P. Poncet, Topological aspects of three-dimensional wakes behind rotary oscillating cylinders, Journal of Fluid Mechanics, vol.517, pp.27-53, 2004.
DOI : 10.1017/S0022112004000588

URL : https://hal.archives-ouvertes.fr/hal-02010675

G. H. Cottet and P. D. Koumoutsakos, Vortex Methods -Theory and Practice, 2000.

P. Koumoutsakos, A. Leonard, and F. Pépin, Boundary Conditions for Viscous Vortex Methods, Journal of Computational Physics, vol.113, issue.1, pp.52-61, 1994.
DOI : 10.1006/jcph.1994.1117

P. Ploumhans and G. S. Winckelmans, Vortex Methods for High-Resolution Simulations of Viscous Flow Past Bluff Bodies of General Geometry, Journal of Computational Physics, vol.165, issue.2, pp.354-406, 2000.
DOI : 10.1006/jcph.2000.6614

P. Angot, C. H. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.
DOI : 10.1007/s002110050401

N. Kevlahan and J. M. Ghidaglia, Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, European Journal of Mechanics - B/Fluids, vol.20, issue.3, pp.333-350, 2001.
DOI : 10.1016/S0997-7546(00)01121-3

M. Coquerelle and G. H. Cottet, A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, Journal of Computational Physics, vol.227, issue.21, pp.9121-9137, 2008.
DOI : 10.1016/j.jcp.2008.03.041

URL : https://hal.archives-ouvertes.fr/hal-00297673

M. Gazzola, W. M. Van-rees, and P. Koumoutsakos, C-start: optimal start of larval fish, Journal of Fluid Mechanics, vol.10, pp.5-18, 2012.
DOI : 10.1002/dvdy.22113

W. M. Van-rees, M. Gazzola, and P. Koumoutsakos, Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers, Journal of Fluid Mechanics, vol.272, p.722, 2013.
DOI : 10.1016/S0889-9746(88)90058-8

M. Gazzola, B. Hejazialhosseini, and P. Koumoutsakos, Reinforcement Learning and Wavelet Adapted Vortex Methods for Simulations of Self-propelled Swimmers, SIAM Journal on Scientific Computing, vol.36, issue.3, pp.622-639, 2014.
DOI : 10.1137/130943078

D. Rossinelli, M. Bergdorf, G. Cottet, and P. Koumoutsakos, GPU accelerated simulations of bluff body flows using vortex particle methods, Journal of Computational Physics, vol.229, issue.9, pp.3316-3333, 2010.
DOI : 10.1016/j.jcp.2010.01.004

URL : https://hal.archives-ouvertes.fr/hal-00748016

A. J. Chorin, Numerical study of slightly viscous flow, Journal of Fluid Mechanics, vol.23, issue.04, pp.785-796, 1973.
DOI : 10.1017/S0022112073002016

A. J. Chorin, Vortex sheet approximation of boundary layers, Journal of Computational Physics, vol.27, issue.3, pp.428-442, 1978.
DOI : 10.1016/0021-9991(78)90019-0

E. Creusé, A. Giovannini, and I. Mortazavi, Vortex simulation of active control strategies for transitional backward-facing step flows, Computers & Fluids, vol.38, issue.7, pp.1348-1360, 2009.
DOI : 10.1016/j.compfluid.2008.01.036

J. P. Caltagirone, Sur l'intéraction fluide-milieu poreux : Application au calcul des efforts exercés sur un obstacle par un fluide visqueux, C. R. Acad. Sci. Paris, p.318, 1994.

C. H. Bruneau and I. Mortazavi, Passive control of the flow around a square cylinder using porous media, International Journal for Numerical Methods in Fluids, vol.46, issue.4, pp.415-433, 2004.
DOI : 10.1002/fld.756

D. A. Nield and A. Bejan, Convection in Porous Media, 1999.

S. Whitaker, The Method of Volume Averaging, Kluwer : Dordercht, 1999.
DOI : 10.1007/978-94-017-3389-2

C. H. Bruneau and I. Mortazavi, Numerical modelling and passive flow control using porous media, Computers & Fluids, vol.37, issue.5, pp.488-498, 2008.
DOI : 10.1016/j.compfluid.2007.07.001

URL : https://hal.archives-ouvertes.fr/hal-00282126

J. J. Monaghan, Extrapolating B splines for interpolation, Journal of Computational Physics, vol.60, issue.2, pp.253-262, 1985.
DOI : 10.1016/0021-9991(85)90006-3

G. H. Cottet, J. Etancelin, F. Perignon, and C. Picard, High order semi-Lagrangian particle methods for transport equations: numerical analysis and implementation issues, ESAIM: Mathematical Modelling and Numerical Analysis, vol.48, issue.4, pp.1029-1064, 2014.
DOI : 10.1145/1837853.1693472

URL : https://hal.archives-ouvertes.fr/hal-00991150

P. G. Saffman, Vortex Dynamics, 1992.

F. Noca, D. Shiels, and D. Jeon, A COMPARISON OF METHODS FOR EVALUATING TIME-DEPENDENT FLUID DYNAMIC FORCES ON BODIES, USING ONLY VELOCITY FIELDS AND THEIR DERIVATIVES, Journal of Fluids and Structures, vol.13, issue.5, pp.551-578, 1999.
DOI : 10.1006/jfls.1999.0219

J. T. Rasmussen, G. H. Cottet, and J. H. Walther, A multiresolution remeshed Vortex-In-Cell algorithm using patches, Journal of Computational Physics, vol.230, issue.17, pp.6742-6755, 2011.
DOI : 10.1016/j.jcp.2011.05.006

URL : https://hal.archives-ouvertes.fr/hal-00748050

D. Russell and Z. J. Wang, A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow, Journal of Computational Physics, vol.191, issue.1, pp.177-205, 2003.
DOI : 10.1016/S0021-9991(03)00310-3

M. Braza, P. Chassaing, and H. H. Minh, Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, Journal of Fluid Mechanics, vol.49, issue.-1, pp.79-130, 1986.
DOI : 10.1063/1.1692470

S. V. Apte, M. Martin, and N. A. Patankar, A numerical method for fully resolved simulation (FRS) of rigid particle???flow interactions in complex flows, Journal of Computational Physics, vol.228, issue.8, pp.2712-2738, 2008.
DOI : 10.1016/j.jcp.2008.11.034

S. Mittal and V. Kumar, FLOW-INDUCED VIBRATIONS OF A LIGHT CIRCULAR CYLINDER AT REYNOLDS NUMBERS 103TO 104, Journal of Sound and Vibration, vol.245, issue.5, pp.923-946, 2001.
DOI : 10.1006/jsvi.2001.3612

S. Shamsoddin and F. Porté, Large Eddy Simulation of Vertical Axis Wind Turbine Wakes, Energies, vol.5, issue.2, pp.890-912, 2014.
DOI : 10.2514/1.J051060

G. Tescione, D. Ragni, C. He, C. J. Ferreira, and G. J. Van-bussel, Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry, Renewable Energy, vol.70, pp.47-61, 2014.
DOI : 10.1016/j.renene.2014.02.042

J. Mcnaughton, F. Billard, and A. , Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios, Journal of Fluids and Structures, vol.47, pp.124-138, 2014.
DOI : 10.1016/j.jfluidstructs.2013.12.014

G. H. Cottet, B. Michaux, S. Ossia, and G. Vanderlinden, A Comparison of Spectral and Vortex Methods in Three-Dimensional Incompressible Flows, Journal of Computational Physics, vol.175, issue.2, pp.702-712, 2002.
DOI : 10.1006/jcph.2001.6963

W. M. Van-rees, A. Leonard, D. I. Pullin, and P. Koumoutsakos, A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers, Journal of Computational Physics, vol.230, issue.8, pp.2794-2805, 2011.
DOI : 10.1016/j.jcp.2010.11.031

J. C. Adams, P. Swarztrauber, and R. Sweet, Fishpack90 -Fortran library

S. B. Pope, Turbulent Flows, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00338511

C. H. Bruneau and I. Mortazavi, Control of vortex shedding around a pipe section using a porous sheat, J. Offshore and Polar Eng, vol.16, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00281988

S. Hahn, J. Je, and H. Choi, Direct numerical simulation of turbulent channel flow with permeable walls, Journal of Fluid Mechanics, vol.450, pp.259-285, 2002.
DOI : 10.1017/S0022112001006437

J. Jimenez, M. Uhlmann, A. Pinelli, and G. Kawahara, Turbulent shear flow over active and passive porous surfaces, Journal of Fluid Mechanics, vol.442
DOI : 10.1017/S0022112001004888

, J. Fluid Mech, vol.442, pp.89-117, 2001.

G. D. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, Journal of Fluid Mechanics, vol.none, issue.01, pp.197-207, 1967.
DOI : 10.1017/S0022112067001375

W. P. Breugem, B. J. Boersma, and R. E. Uittenbogaard, The Laminar Boundary Layer over a Permeable Wall, Transport in Porous Media, vol.25, issue.3, pp.267-300, 2005.
DOI : 10.1007/978-94-017-3389-2

N. S. Hanspal, A. N. Waghode, V. Nassehi, and R. J. Wakeman, Numerical Analysis of Coupled Stokes/Darcy Flows in Industrial Filtrations, Transport in Porous Media, vol.32, issue.7, pp.73-101, 2006.
DOI : 10.1007/978-1-4757-2175-1

G. Carbou, Brinkmann Model and Double Penalization Method for the Flow Around a Porous Thin Layer, Journal of Mathematical Fluid Mechanics, vol.10, issue.1, pp.126-158, 2008.
DOI : 10.1007/s00021-006-0221-y

URL : https://hal.archives-ouvertes.fr/hal-00268116

C. H. Bruneau, P. Gilliéron, and I. Mortazavi, Passive control around a two-dimensional square back ahmed body using porous media, J. Fluids Engineering, vol.130, 2008.

M. Rouméas, P. Gilliéron, and A. Kourta, Analysis and control of the near-wake flow over a square-back geometry, Computers & Fluids, vol.38, issue.1, pp.60-70, 2009.
DOI : 10.1016/j.compfluid.2008.01.009

C. H. Bruneau, E. Creusé, D. Depeyras, P. Gilliéron, and I. Mortazavi, Coupling active and passive techniques to control the flow past the square back Ahmed body, Computers & Fluids, vol.39, issue.10, pp.1875-1892, 2010.
DOI : 10.1016/j.compfluid.2010.06.019

URL : https://hal.archives-ouvertes.fr/inria-00547242

M. Farhadi, K. Sedighi, and E. Fattahi, Effect of a splitter plate on flow over a semi-circular cylinder, Proceedings of the Institution of Mechanical Engineers, pp.224-321, 2010.
DOI : 10.1016/j.jfluidstructs.2006.02.003

N. Boisaubert and A. Texier, Effect of a splitter plate on the near-wake development of a semi-circular cylinder, Experimental Thermal and Fluid Science, vol.16, issue.1-2, pp.100-111, 1998.
DOI : 10.1016/S0894-1777(97)10009-7

C. Mimeau, I. Mortazavi, and G. H. Cottet, Passive Flow Control Around a Semi-Circular Cylinder Using Porous Coatings, International Journal of Flow Control, vol.6, pp.43-60, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01215305

, 248 (+0%) porous case ? = 100 0.968 (+1.1%) 143, 10%) 0.248 (+0%) porous case ? = 10 0.970 (+1.4%) 114.4 (-28%) 0.252 (+1.6%) porous case ? = 5 0+4%) porous case ? = 2.5 0.788 (-19%) 93.7 (-41%) 0.268 (+8%) porous case36%) 0.291 (+17%) porous case