Improving spatial temperature estimates by resort to time autoregressive processes

Abstract : Temperature estimation methods usually involve regression followed by kriging of residuals (residual kriging). Despite the performance of such models, there is invariably a residual which is not necessarily unpredictable because it may still be correlated in time. We set out to analyse such residuals through resort to autoregressive processes. It is shown that the optimal period varies depending on whether it is identified by functions of the form resd = f(resd−1, resd−2, ..., resd−p) or by partial correlations. Autoregressive processes significantly improve estimates, which are evaluated by cross-validations. Finally, the two following points are discussed: (1) the assumptions of the autoregressive model on the residuals (the assumptions of linearity, stationarity of space and time are verified empirically) and (2) the identification of the days for which the introduction of this model is really interesting.
Type de document :
Article dans une revue
International Journal of Climatology, Wiley, 2013, 33 (10), pp.2289-2297. 〈10.1002/joc.3601〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00936750
Contributeur : Théoriser Et Modéliser Pour Aménager (umr 6049) Université de Bourgogne Franche-Comté <>
Soumis le : lundi 27 janvier 2014 - 13:37:36
Dernière modification le : vendredi 13 juillet 2018 - 11:31:42

Lien texte intégral

Identifiants

Collections

Citation

Daniel Joly, Hervé Cardot, Andreas Schaumberger. Improving spatial temperature estimates by resort to time autoregressive processes. International Journal of Climatology, Wiley, 2013, 33 (10), pp.2289-2297. 〈10.1002/joc.3601〉. 〈hal-00936750〉

Partager

Métriques

Consultations de la notice

259