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SUMMARY

This paper deals with actuator fault estimation for a class of discrete-time Linear Parameter-Varying (LPV)

descriptor systems. By considering the fault as an auxiliary state vector, an augmented system is established.

Then, a fault estimation observer is designed based on the augmented system. In this paper, the fault

estimation observer design is formulated as a Linear Matrix Inequality (LMI) feasibility problem. Therefore,

all parameters of the observer can be simultaneously designed by solving a set of strict LMIs. In order to

attenuate the effect of the unknown disturbance, fault variation, and measurement noise, we further propose

a robust fault estimation observer design method, which is the main contribution of this paper. Finally,

performance of the proposed robust fault estimation observer is shown through the application to a truck-

trailer model. Copyright c⃝ 2013 John Wiley & Sons, Ltd.
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2 Z. WANG ET AL.

1. INTRODUCTION

It is known that faults may lead to performance degradation or even serious system damages. As a

result, it is essential to detect and identify faults so that necessary protective actions can be taken

in advance. Therefore, fault diagnosis techniques have received considerable attention. During the

past decades, model-based fault diagnosis has been most widely considered and various methods

have been proposed in the literature, see e.g. [1–4] and the references therein.

In the literature, most of the existing fault diagnosis methods are based on Linear Time-Invariant

(LTI) systems. Although much attention has been devoted to fault diagnosis for nonlinear systems

[5, 6], extension of the fault diagnosis approaches in linear systems to general nonlinear case is still

a challenging problem. Since Linear Parameter-Varying (LPV) model can be used to approximate

a large class of nonlinear systems, the LPV representation has often been used for modeling and

control of nonlinear systems [7, 8]. In recent years, a few scholars have proposed several fault

diagnosis methods for LPV systems [9–11]. For instance, [9] proposed a fault reconstruction method

for a class of LPV systems using LPV sliding mode observer. In [10], the authors proposed a fault

estimation approach for discrete-time LPV systems based on robust dynamic inversion technique.

[11] developed a sensor fault isolation and estimation method for nonlinear systems described by

polytopic LPV representation. However, it should be noted that these papers only deal with regular

systems.

On the other hand, the descriptor systems (also known as singular systems, generalized systems,

and implicit systems) appear in many fields, e.g. power systems, electrical networks, and mechanical

systems [12, 13]. In the past decades, many results have been reported on analysis and design

of descriptor systems, see e.g. [12, 13] and the references therein. However, there are limited

papers on fault diagnosis methods for descriptor systems [14–20]. The authors in [14] proposed a

fault estimation method for continuous-time nonlinear descriptor systems by using on-line learning

methodology. [15] used generalized unknown input observer to deal with the robust fault detection

problem for linear descriptor systems. In [16], unknown input observer was used to generate

residuals to detect and isolate faults for the descriptor systems and the fault reconstruction was

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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FAULT ESTIMATION OBSERVER DESIGN FOR DISCRETE-TIME LPV SYSTEMS 3

achieved by sliding mode observer. More recently, the authors in [17] investigated fault detection

for discrete-time switched descriptor systems with time-varying state delays. However, to the best

knowledge of the authors, fault diagnosis for LPV descriptor systems has not been well investigated

yet [18–20]. [18] designed a robust fault detection filter for a class of nonlinear descriptor systems

described by LPV form with globally Lipschitz term. The main idea of [18] is to formulate the

robust fault detection filter design as an H–/H∞ problem. However, the methods in [18] only

address the fault detection problem but the fault magnitudes cannot be estimated. As pointed

out in [21], accurate and timely fault estimation/identification is an important antecedent for

satisfactory control reconfiguration. Therefore, it is important to develop fault estimation methods

for descriptor systems. In [19], the authors proposed a fault detection, isolation and estimation

scheme via unknown input Proportional Integral (PI) observers. It should be noticed that [19]

deals with continuous LPV descriptor systems while this paper focuses on the discrete-time case.

Moreover, our paper considers how to attenuate the influence of the measurement noise, which is not

considered in [19]. In view of this point, the proposed method is more practical than that from [19].

In [20], an actuator fault estimation method for discrete-time LPV descriptor systems is proposed

by using PI observer. However, the fault distribution matrix in [20] is constant, which restricts its

scope of application. Moreover, external disturbance is not considered in [20]. In view of this, we

present this paper to improve the method in [20]. Herein, it is interesting to mention this paper is

different from the work in [22]. In [22], discrete-time Takagi-Sugeno systems with sensor faults are

first formulated as a descriptor representation, and then an H–/H∞ fault detection filter is designed

based on the obtained descriptor system. In other words, [22] deals with fault detection for regular

systems by using the technique of descriptor systems. However, this paper studies discrete-time LPV

descriptor systems with faults. It is known that descriptor system representation is a generalization

of the regular system. Therefore, the proposed method is more general than that of [22].

The aim of this paper is to develop a fault estimation method for a class of discrete-time LPV

descriptor systems. In this paper, the constant fault distribution matrix considered in [20] is relaxed

to a parameter-varying matrix. As a result, the proposed method has a broader application scope.

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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4 Z. WANG ET AL.

Moreover, we also consider unknown disturbance, fault variation, and measurement noise in this

paper. The basic idea of this paper is to construct an augmented system by taking the fault as an

auxiliary state vector, and then design a fault estimation observer based on this augmented system.

The main contribution of the proposed method lies in the following aspects. First, a new fault

estimation observer with a novel structure is proposed for discrete-time LPV descriptor systems. The

proposed fault estimation observer can be designed by solving a set of Linear Matrix Inequalities

(LMIs). Second, a robust observer design method is proposed to attenuate the effect of unknown

disturbance, fault variation, and measurement noise on fault estimation.

The rest of this paper is organized as follows. Section 2 briefly introduces the problem to be

studied. In Section 3, a new fault estimation observer for discrete-time LPV descriptor systems

is proposed, and the observer design is formulated as a LMI feasibility problem. In order to deal

with unknown disturbance, fault variation, and measurement noise, Section 4 proposes a robust

fault estimation observer design method. In Section 5, a truck-trailer example is used to show the

effectiveness and performance of the proposed methods. Finally, conclusions are given in Section 6.

2. PROBLEM STATEMENT

Consider the following class of discrete-time LPV descriptor system















Ex(k + 1) =
h
∑

i=1

ρi(θ(k))(Aix(k) +Biu(k) + Fif(k))

y(k) = Cx(k)

(1)

where x(k) ∈ R
n is the descriptor state vector, u(k) ∈ R

p is the input vector, y(k) ∈ R
m is the

output vector and f(k) ∈ R
q represents the fault vector. E ∈ R

n×n is a constant matrix which may

be rank deficient, i.e. rank(E) = r ≤ n. Ai ∈ R
n×n, Bi ∈ R

n×p, Fi ∈ R
n×q and C ∈ R

m×m are

known constant matrices, and it is assumed that rank(C) = m, rank(Fi) = q, q ≤ m. In system (1),

θ(k) ∈ R
l is a bounded time-varying parameter vector which is assumed to be measured online

and not affected by fault, which is a general assumption in the LPV framework [9, 11]. System

(1) refers to a polytopic LPV descritptor system which is a particular class of LPV systems and

ρi(θ(k)), i = 1, 2, . . . , h are the weighting functions. It is assumed that the weighting functions

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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FAULT ESTIMATION OBSERVER DESIGN FOR DISCRETE-TIME LPV SYSTEMS 5

ρi(θ(k)), i = 1, 2, . . . , h vary within the following convex set Ω for all k:

Ω =
{

ρ(θ(k)) ∈ R
h, ρ(θ(k)) = [ρ1(θ(k)), ..., ρh(θ(k))]

T
, ρi(θ(k)) ≥ 0, ∀ i,

h
∑

i=1

ρi(θ(k)) = 1

}

(2)

Herein, h is the total number of weighting functions. It is noted that h is determined in the modeling

procedure of LPV system (1). For instance, if LPV system (1) is obtained by interpolation in a given

polytope, then h equals to the number of extreme values of this polytope (see [19] for more details

about constructing a polytopic LPV system). If (1) is modeled by other methodologies, h depends

on specific modeling technique.

In order to achieve fault estimation, the following assumptions are considered in this paper.

Assumption 1

Matrices E and C satisfy the following rank condition

rank







E

C






= n (3)

Assumption 2

The fault f(k) in (1) is piecewise constant or slow varying, i.e. it is assumed that

f(k + 1) = f(k) (4)

Remark 1

It should be noted that Assumption 2 is just a theoretical condition for the convenience of design

that is often used in the literature, see e.g. [20, 23]. Moreover, this assumption will be relaxed in

Section 4.

By defining the following augmented state vector

x̄(k) =







x(k)

f(k)






(5)

an augmented system is constructed as follows















Ēx̄(k + 1) =
h
∑

i=1

ρi(θ(k))(Āix̄(k) + B̄iu(k))

y(k) = C̄x̄(k)

(6)

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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6 Z. WANG ET AL.

where

Ē =







E 0

0 Iq






, Āi =







Ai Fi

0 Iq






, B̄i =







Bi

0






, C̄ =

[

C 0
]

(7)

Following the definition of x̄(k) in (5), the state vector x(k) and fault f(k) in the system (1) can

be estimated simultaneously if the estimation of augmented state x̄(k) is obtained. Therefore, the

fault estimation problem for system (1) is converted as an observer design for the augmented system

(6).

3. ACTUATOR FAULT ESTIMATION OBSERVER DESIGN

For the augmented system (6), the following observer is constructed















ξ(k + 1) =
h
∑

i=1

ρi(θ(k))(TĀi ˆ̄x(k) + TB̄iu(k) + Li(y(k)− C̄ ˆ̄x(k)))

ˆ̄x(k) = ξ(k) +Ny(k)

(8)

where ξ(k) ∈ R
(n+q) is an intermediate state vector, ˆ̄x(k) ∈ R

(n+q) is the estimate of the augmented

state x̄(k). T ∈ R
(n+q)×n, N ∈ R

(n+q)×m and Li ∈ R
(n+q)×m, i = 1, 2, . . . , h are matrices to be

synthesized.

The following Lemma will be used in the sequel.

Lemma 1

Given matrices X ∈ R
a×b, B ∈ R

b×c, and Y ∈ R
a×c. If rank(B) = c, then the general solution

of the following equation

X B = Y (9)

is given by

X = Y B
† + S (Ib − BB

†) (10)

where S ∈ R
a×b is an arbitrary matrix. Herein and throughout this paper, the symbol † denotes the

pseudo-inverse of a matrix.

Proof

Lemma 1 is a straightforward result of the Theorem of Penrose ([24]).

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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FAULT ESTIMATION OBSERVER DESIGN FOR DISCRETE-TIME LPV SYSTEMS 7

Now, the following Theorem is proposed to design the observer (8).

Theorem 1

The dynamic system (8) is an observer for the augmented system (6) if there exist a symmetric

positive definite matrix P ∈ R
(n+q)×(n+q), a matrix Y ∈ R

(n+q)×(n+q+m) and matrices Wi ∈

R
(n+q)×m, i = 1, 2, . . . , h such that the following LMIs hold







−P A T
1iP + A T

2i Y
T − C̄TWT

i

∗ −P






< 0, i = 1, 2, . . . , h (11)

Herein and throughout this paper, ∗ is used to represent the elements induced by symmetry. In (11),

matrices A1i and A2i are

A1i = Ψ†α1Āi, A2i = (In+q+m −ΨΨ†)α1Āi (12)

where Ψ ∈ R
(n+q+m)×(n+q) is given by

Ψ =







Ē

C̄






(13)

Moreover, if the LMIs in (11) are solved, the matrices T , N and Li, i = 1, 2, . . . , h in observer (8)

are determined by

T = Ψ†α1 + P−1Y (In+q+m −ΨΨ†)α1 (14)

N = Ψ†α2 + P−1Y (In+q+m −ΨΨ†)α2 (15)

Li = P−1Wi, i = 1, 2, . . . , h (16)

where α1 ∈ R
(n+q+m)×(n+q), α2 ∈ R

(n+q+m)×m are given by

α1 =







In+q

0






, α2 =







0

Im






(17)

Proof

Under the Assumption 1, it is easy to derived that

rank







Ē

C̄






= rank















E 0

0 Iq

C 0















= n+ q (18)

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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8 Z. WANG ET AL.

Then, according to Lemma 1, there exist matrices T and N such that the following equation

TĒ +NC̄ = In+q (19)

holds.

Equation (19) can be written as

[

T N
]







Ē

C̄






= In+q (20)

By using Lemma 1 to (20), the general solution for
[

T N
]

is given by

[

T N
]

=







Ē

C̄







†

+ S









In+q+m −







Ē

C̄













Ē

C̄







†







(21)

where S ∈ R
(n+q)×(n+q+m) is an arbitrary matrix.

Following (21), equation (19) holds if the matrices T and N are respectively determined by

T = Ψ†α1 + S(In+q+m −ΨΨ†)α1 (22)

and

N = Ψ†α2 + S(In+q+m −ΨΨ†)α2 (23)

where Ψ, α1 and α2 are given by (13) and (17).

Now, define the augmented state estimation error as

e(k) = x̄(k)− ˆ̄x(k) (24)

Using equation (19), the state estimation error is written as

e(k) = x̄(k)− ξ(k)−Ny(k)

= (In+q −NC̄)x̄(k)− ξ(k)

= TĒx̄(k)− ξ(k)

(25)

Taking the following Lyapunov function

V (k) = eT (k)Pe(k), P > 0 (26)

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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FAULT ESTIMATION OBSERVER DESIGN FOR DISCRETE-TIME LPV SYSTEMS 9

Then, the time difference of V (k) is

∆V (k) = V (k + 1)− V (k)

= eT (k + 1)Pe(k + 1)− eT (k)Pe(k)

= eT (k)

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}T

P

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}

e(k)

−eT (k)Pe(k)

(27)

From (27), it can be seen that ∆V (k) < 0 holds if

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}T

P

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}

− P < 0 (28)

By Schur complement Lemma [25], inequality (28) is equivalent to









−P
h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)TP

∗ −P









< 0 (29)

Using the property of ρi(θ(k)) in (2), it can be obtained that the inequality (29) holds if







−P (TĀi − LiC̄)TP

∗ −P






< 0, i = 1, 2 . . . , h (30)

is fulfilled.

Substituting (22) into (30) and considering the definitions of A1i and A2i in (12), the inequalities

in (30) become






−P (A1i + SA2i − LiC̄)TP

∗ −P






< 0, i = 1, 2, . . . , h (31)

By letting Y = PS and Wi = PLi, the equalities in (31) become the LMIs in (11). Moreover, if

the LMIs in (11) are solved, the matrices Li, i=1, 2, . . . , h can be determined by Li = P−1Wi and

the matrix S is obtained by S = P−1Y . Then, the matrices T and N can be determined by (14) and

(15), respectively.

Remark 2

Once the augmented state estimation ˆ̄x(k) is obtained, the fault estimation f̂(k) can be calculated

by

f̂(k) = Cf ˆ̄x(k) (32)

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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10 Z. WANG ET AL.

where Cf ∈ R
q×(n+q) is given by

Cf =
[

0 Iq
]

(33)

4. ROBUST FAULT ESTIMATION OBSERVER DESIGN

In Section 3, a fault estimation observer design method is proposed. However, the method proposed

in Section 3 assumes the fault to be constant, which is a restrictive assumption in some practical

situations. Moreover, model uncertainty and measurement noise are not considered in Section 2. To

overcome these problems, this section proposes a robust fault estimation observer design method to

relax Assumption 2 and attenuate the effect of disturbance and noise.

Consider the following polytopic LPV descriptor system















Ex(k + 1) =
h
∑

i=1

ρi(θ(k))(Aix(k) +Biu(k) + Fif(k) +Diw(k))

y(k) = Cx(k) + v(k)

(34)

where w(k) ∈ R
d represents the unknown disturbance, Di ∈ R

n×d is the distribution matrix, and

v(k) ∈ R
m is the measurement noise. Other symbols in (34) are the same as defined before.

For the descriptor system (34), an augmented system is constructed as follows















Ēx̄(k + 1) =
h
∑

i=1

ρi(θ(k))(Āix̄(k) + B̄iu(k) + D̄iw(k) + Ḡi∆f(k))

y(k) = C̄x̄(k) + v(k)

(35)

where

x̄(k) =







x(k)

f(k)






, ∆f(k) = f(k + 1)− f(k) (36)

Ē =







E 0

0 Iq






, Āi =







Ai Fi

0 Iq






, B̄i =







Bi

0






, D̄i =







Di

0






, Ḡi =







0

Iq






, C̄ =

[

C 0
]

(37)

Then, the following Theorem is proposed to design a robust observer in the form of (8) for the

augmented system (35).

Theorem 2

For the augmented system (35) and given scalars γd > 0, γf > 0 γL > 0 γN > 0, if there exist a

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
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FAULT ESTIMATION OBSERVER DESIGN FOR DISCRETE-TIME LPV SYSTEMS 11

symmetric positive definite matrix P ∈ R
(n+q)×(n+q), a matrix Y ∈ R

(n+q)×(n+q+m) and matrices

Wi ∈ R
(n+q)×m, i = 1, 2, . . . , h such that the following LMIs hold







































−P + CT
f Cf 0 0 0 0 A T

1iP + A T
2i Y

T − C̄TWT
i

∗ −γ2
dId 0 0 0 DT

1iP + DT
2iY

T

∗ ∗ −γ2
fIq 0 0 G T

1iP + G T
2iY

T

∗ ∗ ∗ −γ2
LIm 0 −WT

i

∗ ∗ ∗ ∗ −γ2
NIm −N T

1 P − N T
2 Y T

∗ ∗ ∗ ∗ ∗ −P







































< 0, i = 1, 2, . . . , h

(38)

where A1i and A2i are given in (12) and

D1i = Ψ†α1D̄i, D2i = (In+q+m −ΨΨ†)α1D̄i (39)

G1i = Ψ†α1Ḡi, G2i = (In+q+m −ΨΨ†)α1Ḡi (40)

N1 = Ψ†α2, N2 = (In+q+m −ΨΨ†)α2 (41)

Then the fault estimation error ef (k) = f(k)− f̂(k) is robust against the disturbance, fault

variation, and measurement noise, i.e.

∥ef∥2 ≤
√

γ2
d∥w∥

2
2 + γ2

f∥∆f∥22 + (γ2
L + γ2

N )∥v∥22 + V (0) (42)

where ∥ · ∥2 represents the L2 norm, and V (0) is a quadratic function of e(0) which will be given

later. Moreover, if the LMIs in (38) are solved, the matrices T , N and Li, i = 1, 2, . . . , h are

determined by

T = Ψ†α1 + P−1Y (In+q+m −ΨΨ†)α1 (43)

N = Ψ†α2 + P−1Y (In+q+m −ΨΨ†)α2 (44)

Li = P−1Wi, i = 1, 2, . . . , h (45)

where Ψ, α1 and α2 are given in (13) and (17).
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Proof

If the matrices T and N are respectively determined by

T = Ψ†α1 + S(In+q+m −ΨΨ†)α1 (46)

and

N = Ψ†α2 + S(In+q+m −ΨΨ†)α2 (47)

then the following equation holds

TĒ +NC̄ = In+q (48)

Following (48) and using (25), (35) and (8), it is easy to derive the following error dynamics

e(k + 1) = TĒx̄(k + 1)− ξ(k + 1)−Nv(k + 1)

−Nv(k + 1)

=
h
∑

i=1

ρi(θ(k))((TĀi − LiC̄)e(k) + TD̄iw(k) + TḠi∆f(k)− Liv(k)

−Nv(k + 1))

(49)

Take the following Lyapunov function

V (k) = eT (k)Pe(k), P > 0 (50)

and define the following criterion function

J =
∞
∑

k=0

(∆V (k) + eTf (k)ef (k)− γ2
dw

T (k)w(k)− γ2
f (∆f(k))T∆f(k)

−γ2
Lv

T (k)v(k)− γ2
NvT (k + 1)v(k + 1))

(51)

By using the fact that ∆V (k) = V (k + 1)− V (k), we obtain

J = V (∞)− V (0) +
∞
∑

k=0

(eTf (k)ef (k)− γ2wT (k)w(k)− γ2
f (∆f(k))T∆f(k)

−γ2
Lv

T (k)v(k)− γ2
NvT (k + 1)v(k + 1))

(52)

Since V (∞) ≥ 0, the inequality J < 0 implies

∥ef∥
2
2 − γ2

d∥w∥
2
2 − γ2

f ||∆f ||22 − γ2
L||v||

2
2 − γ2

N ||v||22 − V (0) < 0 (53)

i.e., the criteria (42) is satisfied.
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On the other hand, it is clear that J < 0 holds if

∆V (k) + eTf (k)ef (k)− γ2
dw

T (k)w(k)− γ2
f (∆f(k))T∆f(k)

−γ2
Lv

T (k)v(k)− γ2
NvT (k + 1)v(k + 1) < 0

(54)

is fulfilled for all k. Therefore, the criteria (42) is satisfied if (54) holds.

Using (49) yields

∆V (k) + eTf (k)ef (k)− γ2
dw

T (k)w(k)− γ2
f (∆f(k))T∆f(k)− γ2

Lv
T (k)v(k)− γ2

NvT (k + 1)v(k + 1)

=

{

h
∑

i=1

ρi(θ(k))((TĀi − LiC̄)e(k) + TD̄iw(k) + TḠi∆f(k)− Liv(k)−Nv(k + 1))

}T

P

×

{

h
∑

i=1

ρi(θ(k))((TĀi − LiC̄)e(k) + TD̄iw(k) + TḠi∆f(k)− Liv(k)−Nv(k + 1))

}

−eT (k)Pe(k) + eTf (k)ef (k)− γ2
dw

T (k)w(k)− γ2
f (∆f(k))T∆f(k)− γ2

Lv
T (k)v(k)

−γ2
NvT (k + 1)v(k + 1)

,































e(k)

w(k)

∆f(k)

v(k)

v(k + 1)































T 





























Ω11 Ω12 Ω13 Ω14 Ω15

∗ Ω22 Ω23 Ω24 Ω25

∗ ∗ Ω33 Ω34 Ω35

∗ ∗ ∗ Ω44 Ω45

∗ ∗ ∗ ∗ Ω55





























































e(k)

w(k)

∆f(k)

v(k)

v(k + 1)































(55)

where

Ω11 =

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}T

P

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}

− P + CT
f Cf (56)

Ω12 =

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}T

P

{

h
∑

i=1

ρi(θ(k))(TD̄i)

}

(57)

Ω13 =

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}T

P

{

h
∑

i=1

ρi(θ(k))(TḠi)

}

(58)

Ω14 =

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}T

P

{

−

h
∑

i=1

ρi(θ(k))Li

}

(59)

Ω15 =

{

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)

}T

P

{

−

h
∑

i=1

ρi(θ(k))N

}

(60)

Ω22 =

{

h
∑

i=1

ρi(θ(k))(TD̄i)

}T

P

{

h
∑

i=1

ρi(θ(k))(TD̄i)

}

− γ2
dId (61)
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Ω23 =

{

h
∑

i=1

ρi(θ(k))(TD̄i)

}T

P

{

h
∑

i=1

ρi(θ(k))(TḠi)

}

(62)

Ω24 =

{

h
∑

i=1

ρi(θ(k))(TD̄i)

}T

P

{

−

h
∑

i=1

ρi(θ(k))Li

}

(63)

Ω25 =

{

h
∑

i=1

ρi(θ(k))(TD̄i)

}T

P

{

−

h
∑

i=1

ρi(θ(k))N

}

(64)

Ω33 =

{

h
∑

i=1

ρi(θ(k))(TḠi)

}T

P

{

h
∑

i=1

ρi(θ(k))(TḠi)

}

− γ2
fIq (65)

Ω34 =

{

h
∑

i=1

ρi(θ(k))(TḠi)

}T

P

{

−

h
∑

i=1

ρi(θ(k))Li

}

(66)

Ω35 =

{

h
∑

i=1

ρi(θ(k))(TḠi)

}T

P

{

−

h
∑

i=1

ρi(θ(k))N

}

(67)

Ω44 =

{

h
∑

i=1

ρi(θ(k))Li

}T

P

{

h
∑

i=1

ρi(θ(k))Li

}

− γ2
LIm (68)

Ω45 =

{

h
∑

i=1

−ρi(θ(k))Li

}T

P

{

−

h
∑

i=1

ρi(θ(k))N

}

(69)

Ω55 =

{

h
∑

i=1

ρi(θ(k))N

}T

P

{

h
∑

i=1

ρi(θ(k))N

}

− γ2
NIm (70)

Herein, the equation ef (k) = Cfe(k) is used.

From (55), it can be seen that (54) holds if































Ω11 Ω12 Ω13 Ω14 Ω15

∗ Ω22 Ω23 Ω24 Ω25

∗ ∗ Ω33 Ω34 Ω35

∗ ∗ ∗ Ω44 Ω45

∗ ∗ ∗ ∗ Ω55































< 0 (71)
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By using Schur complement Lemma [25], the inequality (71) is equivalent to











































−P + CT
f Cf 0 0 0 0

h
∑

i=1

ρi(θ(k))(TĀi − LiC̄)TP

∗ −γ2
dId 0 0 0

h
∑

i=1

ρi(θ(k))(TD̄i)
TP

∗ ∗ −γ2
fIq 0 0

h
∑

i=1

ρi(θ(k))(TḠi)
TP

∗ ∗ ∗ −γ2
LIq 0 −

h
∑

i=1

ρi(θ(k))L
T
i P

∗ ∗ ∗ ∗ −γ2
NIq −

h
∑

i=1

ρi(θ(k))N
TP

∗ ∗ ∗ ∗ ∗ −P











































< 0 (72)

Using the property of ρi(θ(k)) in (2), the inequality (72) holds if







































−P + CT
f Cf 0 0 0 0 (TĀi − LiC̄)TP

∗ −γ2
dId 0 0 0 (TD̄i)

TP

∗ ∗ −γ2
fIq 0 0 (TḠi)

TP

∗ ∗ ∗ −γ2
LIm 0 −LT

i P

∗ ∗ ∗ ∗ −γ2
NIm −NTP

∗ ∗ ∗ ∗ ∗ −P







































< 0, i = 1, 2, . . . , h

(73)

Substituting (46) and (47) into (73) and using the definitions of A1i, A2i, D1i, D2i, G1i, G2i, N1,

N2 in (12) and (39)-(41), we obtain







































−P + CT
f Cf 0 0 0 0 A T

1iP + A T
2iS

TP − C̄TLT
i P

∗ −γ2
dId 0 0 0 DT

1iP + DT
2iS

TP

∗ ∗ −γ2
fIq 0 0 G T

1iP + G T
2iS

TP

∗ ∗ ∗ −γ2
LIm 0 −LT

i P

∗ ∗ ∗ ∗ −γ2
NIm −N T

1 P + N T
2 STP

∗ ∗ ∗ ∗ ∗ −P







































< 0,

i = 1, 2, . . . , h

(74)

By letting Y = PS and Wi = PLi, the inequalities in (74) become the LMIs in (38).
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Remark 3

Reference [26] has proposed an LMI-based method to design unknown input observer (UIO)

for Takagi-Sugeno descriptor systems. In [26], the parameter matrices of the UIO can also be

determined by solving LMIs. However, it should be pointed out that this paper is different from

[26] in the following aspects. In [26], an unknown input observer design method is proposed and

applied to fault detection and isolation. In this paper, an augmented observer is designed and used

for fault estimation. The proposed method is able not only to detect the occurrence of fault, but also

to estimate the fault magnitude. Moreover, this paper also deals with the effect of the measurement

noise, which is not considered in [26].

Remark 4

In dealing with time-varying faults, there may be a time-delay between the fault estimation and

the actual fault. This phenomenon results from the influence of fault variation. Theoretically, the

attenuation level γf can be minimized so that the fault estimation is insenstive to the fault variation.

However, the cost is that the fault estimation becomes less robust to disturbance and measurement

noise. Therefore, the choice of γd, γf , γL and γN is a trade-off.

5. SIMULATIONS

In this section, a truck-trailer model [27] is used to show the effectiveness of the proposed method.

From [27], the dynamic equation of a truck-trailer model is given by































x1(k + 1) = x1(k) +
θ(k)t

l
tan(u(k))−

θ(k)t

L
sin(x1(k))

x2(k + 1) = x2(k) +
θ(k)t

L
sin(x1(k))

x3(k + 1) = x3(k) + θ(k)tcos(x1(k))

(

sin
x2(k + 1) + x2(k)

2

)

(75)

where x1(k) is the angle difference between truck and trailer, x2(k) is the angle of trailer, x3(k) is

the vertical position of rear end of trailer and u(k) is the steering angle. l is the length of truck, L is

the length of trailer, t is sampling time and θ(k) is the speed of backing up. In this paper, l = 2.8m,

L = 5.5m, t = 2 s. It is assumed that the speed v varies according to θ(k) ∈ [−1.2, −0.6].

Copyright c⃝ 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)

Prepared using acsauth.cls DOI: 10.1002/acs



FAULT ESTIMATION OBSERVER DESIGN FOR DISCRETE-TIME LPV SYSTEMS 17

Similar to [27], it is assumed that x1(k) is small. Then, the truck-trailer model (75) can be

simplified as































x1(k + 1) =

(

1−
θ(k)t

L

)

x1(k) +
θ(k)t

l
tan(u(k))

x2(k + 1) = x2(k) +
θ(k)t

L
x1(k)

x3(k + 1) = x3(k) + θ(k)t · sin

(

x2(k + 1) + x2(k)

2

)

(76)

In order to obtain an LPV descriptor representation, we introduce the following variables

x4(k) =
θ(k)t

2
x2(k), ũ(k) = tan(u(k))

Then, the simplified track-trailer model (76) can be written as follows











Ex(k + 1) = A(θ(k)) +B(θ(k))ũ(k) +D(θ(k))w(k)

y(k) = Cx(k)

(77)

where

E =























1 0 0 0

0 1 0 0

0 0 1 −1

0 0 0 0























, A(θ(k)) =























1−
θ(k)t

L
0 0 0

θ(k)t

L
1 0 0

0 0 1 1

0 −
θ(k)t

2
0 1























, B(θ(k)) =























θ(k)t

l

0

0

0























D(θ(k)) =























0

0

θ(k)t

0























, C =















0 1 0 0

0 0 1 0

0 0 0 1















, w(k) = sin

(

x2(k + 1) + x2(k)

2

)

−
x2(k + 1) + x2(k)

2

Then, the LPV descriptor system (77) is approximated by the following polytopic representation















Ex(k + 1) =
2
∑

i=1

ρi(θ(k))(Aix(k) +Biũ(k) + Fif(k) +Diw(k))

y(k) = Cx(k)

(78)
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The obtained system evolves in a polytopic of two vertices correspending to the extreme values of

v. The matrices in system (78) are given as

E =























1 0 0 0

0 1 0 0

0 0 1 −1

0 0 0 0























, A1 =























1.2182 0 0 0

−0.21821 0 0

0 0 1 1

0 0.6 0 1























, A2 =























1.4364 0 0 0

−0.4364 1 0 0

0 0 1 1

0 1.2 0 1























B1 =























−0.4286

0

0

0























, B2 =























−0.8571

0

0

0























, D1 =























0

0

−1.2

0























, D2 =























0

0

−2.4

0























, C =















0 1 0 0

0 0 1 0

0 0 0 1















The weighting functions ρi(θ(k)) are

ρ1(θ(k)) =
θ(k)− θ̄

θ − θ̄
=

θ(k) + 1.2

0.6
, ρ2(θ(k)) =

θ(k)− θ

θ̄ − θ
=

θ(k) + 0.6

−0.6

In this paper, actuator faults are considered. Therefore, it is assumed that Fi = Bi, i = 1, 2.

Remark 5

In [20], discrete-time LPV descriptor systems with constant fault distribution matrix are considered.

If the speed is time-varying, the fault distribution matrix in the truck-trailer system is parameter-

dependent. As a result, the method in [20] cannot be applied in this situation.

By choosing γd = 0.2, γf = 7, γL = 0.8, γN = 1 and solving the LMIs in (38), we obtain

T =































1 2.0719 −0.0002 0.8658 0

0 0.2442 0.0015 −0.4332 0

0 0.0006 0.0105 −0.0102 0

0 −0.0003 −0.0105 0.0090 0

0 −0.4532 −0.0009 −0.1365 1































, N =































−2.0719 0.0002 −0.0002

0.7558 −0.0015 0.0015

−0.0006 0.9895 0.0105

0.0003 0.0105 0.9895

0.4532 0.0009 −0.0009






























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L1 =































−0.1626 0.0001 0.4070

0.0767 −0.0005 −0.1940

−0.0030 0.0053 −0.0004

0.0040 −0.0054 0.0001

0.0253 0.0001 −0.0695































, L2 =































0.2989 −0.0004 0.4248

0.0376 −0.0004 −0.1972

−0.0059 0.0050 0.0000

0.0056 −0.0051 −0.0003

−0.1874 0.0001 −0.0753































In the simulation, the time-varying parameter θ(k) is shown in Fig. 1 and the weighting functions

ρ1(θ(k)), ρ2(θ(k)) are depicted in Fig. 2. It is assumed that the measurements are corrupted by

zero-mean Gaussian noises. Specifically, the standard deviations of noises in the measurements of

x2 and x3 are 0.017 (0.1◦) and 0.1m, respectively. In the following simulation, the initial state is

x(0) =
[

0.1745 0.3491 3 −0.4189
]T

while the initial estimate is ˆ̄x(0) =
[

0 0 0 0 0
]T

.

0 100 200 300 400 500
−1.2

−1.1

−1

−0.9

−0.8

−0.7

Samples

 

 
θ(k)

Figure 1. The time-varying parameter θ(k)

First, an abrupt fault is simulated. It is assumed that the abrupt fault is represented by

f(k) =











0 k < 200

−1.5 k ≥ 200

(79)

The fault estimation result of the robust fault estimation observer is depicted in Fig. 3. Therein,

the actual fault is depicted by dash-and-dot line and the fault estimation is represented by the solid
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ρ1(θ(k))
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Figure 2. The weighting functions ρi(θ(k)), i = 1, 2

one. As shown in Fig. 3, the robust fault estimation observer is insensitive to the model uncertainty

and measurement noise. Moreover, although there is initial estimation error, the fault estimate

can quickly track the actual fault. This illustrates the fast convergence rate of the fault estimation

observer in the face of initial estimation error.

0 100 200 300 400 500
−2

−1.5

−1

−0.5

0

0.5

Samples

 

 
f (k)

f̂(k)

Figure 3. Fault estimation result of the robust fault estimation observer in an abrupt fault scenario
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To illustrate the performance of robust fault estimation observer in dealing with time-varying

fault, the following fault is further considered

f(k) =











0 k < 100

2sin(0.05(k − 100)) k ≥ 100

(80)

In this situation, the fault estimation result is depicted in Fig. 4. It can be seen from Fig. 4 that there

is a delay between the fault f(k) and its estimate. As pointed out in Remark 4, this phenomenon

results from the influence of the fault variation.

0 100 200 300 400 500
−3

−2

−1

0

1

2

3

4

Samples

 

 
f (k)

f̂(k)

Figure 4. Fault estimation result of the robust fault estimation observer in a time-varying fault scenario

Besides, it is worth mentioning that actuator fault estimation for truck-trailer system has been

studied in [28]. However, only a constant speed scenario (θ(k) = −1) is considered in [28]. In the

sequel, this situation is considered so that the method from [28] can be used to compared with our

approach. In this situation, the weighting functions ρ1(θ(k)), ρ2(θ(k)) are depicted in Fig. 5.

Consider the following fault

f(k) =











0 k < 100

4(1− e−0.05(k−100)) k ≥ 100

(81)

The fault estimation results of our method and that of [28] are shown in Fig. 6 and Fig. 7,

respectively. In [28], pole assignment is used to ensure the fault estimation convergence speed while
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Figure 5. The weighting functions ρi(θ(k)), i = 1, 2 when θ(k) = 1

our method utilizes H∞ technique to attenuate the effect of fault variation. From Fig.6 and Fig.

7, it can be seen that these two methods have similiar fault convergence speed. Nevertheless, as

the measurement noise is not considered in [28], the proposed method is more insensitive to the

measurement noise than the one from [28]. Therefore, this simulation result shows the superiority

of our method in attenuating measurement noise.

6. CONCLUSION

In this paper, the actuator fault estimation problem for discrete-time LPV descriptor systems is

considered. First, an augmented system is constructed by considering the fault as an auxiliary state

vector. Based on the augmented system, this paper proposes a novel fault estimation observer and

presents an LMI-based design method. Considering the unknown disturbance, fault variation, and

measurement noise in the practical systems, a robust fault estimation observer design method is

proposed. Finally, a truck-trailer model is used to demonstrate the effectiveness and performance of

the proposed method.
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Figure 6. Fault estimation result of the proposed method
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Figure 7. Fault estimation result of the method from [28]
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