Bandwidth selection in kernel empirical risk minimization via the gradient

Abstract : In this paper, we deal with the data-driven selection of multidimensional and (possibly) anisotropic bandwidths in the general problem of kernel empirical risk minimization. We propose a universal selection rule, which leads to optimal adaptive results in a large variety of statistical models such as nonparametric regression or statistical learning with errors-in-variables. These results are stated in the context of smooth loss functions, where the gradient of the risk appears as a good criterion to measure the performance of our estimators. This turns out to be helpful to derive excess risk bounds - with fast rates of convergence - in noisy clustering as well as adaptive minimax results for pointwise and global estimation in robust nonparametric regression. The selection rule consists of a comparison of the gradient empirical risks. It can be viewed as a non-trivial improvement of the so-called GL method (Goldenshluger and Lepski, 2011) to non-linear estimators. Another main advantage of our selection rule is the non-dependency on the smallest eigenvalue of the Hessian matrix of the risk, which is a changing and unknown parameter determined by the underlying model.
Type de document :
Pré-publication, Document de travail
37 pages. 2014
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger
Contributeur : Sébastien Loustau <>
Soumis le : jeudi 30 janvier 2014 - 15:58:55
Dernière modification le : mardi 5 mars 2019 - 09:30:10
Document(s) archivé(s) le : dimanche 9 avril 2017 - 00:12:16


Fichiers éditeurs autorisés sur une archive ouverte


  • HAL Id : hal-00937026, version 1



Michaël Chichignoud, Sébastien Loustau. Bandwidth selection in kernel empirical risk minimization via the gradient. 37 pages. 2014. 〈hal-00937026〉



Consultations de la notice


Téléchargements de fichiers