrows uniquely. The arrow labelled
with (⋆) is the morphism which defines (A.6.2), and the arrow labelled with (†) is the morphism

used in the definition of restriction with supports res
F1,F

′
2

F1,F2
, see §A.5. Applying this diagram to

DF1
⊠CF ′

2
and taking equivariant cohomology allows to finish the proof of Proposition 3.2.1(1).

(In this argument we also use the left diagram in Lemma A.2.2, which allows e.g. to forget about
the “(Comp)” isomorphism on the lower line once equivariant cohomology is taken.)
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A.7. Proof of Proposition 3.2.1(2). Consider the following diagram, where all squares are
cartesian and all morphisms are closed inclusions:

F⊥
1 ×V ∗ (F ′

2)
⊥ c̃ //

k̃
��

b̃

))
F⊥
1 ×V ∗ F⊥

2

k̃′

��

b̃′ // E∗ ×V ∗ E∗

j̃

��
F⊥
1 × (F ′

2)
⊥ d̃ //

ã

55F⊥
1 × F⊥

2
ã′ // E∗ × E∗.

Then by functoriality of isomorphism (1.3.1) we have a commutative diagram

(A.7.1)

Ext•
D

G×Gm

const (V ∗)
(p̌∗CF⊥

1
, p̌∗C(F ′

2)
⊥ )

∼ //

(p̌∗adj
!

(F ′
2
)⊥,F⊥

2

)◦(·)

��

H
•
G×Gm

(

E∗ ×V ∗ E∗, j̃!ã∗(DF⊥
1

⊠ C(F ′
2)

⊥ )
)

��

Ext
•+2rk(F⊥

2 )−2rk((F ′
2)

⊥)

D
G×Gm

const (V ∗)
(p̌∗CF⊥

1
, p̌∗CF⊥

2
)

∼ // H
•+2rk(F⊥

2 )−2rk((F ′
2)

⊥)

G×Gm

(

E∗ ×V ∗ E∗, j̃!(ã′)∗(DF⊥
1

⊠ CF⊥
2
)
)

,

where horizontal arrows are induced by isomorphism (1.3.1) and the right vertical morphism is

induced by the adjunction morphism d̃!d̃
! → id (through the isomorphisms (ã′)∗d̃! ∼= (ã′)∗d̃∗ ∼= ã∗

and C(F ′
2)

⊥
∼= D(F ′

2)
⊥ [−2 dim((F ′

2)
⊥)], CF⊥

2

∼= DF⊥
2
[−2 dim(F⊥

2 )]).

Consider the following diagram of morphisms of functors:

j̃!ã∗d̃
!

(BC)

∼
//

(Comp) ≀

��
(#)

!!

b̃∗k̃
!d̃!

(Comp)≀

��

(♭)

rr

(b̃′)∗c̃∗k̃
!d̃!

(BC)≀
��

(Comp)

∼
// (b̃′)∗c̃∗(d̃ ◦ k̃)

!

(Comp)≀
��

j̃!(ã′)∗d̃∗d̃
! (BC)

∼
//

��

(b̃′)∗(k̃
′)!d̃∗d̃

!

��

(b̃′)∗c̃∗c̃
!(k̃′)!

uulll
ll
ll
ll
ll
ll
ll

j̃!(ã′)∗
(BC)

∼
// (b̃′)∗(k̃

′)!

Here all the unlabelled arrows are induced by the appropriate adjunction morphisms (using the

identifications c̃∗ = c̃! and d̃∗ = d̃!). The upper square is commutative by Lemma A.2.1, the
lower square is obviously commutative, and the right square is commutative by Lemma A.4.2.
Hence the diagram as a whole is commutative, which allows to define the dotted arrows uniquely.
The arrow labelled with (#) is the one which induces the right arrow in diagram (A.7.1) (when
applied to DF⊥

1 ×F⊥
2
), while the arrow labelled with (♭) is the one which induces the proper

direct image morphism pdi
F⊥
1 ,(F

′
2)

⊥

F⊥
1 ,F

⊥
2

(again when applied to DF⊥
1 ×F⊥

2
), see [CG, §8.3.19]. The

result follows. (As in §A.6, in this argument we also use the diagrams of Lemma A.2.2.)
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A.8. A lemma on Euler classes. Let A be a complex linear algebraic group acting on a
smooth complex algebraic variety Y , and let F → Y be an A-equivariant vector bundle of rank
r. We consider F (hence also its zero-section Y ) as an A × Gm-variety with the Gm-action
defined as in §1.2. Note that, as Gm acts trivially on Y , there exists a canonical isomorphism
of graded algebras

(A.8.1) H•
A×Gm

(Y ) ∼= H•
A(Y )⊗C H•

Gm

(pt).

Lemma A.8.2. The proper direct image morphism

HA×Gm

• (Y ) → HA×Gm

• (F )

associated with the inclusion Y →֒ F is injective.

Proof. It is well known that the composition of our morphism with the Thom isomorphism
HA×Gm

• (F ) ∼= H
A×Gm

•−2r (Y ) identifies with the action of the equivariant Euler class Eu(F ) ∈

H2r
A×Gm

(Y ) of F , see e.g. [L3, §1.19]. Since Y is smooth, the equivariant homology HA×Gm

• (Y )
is a free module of rank one over H•

A×Gm

(Y ), hence it is enough to prove that Eu(F ) is not a
zero-divisor in H•

A×Gm

(Y ). However one can check that (due to our choice of Gm-action) this
Euler class can be written, using isomorphism (A.8.1), as

Eu(F ) = 1⊗ (−2u)r + x

where 1 ∈ H0
A(Y ) is the unit, u ∈ H2

Gm

(pt) is the canonical generator and x ∈
⊕

i≥2 H
i
A(Y ) ⊗

H2r−i
Gm

(pt). It follows that this element is indeed not a zero-divisor. �
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