Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity
Olivier Rey, Juncheng Wei

To cite this version:

HAL Id: hal-00935403
https://hal.archives-ouvertes.fr/hal-00935403

Submitted on 23 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ARBITRARY NUMBER OF POSITIVE SOLUTIONS FOR AN ELLIPTIC PROBLEM WITH CRITICAL NONLINEARITY

OLIVIER REY AND JUNCHENG WEI

Abstract. We show that the critical nonlinear elliptic Neumann problem

\[\Delta u - \mu u + u^{7/3} = 0 \quad \text{in } \Omega, \ u > 0 \quad \text{in } \Omega \quad \text{and} \quad \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial \Omega \]

where \(\Omega \) is a bounded and smooth domain in \(\mathbb{R}^5 \), has arbitrarily many solutions, provided that \(\mu > 0 \) is small enough. More precisely, for any positive integer \(K \), there exists \(\mu_K > 0 \) such that for \(0 < \mu < \mu_K \), the above problem has a nontrivial solution which blows up at \(K \) interior points in \(\Omega \), as \(\mu \to 0 \). The location of the blow-up points is related to the domain geometry. The solutions are obtained as critical points of some finite dimensional reduced energy functional. No assumption on the symmetry, geometry nor topology of the domain is needed.

1. Introduction

Lin and Ni [30] considered the following nonlinear elliptic equation:

\[(1.1) \quad \Delta u - \mu u + u^q = 0 \quad \text{on } \Omega, \ u > 0 \quad \text{in } \Omega \quad \text{and} \quad \frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial \Omega \]

where \(\Omega \subset \mathbb{R}^N (N \geq 3) \) is a smooth bounded domain, \(\mu > 0 \) and \(1 < q \leq \frac{N+2}{N-2} \) are parameters. Such problems arise in mathematical models of chemotaxis ([31]) and biological pattern formation ([22] [32]).

The situation is known to depend highly on the parameter \(\mu \). Ni and Takagi showed that for \(\mu \) large enough and \(1 < q < \frac{N+2}{N-2} \), i.e. in the subcritical case, a nontrivial least energy solution exists, which concentrates at a boundary point maximizing the mean curvature of the frontier [36][37] as \(\mu \) goes to infinity. Higher energy solutions also exist, which concentrate at one or several points, located on the boundary [7][16][13][19][26][29][49][50], in the interior of the domain [8][12][14][17][18][24][48], or some of them on the boundary and others in the interior [25].

1991 Mathematics Subject Classification. 35B40, 35B45; Secondary 35J40.

Key words and phrases. semilinear elliptic Neumann problems, critical Sobolev exponent, blow-up.

1
Many works have also been devoted to the critical case, i.e. \(q = \frac{N+2}{N-2} \). As in the subcritical case, nonconstant solutions exist for \(\mu \) large enough \([1][43]\), and the least energy solution blows up, as \(\mu \) goes to infinity, at a unique point which maximizes the mean curvature of the boundary \([3][35]\). Higher energy solutions have also been exhibited, blowing up at one \([2][44][39][23]\) or several (separated) boundary points \([20][34][45][46]\). The question of interior blow-up is still open. However, in contrast with the subcritical situation, at least one blow-up point has to lie on the boundary \([21][40]\). Some a priori estimates for those solutions are given in \([23][28]\).

In the case of small \(\mu \), Lin, Ni and Takagi \([31]\) proved in the subcritical case that problem (1.1) admits only the trivial solution (i.e., \(u \equiv \mu^{\frac{1}{N+2}} \)). Based on this, Lin and Ni \([30]\) asked:

Lin-Ni’s Conjecture: For \(\mu \) small and \(q = \frac{N+2}{N-2} \), problem (1.1) admits only the constant solution.

The above conjecture was studied by Adimurthi-Yadava \([4][5]\) and Budd-Knapp-Peletier \([10]\) in the case \(\Omega = B_R(0) \) and \(u \) is radial. Namely, they considered the following problem

\[
\begin{align*}
\Delta u - \mu u + u^{\frac{N+2}{N-2}} &= 0 \quad \text{in } B_R(0), \quad u > 0 \quad \text{in } B_R(0) \\
u \text{ is radial, } \frac{\partial u}{\partial \nu} &= 0 \quad \text{on } \partial B_R(0).
\end{align*}
\]

(1.2)

The following results were proved:

Theorem A: \([4][5][6][10]\) For \(\mu \) sufficiently small

1. if \(N = 3 \) or \(N \geq 7 \), problem (1.2) admits only the constant solution;
2. if \(N = 4, 5 \) or \(6 \), problem (1.2) admits a nonconstant solution.

Theorem A reviews that Lin-Ni’s conjecture depends very sensitively on the dimension \(N \). A natural question is: what about general domains? (For Dirichlet boundary conditions, Brezis and Nirenberg proved that a qualitative difference occurs between \(N = 3 \) and \(N \geq 4 \) \([11]\).) The proofs of Theorem A use radial symmetry to reduce the problem to an ODE boundary value problem. Consequently, they do not carry over to general domains. In the general three-dimensional domain case, M. Zhu \([52]\) proved:

Theorem B \([52][51]\): The conjecture is true if \(N = 3 \) (\(q = 5 \)) and \(\Omega \) is convex.
Zhu’s proof relies strongly on a priori estimates. Recently, Wei and Xu [51] gave a direct proof of Theorem B, using only integration by parts.

The purpose of this paper is to establish a result similar to (2) of Theorem A in general five-dimensional domains, with important additional informations about multiplicity and shape of solutions. Namely, we consider the problem

\[
\Delta u - \mu u + u^{7/3} = 0 \text{ in } \Omega, \quad u > 0 \text{ in } \Omega \quad \text{and} \quad \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega
\]

where \(\Omega \) is a bounded and smooth domain in \(\mathbb{R}^5 \) and \(\mu > 0 \) is small. Our main result can be stated as follows:

Main Theorem: For any integer \(K \in \mathbb{N}^* \), there exists \(\mu_K \) such that for \(0 < \mu < \mu_K \), problem (1.3) has a solution \(u_\mu \) which blows up at exactly \(K \) interior points in \(\Omega \). As a consequence, for \(\mu \) small, problem (1.3) has an arbitrary number of nonconstant distinct positive solutions.

In order to make this statement more precise, some notations have to be introduced. Let \(G(x, Q) \) be the Green’s function defined as

\[
\Delta_x G(x, Q) + \frac{1}{|Q|} = 0 \text{ in } \Omega, \quad \frac{\partial G}{\partial \nu} = 0 \text{ on } \partial \Omega, \quad \int_{\Omega} G(x, Q) dx = 0.
\]

We decompose

\[
G(x, Q) = K(|x - Q|) - H(x, Q),
\]

where

\[
K(r) = \frac{1}{c_5 r^3} \quad c_5 = 3|S^4|
\]

is the fundamental solution of the Laplacian operator in \(\mathbb{R}^5 \) (\(|S^4|\) denotes the area of the unit sphere).

For \(\delta > 0 \) sufficiently small, we define a configuration space as:

\[
\mathcal{M}_\delta := \left\{ Q = (Q_1, ..., Q_K) \in \Omega^K \mid \min_i d(Q_i, \partial \Omega) > \delta, \min_{i \neq j} |Q_i - Q_j| > \delta \right\}.
\]

Let \(Q = (Q_1, ..., Q_K) \in \mathcal{M}_\delta \). We set

\[
F(Q) = \sum_{j=1}^{K} H(Q_j, Q_j) - \sum_{i \neq j} G(Q_i, Q_j) - K F_0 \sum_{j=1}^{K} \int_{\Omega} \frac{1}{|x - Q_j|^3} dx
\]

where \(F_0 > 0 \) is a constant which depends on \(\Omega \) only.

For normalization reasons, we consider throughout the paper the following equation

\[
\Delta u - \mu u + 15 u^{7/3} = 0, \quad u > 0 \text{ in } \Omega \quad \text{and} \quad \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega
\]
instead of the original one. The solutions are identical, up to the multiplicative constant $15^{-3/4}$. We recall that, according to [9], the functions

$$U_{\varepsilon,Q}(x) = \frac{\varepsilon^{3/2}}{(\varepsilon^2 + |x-Q|^2)^{3/2}} \quad \varepsilon > 0, \ Q \in \mathbb{R}^5$$

are the only solutions to the problem

$$-\Delta u = 15u^{7/3}, \ u > 0 \ \text{in} \ \mathbb{R}^5.$$

Our main result can be precised as follows:

Theorem 1.1. Let Ω be any smooth and bounded domain in \mathbb{R}^5, and $K \in \mathbb{N}^*$. There exists $\mu_K > 0$ such that for $0 < \mu < \mu_K$, problem (1.8) has a nontrivial solution u_μ with the following properties

1. u_μ has K local maximum points Q_μ^i, $i = 1, \ldots, K$ such that

 $$F(Q_1^\mu, \ldots, Q_K^\mu) \to \max_{Q \in \mathcal{M}_\delta} F(Q) \quad \text{as} \ \mu \to 0,$$

 where $\Lambda_0 > 0$ is some generic constant. As a consequence, $u_\mu(Q_1^\mu, \ldots, Q_K^\mu) \to \mu^{-3}$ and $u_\mu(x) \to 0$ for any $x \in \Omega \setminus (\bigcup_{i=1}^K B_\delta(Q_i^\mu))$, where $\delta > 0$ is any small number, and blows up at K points Q_1, \ldots, Q_K in Ω, such that $Q = (Q_1, \ldots, Q_K)$ maximizes F in \mathcal{M}_δ.

2. The existence of a global maximum for the function $F(Q)$ in \mathcal{M}_δ follows from the properties of the Green’s function - see the proof of Lemma 6.1.

3. We believe that Theorem 1.1 should also be true in dimensions $N = 4$ and $N = 6$. When $N = 4$, our computations show that the blow-up rate should be e^{c_1/μ^2} for some $c_1 > 0$ (instead of μ^{-3} here). When $N = 6$, the blow-up rate should be μ^{-2}. In both cases, the blow-up rate also depends on the locations of the blow-up points. We shall come back to this question is a future work.

4. There have been many works on the multiplicity of solutions for elliptic equations with critical nonlinearity - see [33] [34] [44] [45] [46] and references therein. As far as the authors know, all the multiplicity results are proved with some additional assumptions either on the symmetry, or the geometry, or the topology of the domain. In Theorem 1.1, no condition is requested.

As we commented earlier, PDE methods have to be used to prove Theorem 1.1. Note that it was proved that the least energy solution has to be constant if μ is small - see [52] and [31]. Therefore, the solutions in Theorem 1.1 must have higher energy. To capture such solutions, we use the so-called “localized energy method” - a combination of Liapunov-Schmidt reduction method and variational techniques. Namely, we first use Liapunov-Schmidt reduction method to reduce the problem to a finite dimensional one, with some reduced energy. Then, the
solutions in Theorem 1.1 turn out to be generated by critical points of the reduced energy functional. Such an idea has been used in [24] to study the interior spike solutions of problem (1.1) when \(\mu \) is large and \(q \) is subcritical. This kind of argument has been used in many other papers - see [12] [15] [18] [24] [26] [41] [42] and references therein. However, a new functional setting has to be introduced, and an appropriate variational argument to be developed to make the approach followed in our earlier works [41] [42] successful.

We set
\[
\varepsilon = \mu^2, \quad \Omega_\varepsilon := \Omega / \varepsilon = \{ z | \varepsilon z \in \Omega \}.
\]

Through the transformation \(u(x) \to \varepsilon^{-3/2} u(x/\varepsilon) \), (1.8) becomes the rescaled problem that we shall work with:
\[
\Delta u - \varepsilon^{5/2} u + 15 u^{7/3} = 0, \quad u > 0 \text{ in } \Omega_\varepsilon \quad \text{and} \quad \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega_\varepsilon.
\]

We set
\[
S_\varepsilon[u] := -\Delta u + \varepsilon^{5/2} u - 15 u^{7/3}_+ \quad u_+ = \max(u, 0)
\]
and we introduce the following functional defined in \(H^1(\Omega_\varepsilon) \)
\[
J_\varepsilon[u] = \frac{1}{2} \int_{\Omega_\varepsilon} |\nabla u|^2 + \frac{\varepsilon^{5/2}}{2} \int_{\Omega_\varepsilon} u^2 - \frac{9}{2} \int_{\Omega_\varepsilon} u_+^{10/3}
\]
whose nontrivial critical points are solutions to (1.12) \((J'_\varepsilon[u] = S_\varepsilon[u]) \).

The paper is organized as follows: In Section 3, we construct suitable approximate \(K \)-bubble solutions \(W \), and list their properties. In Section 4, we solve the linearized problem at \(W \) in a finite codimensional space. Then, in Section 4, we are able to solve the nonlinear problem in that finite codimensional space. In Section 5, we study the remaining finite dimensional problem and solve it in Section 6, finding critical points of the reduced energy functional. The proof of two technical lemmas may be found in Appendix.

Throughout the paper, the letters \(C, C_i \) will denote various positive constants independent of \(\varepsilon \) small. \(\delta \) will always denote a small constant.

Acknowledgments. The research of the second author is supported by an Earmarked Grant from RGC of Hong Kong and a direct grant from CUHK.

2. Approximate Bubble Solutions

This section is devoted to the construction of suitable approximate \(K \)-bubble solutions, in the neighbourhood of which solutions of Theorem 1.1 will be found.

Let \(\varepsilon \) be defined at (1.11). We consider \(Q \in \Omega, \Lambda > 0 \) a constant, and \(U_{\Lambda, \varepsilon} \) defined as in (1.9). In view of (1.10) and (1.9), \(U_{\Lambda, \varepsilon} \) provides us with
a first approximate solution to (1.8), as \(\varepsilon \) goes to zero (equivalently, \(\mu \) goes to zero). However, because of the additional linear term \(\mu u \) in (1.8), such an approximation has to be improved. To this end, we consider the following equation

(2.1) \[\Delta \Psi + U_{\Lambda} = 0, \quad \Psi_{\Lambda}(x) \to 0 \text{ as } |x| \to +\infty \]

where \(U_{\Lambda} \) denotes \(U_{\Lambda,0} \). It is known that there exists a unique radially symmetric solution \(\Psi_{\Lambda} \), which satisfies

(2.2) \[\Psi_{\Lambda}(x) = \frac{B}{|x|} \left(1 + O\left(\frac{1}{|x|^2}\right)\right) \text{ for } |x| > 1 \]

where \(B = \Lambda^{3/2}/2 > 0 \). For \(a \in \mathbb{R}^5 \), we set

\[\Psi_{\Lambda,a}(x) = \Psi_{\Lambda}(x - a). \]

(Note that \(\partial_{\Lambda} \Psi_{\Lambda,a} = O\left(|x-a|^{-1}\right) \) and \(\partial_{a_i} \Psi_{\Lambda,a} = O\left(|x-a|^{-2}\right) \) as \(|x-a| \) goes to infinity.)

An additional correction is necessary, in order to obtain approximate solutions which satisfy the requested boundary conditions. With this aim in view, we define

(2.3) \[\hat{U}_{\Lambda,Q}(z) = -\Psi_{\Lambda,Q}(z) - c_5 \varepsilon^{\frac{3}{2}} \Lambda^{\frac{3}{2}} H(\varepsilon z, Q) + R_{\varepsilon,\Lambda,Q}(z) \chi(\varepsilon z) \]

where \(R_{\varepsilon,\Lambda,Q} \) is defined by \(\Delta R_{\varepsilon,\Lambda,Q} - \varepsilon^{5/2} R_{\varepsilon,\Lambda,Q} = 0 \) in \(\Omega \) and

(2.4) \[\frac{\partial R_{\varepsilon,\Lambda,Q}}{\partial \nu} = \frac{\partial}{\partial \nu} \left[U_{\Lambda,Q} - \varepsilon^{5/2} \Psi_{\Lambda,Q} - c_5 \varepsilon^{3/2} \Lambda^{3/2} H(\varepsilon z, Q) \right] \text{ on } \partial \Omega. \]

Lastly, \(\chi(\cdot) \) is a smooth cut-off function in \(\Omega \), such that \(\chi(\cdot) = 1 \) for \(d(x, \partial \Omega) < \frac{\varepsilon}{2} \) and \(\chi(\cdot) = 0 \) for \(d(x, \partial \Omega) > \frac{\varepsilon}{2} \).

We notice that (2.2), an expansion of \(U_{\Lambda,Q} \) and the definition of \(H \) yield that the normal derivative of \(R_{\varepsilon,Q} \) is of order \(\varepsilon^{9/2} \) on the boundary of \(\Omega \), from which we deduce

(2.5) \[|R_{\varepsilon,\Lambda,Q}| + \varepsilon^{-1} |\nabla_x R_{\varepsilon,\Lambda,Q}| + \varepsilon^{-2} |\nabla_x^2 R_{\varepsilon,\Lambda,Q}| \leq C \varepsilon^{7/2}. \]

Such an estimate also holds for the derivatives of \(R_{\varepsilon,\Lambda,Q} \) with respect to \(\Lambda \) and \(Q \). It will ensure that \(R_{\varepsilon,\Lambda,Q} \) play no role in further computations, as negligible.

We are now able to define the appropriate approximate \(K \)-bubble solutions that we look for. Let \(\Lambda = (\Lambda_1, ..., \Lambda_K) \), \(Q = (Q_1, ..., Q_K) \) be such that

(2.6) \[\frac{1}{C_0} \leq |\Lambda| \leq C_0, \quad Q \in \mathcal{M}_\delta. \]
In view of the rescaling, we write
\[(2.7) \quad \bar{Q}_i = \frac{1}{\varepsilon} Q_i, \quad \bar{Q} = (\bar{Q}_1, \ldots, \bar{Q}_K)\]
and we define our approximate solutions as
\[(2.8) \quad W_{\varepsilon, \Lambda, \bar{Q}} := \sum_{j=1}^{K} (U_j + \varepsilon^{5/2} \hat{U}_j) + \eta \varepsilon^{5/2}\]
with
\[(2.9) \quad \eta = \frac{c_5}{|\Omega|} \sum_{j=1}^{K} \Lambda_j^{3/2}.\]
To simplify our notations, we wrote U_j and \hat{U}_j instead of U_{Λ_j, Q_j} and \hat{U}_{Λ_j, Q_j}. For the same reason, we shall also omit the dependence of W on $\varepsilon, \Lambda, \bar{Q}$. The last term $\eta \varepsilon^{5/2}$ in (2.8) has been added to cancel, in the Laplacian of W, the Laplacian of H introduced through the \hat{U}_j’s. By construction, the normal derivative of W vanishes on the boundary of Ω_ε, and W satisfies
\[(2.10) \quad -\Delta W + \varepsilon^{5/2} W = 15 \sum_{j=1}^{K} U_j^{7/3} + \varepsilon^5 \sum_{j=1}^{K} \hat{U}_j - \varepsilon^{5/2} \Delta (R_{\varepsilon, Q}(\varepsilon \cdot)) \quad \text{in } \Omega_\varepsilon.\]
According to (2.5), the last term occurring in that equation is dominated by ε^8.
We note that W depends smoothly on Λ, \bar{Q}. Setting, for $z \in \Omega_\varepsilon$
\[< z - \bar{Q} >= \min_{j=1}^{K} (1 + |z - \bar{Q}_j|^2)^{1/2}\]
we derive from the definition of W the inequalities:
\[(2.11) \quad |W(z)| \leq C(\varepsilon^{5/2} + < z - \bar{Q} >^{-3})\]
\[(2.12) \quad |D_\Lambda W(z)| \leq C(\varepsilon^{5/2} + < z - \bar{Q} >^{-3})\]
and
\[(2.13) \quad |D_{\bar{Q}} W(z)| \leq C(\varepsilon^3 + < z - \bar{Q} >^{-4})\]
where D_Λ and $D_{\bar{Q}}$ denote the first partial derivatives with respect to $\Lambda = (\Lambda_1, \ldots, \Lambda_K)$ and $\bar{Q} = (\bar{Q}_1, \ldots, \bar{Q}_K)$ respectively.
By our choice of W, we have the following error and energy estimates, proved in Appendix A.
Lemma 2.1. We have

\[|S_\varepsilon[W](z)| \leq C \left(\varepsilon^{5/2} < z - \bar{Q} >^{-4} + \varepsilon^5 < z - \bar{Q} >^{-1/2} \right). \]

The same estimate holds for \(D_\Lambda S_\varepsilon[W](z) \) and \(D_{\bar{Q}} S_\varepsilon[W](z) \), and

\[J_\varepsilon[W] = A_0 + \varepsilon^{5/2} \beta(\Lambda) + \varepsilon^3 E_0 \left[\sum_{j=1}^{K} \Lambda_j^{3/2} H(Q_j, Q_j) - \sum_{i \neq j} \Lambda_i^{3/2} \Lambda_j^{3/2} G(Q_i, Q_j) \right. \]
\[\left. - F_0 \left(\sum_{j=1}^{K} \Lambda_j^{3/2} \right)^2 \sum_{j=1}^{K} \left(\Lambda_j^{3/2} \int_\Omega \frac{dx}{|x - Q_j|^3} \right) \right] + o(\varepsilon^3). \]

Moreover

\[D_\Lambda (J_\varepsilon[W]) = \varepsilon^{5/2} D_\Lambda \beta(\Lambda) + O(\varepsilon^3) \]

where \(\beta(\Lambda) \) is defined by

\[\beta(\Lambda) = -B_0 \left(\sum_{j=1}^{K} \Lambda_j^{3/2} \right)^2 + D_0 \sum_{j=1}^{K} \Lambda_j^2. \]

A_0, B_0, D_0, E_0, F_0 are all generic strictly positive constants.

3. Finite-Dimensional Reduction: A Linear Problem

According to our general strategy, we first consider the linearized problem at \(W \), and we solve it in a finite codimensional subspace, i.e., the orthogonal space to the finite dimensional subspace generated by the derivatives of \(W \) with respect to the parameters \(\Lambda_j \) and \(\bar{Q}_{j,i} \). Namely, we equip \(H^1(\Omega_\varepsilon) \) with the scalar product

\[(u, v)_\varepsilon = \int_{\Omega_\varepsilon} (\nabla u \cdot \nabla v + \varepsilon^{5/2} uv). \]

Orthogonality to the functions

\[Y_{j,0} = \frac{\partial W}{\partial \Lambda_j}, \quad j = 1, \ldots, K, \quad Y_{j,i} = \frac{\partial W}{\partial \bar{Q}_{j,i}} \]

in that space is equivalent to the orthogonality in \(L^2(\Omega_\varepsilon) \), equipped with the usual scalar product \(\langle \cdot, \cdot \rangle \), to the functions \(Z_{j,i} \), \(1 \leq j \leq K, 0 \leq i \leq 5 \), defined as

\[Z_{j,0} = -\Delta \frac{\partial W}{\partial \Lambda_j} + \varepsilon^{5/2} \frac{\partial W}{\partial \Lambda_j} \]
\[Z_{j,i} = -\Delta \frac{\partial W}{\partial \bar{Q}_{j,i}} + \varepsilon^{5/2} \frac{\partial W}{\partial \bar{Q}_{j,i}} \]

\(1 \leq j \leq K, 0 \leq i \leq 5 \).
Note that derivating (2.10) with respect to Λ_j and $\bar{Q}_{j,i}$, straightforward computations provide us with the estimate
\begin{equation}
|Z_{j,i}(z)| \leq C \left(\varepsilon^{1/2} + <z - \bar{Q}>^{-7} \right).
\end{equation}

Now, we consider the following problem: h being given, find a function ϕ which satisfies
\begin{equation}
\begin{cases}
-\Delta \phi + \varepsilon^{5/2} \phi - 35W^{4/3} = h + \sum_{j,i} c_{j,i} Z_{j,i} & \text{in } \Omega_{\varepsilon} \\
\frac{\partial \phi}{\partial \nu} = 0 & \text{on } \partial \Omega_{\varepsilon} \\
\langle Z_{j,i}, \phi \rangle = 0 & 0 \leq i \leq 5, 1 \leq j \leq K
\end{cases}
\end{equation}
for some numbers $c_{j,i}$.

Existence and uniqueness of ϕ will follow from an inversion procedure in suitable functional spaces. As Del Pino, Felmer and Musso in [15], we use weighted Hölder spaces, defining here (among other possible choices) the two norms:
\begin{align}
\|\phi\|_* &= \|<z - \bar{Q}>^{3/2} \phi(z)\|_{\infty} \\
\|f\|^{**} &= \varepsilon^{-4} |\bar{f}| + \|<z - \bar{Q}>^{7/2} f(z)\|_{\infty}
\end{align}
where $\|f\|_{\infty} = \max_{z \in \Omega_{\varepsilon}} |f(z)|$, and \bar{f} to denote the average of f in Ω_{ε}, i.e.
\[\bar{f} = \frac{1}{|\Omega_{\varepsilon}|} \int_{\Omega_{\varepsilon}} f(z) dz. \]

Before stating an existence result for ϕ, we are in need of the following lemma, whose proof is given in Appendix B:

Lemma 3.1. Let u and f satisfy
\[-\Delta u = f \text{ in } \Omega_{\varepsilon}, \quad \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega_{\varepsilon}, \quad \bar{u} = \bar{f} = 0.\]

Then
\begin{equation}
|u(x)| \leq C \int_{\Omega_{\varepsilon}} \frac{|f(y)|}{|x-y|^3} dy
\end{equation}

As a corollary, we have:

Corollary 3.1. Suppose u and f satisfy
\[-\Delta u + \varepsilon^{5/2} u = f \text{ in } \Omega_{\varepsilon}, \quad \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega_{\varepsilon}.\]

Then
\begin{equation}
\|u\|_* \leq C \|f\|^{**}.
\end{equation}
Proof. Integrating the equation yields $\bar{u} = \varepsilon^{-5/2} \bar{f}$. We may write
\[
\Delta(u - \bar{u}) = \varepsilon^{-5/2} (u - \bar{u}) - (f - \bar{f}).
\]
Lemma (3.1) gives
\[
|u(y) - \bar{u}| \leq C \varepsilon^{5/2} \int_{\Omega_{\varepsilon}} \frac{|u(x) - \bar{u}|}{|x - y|^3} \, dx + C \int_{\Omega_{\varepsilon}} \frac{|f(x) - \bar{f}|}{|x - y|^3} \, dx.
\]
Since
\[
<y - \bar{Q} >^{3/2} \int_{R^3} \frac{1}{|x - y|^3} < x - \bar{Q} >^{-7/2} \, dx < +\infty
\]
we obtain
\[
\| < y - \bar{Q} >^{3/2} |u - \bar{u}| \|_\infty \leq C \| y - \bar{Q} >^{7/2} (f - \bar{f}) \|_\infty
\]
\[
\leq C \varepsilon^{1/2} \| y - \bar{Q} >^{3/2} |u - \bar{u}| \|_\infty + C \| y - \bar{Q} >^{7/2} (f - \bar{f}) \|_\infty
\]
which gives
\[
\| < y - \bar{Q} >^{3/2} |u - \bar{u}| \|_\infty \leq C \| y - \bar{Q} >^{7/2} |f - \bar{f}| \|_\infty
\]
whence
\[
\| < y - \bar{Q} >^{3/2} u \|_\infty \leq C \| y - \bar{Q} >^{3/2} |u| + C \varepsilon^{-7/2} |\bar{f}| + \| < y - \bar{Q} >^{7/2} f \|_\infty
\]
\[
\leq C \| f \|_{**}.
\]

We state now the main result of this section:

Proposition 3.1. There exists $\varepsilon_0 > 0$ and a constant $C > 0$, independent of ε, Λ and \bar{Q} satisfying (2.6), such that for all $0 < \varepsilon < \varepsilon_0$ and all $h \in L^\infty(\Omega_{\varepsilon})$, problem (3.4) has a unique solution $\phi = L_{\varepsilon}(h)$. Besides,
\[
\| L_{\varepsilon}(h) \|_s \leq C \| h \|_{**}
\]
\[
|c_{j,i}| \leq C \| h \|_{**}.
\]
Moreover, the map $L_{\varepsilon}(h)$ is C^1 with respect to Λ, \bar{Q} and the L^∞-norm, and
\[
\| D_{(\Lambda, \bar{Q})} L_{\varepsilon}(h) \|_s \leq C \| h \|_{**}.
\]

Proof. The argument follows closely the ideas in [15] [41] and [42]. We repeat it since we use different norms. The proof relies on the following result:

Lemma 3.2. Assume that ϕ_{ε} solves (3.4) for $h = h_{\varepsilon}$. If $\| h_{\varepsilon} \|_{**}$ goes to zero as ε goes to zero, so does $\| \phi_{\varepsilon} \|_{s}$.

\[
\| L_{\varepsilon}(h) \|_s \leq C \| h \|_{**}
\]
\[
|c_{j,i}| \leq C \| h \|_{**}.
\]

Proposition 3.1. There exists $\varepsilon_0 > 0$ and a constant $C > 0$, independent of ε, Λ and \bar{Q} satisfying (2.6), such that for all $0 < \varepsilon < \varepsilon_0$ and all $h \in L^\infty(\Omega_{\varepsilon})$, problem (3.4) has a unique solution $\phi = L_{\varepsilon}(h)$. Besides,
\[
\| L_{\varepsilon}(h) \|_s \leq C \| h \|_{**}
\]
\[
|c_{j,i}| \leq C \| h \|_{**}.
\]
Moreover, the map $L_{\varepsilon}(h)$ is C^1 with respect to Λ, \bar{Q} and the L^∞-norm, and
\[
\| D_{(\Lambda, \bar{Q})} L_{\varepsilon}(h) \|_s \leq C \| h \|_{**}.
\]

Proof. The argument follows closely the ideas in [15] [41] and [42]. We repeat it since we use different norms. The proof relies on the following result:

Lemma 3.2. Assume that ϕ_{ε} solves (3.4) for $h = h_{\varepsilon}$. If $\| h_{\varepsilon} \|_{**}$ goes to zero as ε goes to zero, so does $\| \phi_{\varepsilon} \|_{s}$.

\[
\| L_{\varepsilon}(h) \|_s \leq C \| h \|_{**}
\]
\[
|c_{j,i}| \leq C \| h \|_{**}.
\]
Proof of Lemma 3.2. Arguing by contradiction, we may assume that $\|\phi_\varepsilon\|_\ast = 1$. Multiplying the first equation in (3.4) by $Y_{k,l}$ and integrating in Ω_ε, we find

$$\sum_{j,i} c_{j,i} \langle Z_{j,i}, Y_{k,l} \rangle = \left\langle -\Delta Y_{k,l} + \varepsilon^{5/2} Y_{k,l} - 35 W^{4/3}_+ Y_{k,l}, \phi_\varepsilon \right\rangle - \langle h_\varepsilon, Y_{k,l} \rangle.$$

On one hand we check, in view of the definition of $Z_{j,i}$, $Y_{k,l}$

(3.10)$$\begin{cases}
\langle Z_{j,0}, Y_{j,0} \rangle = \|Y_{j,0}\|_\varepsilon^2 = \gamma_0 + o(1) & 1 \leq j \leq K \\
\langle Z_{j,i}, Y_{j,i} \rangle = \|Y_{j,i}\|_\varepsilon^2 = \gamma_1 + o(1) & 1 \leq i \leq 5
\end{cases}$$

where γ_0, γ_1 are strictly positive constants, and

(3.11)$$\langle Z_{j,i}, Y_{k,l} \rangle = o(1) \quad j \neq k, i \neq l.$$

On the other hand, in view of the definition of $Y_{k,l}$ and W, straightforward computations yield

$$\left\langle -\Delta Y_{k,l} + \varepsilon^{5/2} Y_{k,l} - 35 W^{4/3}_+ Y_{k,l}, \phi_\varepsilon \right\rangle = o(\|\phi_\varepsilon\|_\ast)$$

and

$$\langle h_\varepsilon, Y_{k,l} \rangle = O(\|h_\varepsilon\|_{\ast\ast}).$$

Consequently, inverting the quasi diagonal linear system solved by the $c_{j,i}$'s, we find

(3.12)$$c_{j,i} = O(\|h_\varepsilon\|_{\ast\ast}) + o(\|\phi_\varepsilon\|_\ast).$$

In particular, $c_{j,i} = o(1)$ as ε goes to zero.

Since $\|\phi_\varepsilon\|_\ast = 1$, elliptic theory shows that along some subsequence, functions $\phi_{\varepsilon,j}(y) = \phi_\varepsilon(y - Q_j)$ converge uniformly in any compact subset of \mathbb{R}^5 to a nontrivial solution of

$$-\Delta \phi_j = 35 U^{4/3}_{\Lambda_j,0} \phi_j.$$

Moreover, $|\phi_j(y)| \leq C(1 + |y|)^{-3/2}$. A bootstrap argument (see e.g. Proposition 2.2 of [47]) implies $|\phi_j(y)| \leq C(1 + |y|)^{-3}$. As a consequence, ϕ_j writes as

$$\phi_j = \alpha_0 \frac{\partial U_{\Lambda_j,0}}{\partial \Lambda_j} + \sum_{i=1}^5 \alpha_i \frac{\partial U_{\Lambda_j,0}}{\partial y_i}$$

(see [38]). On the other hand, equalities $\langle Z_{j,i}, \phi_\varepsilon \rangle = 0$ provide us with the equalities

$$\int_{\mathbb{R}^5} -\Delta \frac{\partial U_{\Lambda_j,0}}{\partial \Lambda_j} \phi_j = \int_{\mathbb{R}^5} U^{4/3}_{\Lambda_j,0} \frac{\partial U_{\Lambda_j,0}}{\partial \Lambda_j} \phi_j = 0$$

$$\int_{\mathbb{R}^5} -\Delta \frac{\partial U_{\Lambda_j,0}}{\partial y_i} \phi_j = \int_{\mathbb{R}^5} U^{4/3}_{\Lambda_j,0} \frac{\partial U_{\Lambda_j,0}}{\partial y_i} \phi_j = 0 \quad 1 \leq i \leq 5.$$
As we have also
\[
\int_{\mathbb{R}^5} |\nabla \partial U_{\Lambda_j}^{0,0}|^2 = \gamma_0 > 0 \quad \int_{\mathbb{R}^5} |\nabla \partial U_{\Lambda_i}^{0,0}|^2 = \gamma_1 > 0 \quad 1 \leq i \leq 5
\]
and
\[
\int_{\mathbb{R}^5} \nabla \partial U_{\Lambda_j}^{0,0} \cdot \nabla \partial U_{\Lambda_i}^{0,0} = \int_{\mathbb{R}^5} \nabla \partial U_{\Lambda_j}^{0,0} \cdot \nabla \partial U_{\Lambda_i}^{0,0} = 0 \quad i \neq i'
\]
the \(\alpha_i \)'s solve a homogeneous quasidiagonal linear system, yielding \(\alpha_i = 0, \) 0 \(\leq i \leq N, \) and \(\phi_j = 0. \) So \(\phi \in C^{1}_{loc}(\Omega_{\varepsilon}). \)

Now, we remark that Corollary 3.1 provides us with the inequality
\[
(3.13) \quad \|\phi_{\varepsilon}\| \leq C\|W^{4/3}_{+}\phi_{\varepsilon}\|_{\ast} + C\|h_{\varepsilon}\|_{\ast} + C\sum_{j,i} |c_{j,i}|\|Z_{j,i}\|_{\ast}.
\]

Let us estimate the right hand side. We deduce from (2.11) that
\[
|\langle z - \bar{Q}\rangle^{7/2}W^{4/3}_{+}\phi_{\varepsilon}| \leq C\varepsilon^{10/3}|\langle z - \bar{Q}\rangle^{2}\|\phi_{\varepsilon}\|_{\ast} + C\|\langle z - \bar{Q}\rangle^{-1/2}\phi_{\varepsilon}|.
\]
Since \(\|\phi_{\varepsilon}\|_{\ast} = 1, \) the first term in the right hand side is dominated by \(\varepsilon^{4/3}. \) The last term goes uniformly to zero in any ball \(B_R(\bar{Q}_j), \) and is also dominated by \(\varepsilon^{-1}\|\phi_{\varepsilon}\|_{\ast} = \langle z - \bar{Q}\rangle^{-2} \) which, through the choice of \(R, \) can be made as small as desired in \(\Omega_{\varepsilon} \cup \bigcup_j B_R(\bar{Q}_j). \) Consequently,
\[
|\langle z - \bar{Q}\rangle^{7/2}W^{4/3}_{+}\phi_{\varepsilon}| = o(1)
\]
as \(\varepsilon \) goes to zero, uniformly in \(\Omega_{\varepsilon}. \) (2.11) also yields
\[
\varepsilon^{-4}W^{4/3}_{+}\phi_{\varepsilon} \leq C\varepsilon\int_{\Omega_{\varepsilon}} (\varepsilon^{10/3} + \langle z - \bar{Q}\rangle^{-4}) |\phi_{\varepsilon}|
\]
\[
\leq \varepsilon\int_{\Omega_{\varepsilon}} (\varepsilon^{10/3} + \langle z - \bar{Q}\rangle^{-3/2} + \langle z - \bar{Q}\rangle^{-11/2}) \|\phi_{\varepsilon}\|_{\ast}
\]
\[
\leq \varepsilon^{5/6}
\]
Finally we obtain
\[
\|W^{4/3}_{+}\phi_{\varepsilon}\|_{\ast} = o(1).
\]
In the same time, (3.3) yields
\[
\langle z - \bar{Q}\rangle^{7/2}|Z_{j,i}| \leq C\left(\varepsilon^{11/2} + \langle z - \bar{Q}\rangle^{-7/2}\right) = O(1)
\]
and
\[
\varepsilon^{-4}Z_{j,i} \leq \varepsilon\int_{\Omega_{\varepsilon}} (\varepsilon^{11/2} + \langle z - \bar{Q}\rangle^{-1} + \langle z - \bar{Q}\rangle^{-7/2}) = O(\varepsilon).
\]
Then, coming back to (3.13), we find
\[
\|\phi_{\varepsilon}\|_{\ast} = o(1)
\]
that is, a contradiction with the assumption \(\|\phi_{\varepsilon}\|_{\ast} = 1. \)
Proof of Proposition 3.1 completed. We set
\[H = \left\{ \phi \in H^1(\Omega_\varepsilon), \langle Z_{j,i}, \phi \rangle = 0 \quad 0 \leq i \leq 5, 1 \leq j \leq K \right\} \]
equipped with the scalar product \((\cdot, \cdot)_\varepsilon\). Problem (3.4) is equivalent to finding \(\phi \in H\) such that
\[(\phi, \theta)_\varepsilon = \left\langle 35W_+^{4/3}\phi + h, \theta \right\rangle \quad \forall \theta \in H \]
that is
\[(3.14) \quad \phi = T_\varepsilon(\phi) + \tilde{h} \]
\(\tilde{h}\) depending linearly on \(h\), and \(T_\varepsilon\) being a compact operator in \(H\). Fredholm’s alternative ensures the existence of a unique solution, provided that the kernel of \(Id - T_\varepsilon\) is reduced to 0. We notice that any \(\phi_\varepsilon \in Ker(Id - T_\varepsilon)\) solves (3.4) with \(h = 0\). Thus, we deduce from Lemma 3.2 that \(\|\phi_\varepsilon\|_* = o(1)\) as \(\varepsilon\) goes to zero. As \(Ker(Id - T_\varepsilon)\) is a vector space, \(Ker(Id - T_\varepsilon) = \{0\}\). The inequalities (3.8) follow from Lemma 3.2 and (3.12). This completes the proof of the first part of Proposition 3.1.

The smoothness of \(L_\varepsilon\) with respect to \(\Lambda\) and \(\overline{Q}\) is a consequence of the smoothness of \(T_\varepsilon\) and \(\tilde{h}\), which occur in the implicit definition (3.14) of \(\phi = L_\varepsilon(h)\), with respect to these variables. Inequality (3.9) is obtained differentiating (3.4), writing the derivatives of \(\phi\) with respect \(\Lambda\) and \(\overline{Q}\) as a linear combination of the \(Z_i\)'s and an orthogonal part, and estimating each term using the first part of the proposition - see [15] [27] for detailed computations.

4. Finite Dimensional Reduction: A Nonlinear Problem

In this section, we turn our attention to the nonlinear problem, that we solve in the finite codimensional subspace orthogonal to the \(Z_{j,i}\)'s. Let \(S_\varepsilon[u]\) be defined at (1.13). Then, (1.12) is equivalent to
\[(4.1) \quad S_\varepsilon[u] = 0 \text{ in } \partial \Omega_\varepsilon, \ u_+ \neq 0, \ \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega_\varepsilon. \]
Indeed, if \(u\) satisfies (4.1) the Maximum Principle ensures that \(u > 0\) in \(\Omega_\varepsilon\) and (1.12) is satisfied. Observe that
\[S_\varepsilon[W + \phi] = -\Delta(W + \phi) + \varepsilon^{5/2}(W + \phi) - 15(W + \phi)_+^{7/3} \]
may be written as
\[(4.2) \quad S_\varepsilon[W + \phi] = -\Delta \phi + \varepsilon^{5/2} \phi - 35W_+^{4/3} \phi + R_\varepsilon - 15N_\varepsilon(\phi) \]
with
\[(4.3) \quad N_\varepsilon[\phi] = (W + \phi)_+^{7/3} - W^{7/3} - \frac{7}{3}W_+^{4/3} \phi \]
and
\[
R^\varepsilon = S_\varepsilon[W] = -\Delta W + \varepsilon^{5/2} W - 15W^{7/3}.
\]

From Lemma 2.1 we derive estimates concerning \(R^\varepsilon\):
\[
\|R^\varepsilon\|_{**} + \|D(\Lambda, \bar{Q})R^\varepsilon\|_{**} \leq \varepsilon^{3/2}.
\]

We consider now the following nonlinear problem: finding \(\phi\) such that, for some numbers \(c_{j,i}\)
\[
\begin{cases}
-\Delta(W + \phi) + \varepsilon^{5/2}(W + \phi) + 15(W + \phi)^{7/3} = \sum_{j,i} c_{j,i}Z_{j,i} & \text{in } \Omega_\varepsilon \\
\frac{\partial \phi}{\partial \nu} = 0 & \text{on } \partial \Omega_\varepsilon \\
1 \leq j \leq K, 0 \leq i \leq 5 & (Z_{j,i}, \phi) = 0.
\end{cases}
\]
The first equation in (4.6) writes as
\[
-\Delta \phi + \varepsilon^{5/2} \phi - 35W^{4/3} \phi = 15N_\varepsilon(\phi) + R^\varepsilon + \sum_{j,i} c_{j,i}Z_{j,i}
\]
for some numbers \(c_{j,i}\). \(N_\varepsilon\) may be estimated as follows:

\textbf{Lemma 4.1.} There exist \(\varepsilon_1 > 0\), independent of \(\Lambda, \bar{Q}\), and \(C\), independent of \(\varepsilon, \Lambda, \bar{Q}\), such that for \(\varepsilon \leq \varepsilon_1\), and \(\|\phi\|_* \leq \varepsilon\)
\[
\|N_\varepsilon(\phi)\|_{**} \leq C\varepsilon^{5/6}\|\phi\|_*
\]
and, for \(\|\phi_i\|_* \leq 1 \)
\[
\|N_\varepsilon(\phi_1) - N_\varepsilon(\phi_2)\|_{**} \leq C\varepsilon^{5/6}\|\phi_1 - \phi_2\|_*.
\]

\textbf{Proof.} We deduce from (4.3) that
\[
|N_\varepsilon(\phi)| \leq C(W_+^{1/3}|\phi|^2 + |\phi|^{7/3}).
\]
In view of (2.11), we compute
\[
\varepsilon^{-4}W_+^{1/3}|\phi|^2 + |\phi|^{7/3} \leq C\varepsilon \int_{\Omega_\varepsilon} \left((\varepsilon^{5/6} + (z - \bar{Q})^{-1})|\phi|^2 + |\phi|^{7/3} \right)
\]
\[
\leq C\varepsilon \int_{\Omega_\varepsilon} \left((\varepsilon^{5/6} + (z - \bar{Q})^{-3} + (z - \bar{Q})^{-4})||\phi||^2_* + (z - \bar{Q})^{-2/3}||\phi||^7/3_* \right)
\]
\[
\leq C(\varepsilon^{-1/6}||\phi||^2_* + \varepsilon^{-1/2}||\phi||^7/3_*)
\]
\[
\leq C\varepsilon^{5/6}||\phi||_*.
\]
On the other hand
\[
\| < z - \bar{Q} >^{7/2} (W_+^{1/3}|\phi|^2 + |\phi|^{7/3}) \|_{\infty} \leq C||\phi||^2_*
\]
and (4.8) follows. Concerning (4.9), we write
\[N_\varepsilon(\phi_1) - N_\varepsilon(\phi_2) = \partial_\eta N_\varepsilon(\eta)(\phi_1 - \phi_2) \]
for some \(\eta = x\phi_1 + (1-x)\phi_2, \ x \in [0,1] \). From
\[\partial_\eta N_\varepsilon(\eta) = \frac{7}{3}((W + \eta)^{4/3} - W^{4/3}) \]
we deduce
\[|\partial_\eta N_\varepsilon(\eta)| \leq C(W_+^{1/3} |\eta| + |\eta|^{4/3}) \]
and the proof of (4.9) is similar to the previous one. \(\square \)

We state now the following result:

Proposition 4.1. There exists \(C \), independent of \(\varepsilon \) and \(\Lambda, \bar{Q} \) satisfying (2.6), such that for small \(\varepsilon \) problem (4.6) has a unique solution \(\phi = \phi(\Lambda, \bar{Q}, \varepsilon) \) with
\[\|\phi\|_* \leq C\varepsilon^{3/2}. \]
Moreover, \((\Lambda, \bar{Q}) \mapsto \phi(\Lambda, \bar{Q}, \varepsilon) \) is \(C^1 \) with respect to the \(* \)-norm, and
\[\|D(\Lambda, \bar{Q})\phi\|_* \leq C\varepsilon^{3/2}. \]

Proof. Following [15], we consider the map \(A_\varepsilon \) from \(\mathcal{F} = \{ \phi \in H^1(\Omega_\varepsilon) : \|\phi\|_* \leq C^\varepsilon^{3/2} \} \) to \(H^1(\Omega_\varepsilon) \) defined as
\[A_\varepsilon(\phi) = L_\varepsilon(15N_\varepsilon(\phi) + R^\varepsilon). \]
Here \(C^\varepsilon \) is a large number, to be determined later, and \(L_\varepsilon \) is given by Proposition 3.1. We remark that finding a solution \(\phi \) to problem (4.6) is equivalent to finding a fixed point of \(A_\varepsilon \). On the one hand we have for \(\phi \in \mathcal{F} \), using (4.5), Proposition 3.1 and Lemma 4.1
\[\|A_\varepsilon(\phi)\|_* \leq \|L_\varepsilon(N_\varepsilon(\phi))\|_* + \|L_\varepsilon(R^\varepsilon)\|_* \]
\[\leq C_1(\|N_\varepsilon(\phi)\|_*^* + \varepsilon^{3/2}) \]
\[\leq C_2C^\varepsilon^{3/2} + C_1\varepsilon^{3/2} \]
\[\leq C'\varepsilon^{3/2} \]
for \(C' = 2C_1 \) and \(\varepsilon \) small enough, implying that \(A_\varepsilon \) sends \(\mathcal{F} \) into itself. On the other hand \(A_\varepsilon \) is a contraction. Indeed, for \(\phi_1 \) and \(\phi_2 \) in \(\mathcal{F} \), we write
\[\|A_\varepsilon(\phi_1) - A_\varepsilon(\phi_2)\|_* \leq C\|N_\varepsilon(\phi_1) - N_\varepsilon(\phi_2)\|_* \]
\[\leq C\varepsilon^{5/6}\|\phi_1 - \phi_2\|_* \]
\[\leq \frac{1}{2}\|\phi_1 - \phi_2\|_* \]
for ε small enough. Contraction Mapping Theorem implies that A_ε has a unique fixed point in \mathcal{F}, that is problem (4.6) has a unique solution ϕ such that $\|\phi\|_* \leq C'\varepsilon^{3/2}$.

In order to prove that $(\Lambda, \bar{Q}) \mapsto \phi(\Lambda, \bar{Q})$ is C^1, we remark that setting for $\eta \in \mathcal{F}$

$$B(\Lambda, \bar{Q}, \eta) \equiv \eta - L_\varepsilon(15N_\varepsilon(\eta) + R^\varepsilon)$$

ϕ is defined as

(4.14) $B(\Lambda, \bar{Q}, \phi) = 0$.

We have

$$\partial_\eta B(\Lambda, \bar{Q}, \eta)[\theta] = \theta - 15L_\varepsilon(\theta(\partial_\eta N_\varepsilon)(\eta)).$$

Using Proposition 3.1 and (4.11) we write

$$\|L_\varepsilon(\theta(\partial_\eta N_\varepsilon)(\eta))\|_* \leq C\|\theta(\partial_\eta N_\varepsilon)(\eta)\|_{**}$$

$$\leq C\|\langle z - \bar{Q} \rangle^{-3/2}(\partial_\eta N_\varepsilon)(\eta)\|_{**}\|\theta\|_*$$

$$\leq C\|\langle z - \bar{Q} \rangle^{-3/2}(|W_+^{1/3}|\eta| + |\eta|^{4/3})\|_{**}\|\theta\|_*.$$

In view of (3.5), (2.11) and $\eta \in \mathcal{F}$, we obtain

$$\|L_\varepsilon(\theta(\partial_\eta N_\varepsilon)(\eta))\|_* \leq C\varepsilon^{3/2}\|\theta\|_*.$$

Consequently, $\partial_\eta B(\Lambda, \bar{Q}, \phi)$ is invertible with uniformly bounded inverse. Then, the fact that $(\Lambda, \bar{Q}) \mapsto \phi(\Lambda, \bar{Q})$ is C^1 follows from the fact that $(\Lambda, \bar{Q}, \eta) \mapsto L_\varepsilon(N_\varepsilon(\eta))$ is C^1 and the implicit functions theorem.

Finally, let us show how estimate (4.13) may be obtained. Derivating (4.14) with respect to Λ, we find

$$\partial_\Lambda \phi = (\partial_\eta B(\Lambda, \xi, \phi))^{-1}\left((\partial_\Lambda L_\varepsilon)(N_\varepsilon(\phi)) + L_\varepsilon((\partial_\Lambda N_\varepsilon)(\phi)) + L_\varepsilon(\partial_\Lambda R^\varepsilon)\right)$$

whence, according to Proposition 3.1

$$\|\partial_\Lambda \phi\|_* \leq C\left(\|N_\varepsilon(\phi)\|_{**} + \|(\partial_\Lambda N_\varepsilon)(\phi)\|_{**} + \|\partial_\Lambda R^\varepsilon\|_{**}\right).$$

From Lemma 4.1 and (4.12) we know that

$$\|N_\varepsilon(\phi)\|_{**} \leq C\varepsilon^{3/2}. $$

Concerning the next term, we notice that according to the definition of N_ε

$$|((\partial_\Lambda N_\varepsilon)(\phi))| = \frac{7}{3}|(W + \phi)^{4/3} - W_+^{4/3} - \frac{4}{3}W_+^{1/3}\phi|\|\partial_\Lambda W\|$$

whence again, using (2.11), (2.12) and (4.12)

$$\|(\partial_\Lambda N_\varepsilon)(\phi)\|_{**} \leq C\varepsilon^{3/2}. $$
Finally, using (4.5), we obtain
\[\| \partial_{\Lambda} \phi \|_* \leq C \varepsilon^{3/2}. \]

The derivative of \(\phi \) with respect to \(\bar{Q} \) may be estimated in the same way. This concludes the proof of Proposition 4.1.

5. **Finite Dimensional Reduction: Reduced Energy**

Let us define a reduced energy functional as
\[
I_{\varepsilon}(\Lambda, Q) \equiv J_{\varepsilon}[W_{\Lambda, Q} + \phi_{\varepsilon, \Lambda, Q}].
\]

Then, we state:

Proposition 5.1. The function \(u = W + \phi \) is a solution to problem (1.12) if and only if \((\Lambda, Q)\) is a critical point of \(I_{\varepsilon} \).

Proof. We notice that \(u = W + \phi \) being a solution to (1.12) is equivalent to being a critical point of \(J_{\varepsilon} \). It is also equivalent to the cancellation of the \(c_{j,i} \)'s in (4.6) or, in view of (3.10) (3.11)
\[
J'_{\varepsilon}[W + \phi][Y_{j,i}] = 0 \quad 1 \leq j \leq K, \quad 0 \leq i \leq 5.
\]
On the other hand, we deduce from (5.1) that \(I'_{\varepsilon}(\Lambda, Q) = 0 \) is equivalent to the cancellation of \(J'_{\varepsilon}(W + \phi) \) applied to the derivatives of \(W + \phi \) with respect to \(\Lambda \) and \(\bar{Q} \). According to the definition (3.1) of the \(Y_{j,i} \)'s and Proposition 4.1 we have
\[
\frac{\partial(W + \phi)}{\partial \Lambda_j} = Y_{j,0} + y_{j,0}, \quad 1 \leq j \leq K \quad \frac{\partial(W + \phi)}{\partial Q_{j,i}} = Y_{j,i} + y_{j,i}, \quad 1 \leq i \leq 5
\]
with \(\|y_{j,i}\|_* = o(1), 1 \leq j \leq K, 0 \leq i \leq 5 \). Writing
\[
y_{j,i} = y'_{j,i} + \sum_{k,l} a_{j,i,kl} Y_{k,l}, \quad \langle y'_{j,i}, Z_{k,l} \rangle = (y'_{j,i}, Y_{j,i}) \varepsilon = 0 \quad 0 \leq i \leq 5, \quad 1 \leq j \leq K
\]
and
\[
J'_{\varepsilon}[W + \phi][Y_{j,i}] = \alpha_{j,i}
\]
it turns out that \(I'_{\varepsilon}(\Lambda, \bar{Q}) = 0 \) is equivalent, since \(J'_{\varepsilon}[W + \phi][\theta] = 0 \) for \(\langle \theta, Z_{j,i} \rangle = (\theta, Y_{j,i}) \varepsilon = 0, 1 \leq j \leq K, \quad 0 \leq i \leq 5 \), to
\[
(Id + [a_{j,i,kl}])[\alpha_{j,i}] = 0.
\]
As \(a_{j,i,kl} = O(\|y_{k,l}\|_*) = o(1) \), we see that \(I'_{\varepsilon}(\Lambda, Q) = 0 \) means exactly that (5.2) is satisfied.

In view of Proposition 5.1 we have, for proving the theorem, to find critical points of \(I_{\varepsilon} \). We establish an expansion of \(I_{\varepsilon} \).
Proposition 5.2. For ε sufficiently small, we have

\begin{equation}
I_\varepsilon(\Lambda, Q) = J_\varepsilon[W] + \varepsilon^3 \sigma_\varepsilon(\Lambda, Q)
\end{equation}

where $\sigma_\varepsilon = o(1)$ and $D_\Lambda \sigma_\varepsilon = O(1)$ as ε goes to zero, uniformly with respect to Λ, Q satisfying (2.6).

Proof. We first prove that\n
\begin{equation}
I_\varepsilon(\Lambda, Q) - J_\varepsilon[W] = o(\varepsilon^3).
\end{equation}

Actually, in view of (5.1), a Taylor expansion and the fact that $J_\varepsilon[W + \phi][\phi] = 0$ yield

\begin{align*}
I_\varepsilon(\Lambda, Q) - J_\varepsilon[W] &= J_\varepsilon(W + \phi) - J_\varepsilon[W] \\
&= -\int_0^1 J_\varepsilon''(W + t\phi)[\phi, \phi]dt \\
&= -\int_0^1 \left(\int_{\Omega_\varepsilon} (|\nabla \phi|^2 + \varepsilon^{5/2} \phi^2 - 35(W + t\phi)^{4/3} \phi^2) \right)dt
\end{align*}

whence

\begin{equation}
I_\varepsilon(\Lambda, Q) - J_\varepsilon[W] = -\int_0^1 \left(15 \int_{\Omega_\varepsilon} (N_\varepsilon(\phi)\phi + \frac{7}{3} [W^{4/3}_+ - (W + t\phi)^{4/3}_+] \phi^2) \right)dt - \int_{\Omega_\varepsilon} R_\varepsilon \phi.
\end{equation}

From (4.3), (2.11) and Proposition 4.1, we deduce that the first term in the right hand side satisfies

\[\left| \int_{\Omega_\varepsilon} N_\varepsilon(\phi)\phi \right| \leq C \int_{\Omega_\varepsilon} (W^{1/3}_+ |\phi|^3 + |\phi|^{10/3}) \leq C\varepsilon^4. \]

Similarly, we obtain for the second term in the right hand side

\[\left| \int_{\Omega_\varepsilon} (W^{4/3}_+ - (W + t\phi)^{4/3}_+) \phi^2 \right| \leq C \int_{\Omega_\varepsilon} (W^{1/3}_+ |\phi|^3 + |\phi|^{10/3}) \leq C\varepsilon^4. \]

Concerning the last integral, we remark that according to (2.14)

\[|R_\varepsilon| \leq C\varepsilon^{5/2} \langle z - \bar{Q} \rangle^{-4} + C\varepsilon^5 \langle z - \bar{Q} \rangle^{-1/2} \]

uniformly in Ω_ε. Therefore

\[\left| \int_{\Omega_\varepsilon} R_\varepsilon \phi \right| \leq C||\phi||_* \int_{\Omega_\varepsilon} \varepsilon^{5/2} \langle z - \bar{Q} \rangle^{-11/2} + \varepsilon^5 ||\phi||_* \int_{\Omega_\varepsilon} \langle z - \bar{Q} \rangle^{-2} \leq C\varepsilon^{7/2}. \]

This concludes the proof of (5.4).

Estimate for the derivative with respect to Λ is established exactly in the same way, deriving the right hand side in (5.5) and estimating each term separately, using (4.3), (4.5) and Lemma 2.1 (see Proposition 3.4 in [27] for detailed computations). \qed
6. Proof of Theorem 1.1

In view of Proposition 5.1, proving Theorem 1.1 turns out to be equivalent to proving the existence of a critical point of $I_\varepsilon(\Lambda, Q)$. According to Proposition 5.2 and Lemma 2.1, setting

\[K_\varepsilon(\Lambda, Q) := \frac{I_\varepsilon(\Lambda, Q) - A_0}{\varepsilon^{5/2}} \]

we have the expansion

\[
K_\varepsilon(\Lambda, Q) = \beta(\Lambda) + \varepsilon^{1/2} E_0 \left[\sum_{j=1}^{K} \Lambda_j^3 H(Q_j, Q_j) - \sum_{i \neq j} \Lambda_i^{3/2} \Lambda_j^{3/2} G(Q_i, Q_j) - F_0 \sum_{j=1}^{K} \Lambda_j^{3/2} \sum_{j=1}^{K} \Lambda_j^{3/2} \int_{\Omega} \frac{dx}{|x - Q_j|^3} \right] + o(\varepsilon^{1/2})
\]

and

\[
D\Lambda K_\varepsilon(\Lambda, Q) = D\Lambda \beta(\Lambda) + O(\varepsilon^{1/2})
\]

with

\[
\beta(\Lambda) = -B_0 \left(\sum_{j=1}^{K} \Lambda_j^{3/2} \right)^2 + D_0 \sum_{j=1}^{K} \Lambda_j^2.
\]

We notice that $\beta(\Lambda) \to -\infty$ as $|\Lambda| \to \infty$. Except for $K = 1$, the maximum points of β in \mathbb{R}_+^K lie on the boundary of this set. However, computing the first derivatives

\[
\partial_{\Lambda_i} \beta(\Lambda) = -3B_0 \left(\sum_{j=1}^{K} \Lambda_j^{3/2} \right) \Lambda_i^{1/2} + 2D_0 \Lambda_i
\]

we see that, in any case, β has a (unique) critical point $\hat{\Lambda}_0$ in the interior of \mathbb{R}_+^K, such that

\[
\hat{\Lambda}_0 = (\Lambda_0, \ldots, \Lambda_0) \quad \Lambda_0 = \frac{2D_0}{3B_0K} \quad \beta(\hat{\Lambda}_0) = \frac{4D_0^3}{27B_0^2K^2}.
\]

We compute

\[
\partial_{\Lambda_i, \Lambda_j} \beta(\hat{\Lambda}_0) = D_0(-\frac{3}{K} + \delta_{ij}).
\]

Thus, the eigenvalues of β'' are $\lambda^+ = D_0$, with multiplicity $K - 1$, and $\lambda^- = -2D_0$, with multiplicity one. Consequently, $\hat{\Lambda}_0$ is a maximum in the $(1, \ldots, 1)$ direction, corresponding to λ^-, and a minimum in the orthogonal hyperplane (when $K \geq 2$).
We remark also that for $\Lambda = \hat{\Lambda}_0$, the term in square brackets in the expansion (6.1) of K_ε writes as $\hat{\Lambda}_0^3 F(Q)$, with

$$F(Q) = \sum_{j=1}^{K} H(Q_j, Q_j) - \sum_{i \neq j} G(Q_i, Q_j) - F_0 K \sum_{j=1}^{K} \int_{\Omega} \frac{dx}{|x - Q_j|^3}. \quad (6.5)$$

Note also that F achieves its maximum \hat{F} in the interior of M_δ. More precisely, we shall prove:

Lemma 6.1. There exists a constant $C > 0$ such that

$$\sup_{Q \in \partial M_\delta} F(Q) \leq -\frac{C}{\delta^3} \quad \text{as} \quad \delta \to 0. \quad (6.6)$$

Considering these facts, our aim is to prove that for ε small enough, K_ε has a critical point $(\hat{\Lambda}, \hat{Q})$, with $\hat{\Lambda}$ close to $\hat{\Lambda}_0$ and \hat{Q} close to a maximum point of F. In order to use a linking argument, we set

$$\Sigma = \left\{(\Lambda, Q) \mid Q \in M_\delta, \frac{1}{C_0} < \Lambda_i < C_0, \quad 1 \leq i \leq K\right\}$$

where C_0 is a large constant. We define also a closed subset of Σ

$$B = \left\{(\Lambda, Q) \mid Q \in U, \quad |\Lambda - \hat{\Lambda}_0| \leq \alpha\right\}$$

where U is a closed contractible neighbourhoud of a maximum point of F, and $\alpha > 0$ is a small fixed number. Lastly, we define B_0, closed subset of B, as

$$B_0 = \left\{(\Lambda, Q) \mid Q \in U, \quad |\Lambda - \hat{\Lambda}_0| = \alpha, \quad (\Lambda - \hat{\Lambda}_0) \cdot \hat{\Lambda}_0 = 0\right\}.$$

In view of the the behaviour of β at $\hat{\Lambda}_0$, α is chosen small enough so that for any $(\Lambda, Q) \in B_0$, $\beta(\Lambda) > \beta(\hat{\Lambda}_0)$. Finally, we set

$$\Gamma = \left\{\varphi \in C^0(B, \Sigma) \mid \varphi|_{B_0} = Id\right\}$$

and

$$c = \max_{\varphi \in \Gamma} \min_{(\Lambda, Q) \in B_0} K_\varepsilon(\varphi(\Lambda, Q)).$$

We show that c is a critical value of K_ε. To this end, standard deformation arguments ensure that it is sufficient to prove:

(H1) $\min_{(\Lambda, Q) \in B_0} K_\varepsilon(\Lambda, Q) > c$.

(H2) For all $(\Lambda, Q) \in \partial \Sigma$, such that $K_\varepsilon(\Lambda, Q) = c$, there exists $\tau(\Lambda, Q)$, a tangent vector to $\partial \Sigma$ at (Λ, Q), such that

$$\partial_{\tau(\Lambda, Q)} K_\varepsilon(\Lambda, Q) \neq 0.$$
Before proving (H1) and (H2), we need to estimate \(c \). We remark that for any \(\varphi \) in \(\Gamma \), there exists some \((\Lambda', Q') = \varphi(\Lambda, Q)\), \((\Lambda, Q) \in B\), such that \(\Lambda' \) is proportional to \((1, \ldots, 1)\). (This follows from the fact that \(\varphi \in C^0(B, \Sigma) \) and \(\varphi|_{\mathcal{E}_0} = Id \).) Then, according to (6.1) and (6.5)

\[
K_\varepsilon(\Lambda', Q') = \beta(\Lambda') + \varepsilon^{1/2} E_0 \Lambda'^3 F(Q') + o(\varepsilon^{1/2}).
\]

Maximizing the right hand side with respect to \(\Lambda' \) proportional to \((1, \ldots, 1)\) and \(Q' \) in \(M_\delta \), we see that for any \(\varphi \) in \(\Gamma \), there exists some \((\Lambda', Q')\) such that

\[
K_\varepsilon(\Lambda', Q') \leq \beta(\hat{\Lambda}_0) + \varepsilon^{1/2} E_0 \Lambda'_0 \hat{F} + o(\varepsilon^{1/2})
\]

whence also

\[
(6.7) \quad c \leq \beta(\hat{\Lambda}_0) + \varepsilon^{1/2} E_0 \Lambda'_0 \hat{F} + o(\varepsilon^{1/2}).
\]

On the other hand, we consider a special \(\varphi \) such that, denoting \((\Lambda', Q') = \varphi(\Lambda, Q)\) for \((\Lambda, Q) \in B\), \(\Lambda' \) is the orthogonal projection of \(\Lambda \) over the disk \(D = \{ \Lambda : |\Lambda - \hat{\Lambda}_0| \leq \alpha, (\Lambda - \hat{\Lambda}_0) \cdot \hat{\Lambda}_0 = 0 \} \). Moreover, we choose \(\varphi \) in such a way that, for \(|\Lambda - \hat{\Lambda}_0| \leq \alpha/2\), \(Q' \) is a maximum point of \(F \) (such a request is possible, since we assumed that \(\mathcal{U} \) is a closed contractible neighbourhood of a maximum point of \(F \)). In view of (6.1) and the behaviour of \(\beta \), we have for such a \(\varphi \) and \(\varepsilon \) small enough

\[
\min_{\Lambda, Q \in B} K_\varepsilon(\varphi(\Lambda, Q)) = \beta(\hat{\Lambda}_0) + \varepsilon^{1/2} E_0 \Lambda'_0 \hat{F} + o(\varepsilon^{1/2})
\]

whence the reverse inequality to (6.7), and the final estimate

\[
(6.8) \quad c = \beta(\hat{\Lambda}_0) + \varepsilon^{1/2} E_0 \Lambda'_0 \hat{F} + o(\varepsilon^{1/2}).
\]

Let us show now that (H1) and (H2) are satisfied. In view of (6.8), the inequality in (H1) follows directly from the expansion (6.1), the definition of \(B_0 \) and the properties of \(\beta \), provided that \(\varepsilon \) is small enough.

We are left with the proof of (H2). We note that \(K_\varepsilon(\Lambda, Q) = c \) implies, through (6.1), that

\[
(6.9) \quad \beta(\Lambda) = c + O(\varepsilon^{1/2}).
\]

As already stated, \(\beta(\Lambda) \to -\infty \) as soon as some \(\Lambda_i \) goes to infinity. Therefore, (6.9) implies that \(\Lambda_i \leq C_1, 1 \leq i \leq K \), for some constant \(C_1 \). On the other hand, let us suppose that \(\Lambda_i \) goes to zero for some indices, say \(1 \leq i \leq m \). If \(m = K \), \(\beta(\Lambda) \) goes to zero, a contradiction with (6.9). If \(m < K \), there exists some index \(j \geq m + 1 \) such that \(\partial \Lambda_j / \beta(\Lambda) \neq 0 \). Indeed, if not, in view of (6.3) we would obtain

\[
\Lambda_j = \frac{2D_0}{3B_0(K - m)} + o(1) \quad m + 1 \leq j \leq K
\]
whence
\[\beta(\Lambda) = \frac{4D_0^3}{27B_0^2(K-m)} + o(1) \]
and, again, comparing with (6.4), a contradiction with (6.9). Consequently, there exists an index \(j \geq m + 1 \) such that \(\partial_{\Lambda_j} \beta(\Lambda) \neq 0 \), implying through (6.2) \(\partial_{\Lambda_j} K_\epsilon(\Lambda, Q) \neq 0 \) for \(\epsilon \) small enough. Then, we see that choosing \(C_0 > C_1 \) large enough in the definition of \(\Sigma \), (H2) is satisfied when \((\Lambda, Q) \in \partial \Sigma, K_\epsilon(\Lambda, Q) = c \), is such that \(\Lambda_i = C_0 \) (impossible) or \(\Lambda_i = 1/C_0 \) (taking \(\tau(\Lambda, Q) = \partial_{\Lambda_j} \) for some appropriate index \(j \)).

It only remains to consider the case \(1/C_0 < \Lambda_j < C_0, 1 \leq j \leq K \), and \(Q \in \partial M_\delta \). If there exists some index \(j \) such that \(\partial_{\Lambda_j} K_\epsilon(\Lambda, Q) \neq 0 \), (H2) holds. If not, it follows from (6.2) and (6.3) that
\[\Lambda = \Delta_0 + O(\epsilon^{1/2}) \quad \text{and} \quad \beta(\Lambda) = \beta(\Delta_0) + O(\epsilon). \]
Thus, (6.1) yields
\[K_\epsilon(\Lambda, Q) = \beta(\Delta_0) + \epsilon^{1/2}E_0\Lambda_0^3F(Q) + o(\epsilon^{1/2}). \]
Then, the assumption \(K_\epsilon(\Lambda, Q) = c \), together with (6.8), imply that \(F(Q) = \hat{F} + o(1) \), a contradiction with Lemma 6.1, provided \(\delta \) is chosen small enough. This concludes the proof of (H2).

Proof of Lemma 6.1. We first note the existence of a positive constant \(C \) independent of \(Q \in \Omega \) such that
\[\int_\Omega \frac{1}{|x-Q|^3}dx \leq C. \]
So the integral term in \(F(Q) \) is uniformly bounded in \(\delta \).

Let \(Q \in \Omega \) be close to \(\partial \Omega \), and \(Q_0 \) be the nearest point of \(\partial \Omega \) to \(Q \). It is easily checked that
\[H(x, Q) = -\frac{1}{c_5|x-Q^*|^3} + O\left(\frac{1}{(d(Q, \partial\Omega))^2}\right) \quad \text{as} \quad d(Q, \partial\Omega) \to 0 \]
uniformly in \(\Omega \), where \(Q^* \) is the reflection of \(Q \) across the boundary, that is the symmetric point to \(Q \) with repsect to \(Q_0 \) (see Appendix B). In particular,
\[H(Q, Q) = -\frac{1}{8c_5(d(Q, \partial\Omega))^3} + O\left(\frac{1}{(d(Q, \partial\Omega))^2}\right). \]
On the other hand, we have
\[G(Q_i, Q_j) = \frac{1}{c_5|Q_i - Q_j|^3} - H(Q_i, Q_j). \]
Then, in view of (6.5), we see that
\[
\max_{Q \in \mathcal{M}_\delta} F(Q) \leq -\frac{C}{\delta^3} \quad \text{as} \quad \delta \to 0
\]
where \(C\) is some strictly positive constant. \(\square\)

Proof of Theorem 1.1 completed. We proved that for \(\epsilon\) small enough, \(I_\epsilon\) has a critical point \((\Lambda_\epsilon, Q_\epsilon)\).

Let \(u_\epsilon = W_{\Lambda_\epsilon, Q_\epsilon} + \phi_{\Lambda_\epsilon, Q_\epsilon}\). \(u_\epsilon\) is a nontrivial solution to problem (1.12).

Then, the strong maximum principle shows that \(u_\epsilon > 0\) in \(\Omega_\epsilon\). Let \(u_\mu = \epsilon^{-\frac{3}{2}} u_\epsilon (\frac{x}{\epsilon})\). By our construction, \(u_\mu\) satisfies all the properties of Theorem 1.1. \(\square\)

7. Appendix A: Proof of Lemma 2.1

From the definition (2.8) of \(W\), (2.10) and (2.5), we know that
\[
S_\epsilon[W] = -\Delta W + \epsilon^{3/2} W - 15W_+^{7/3}
\]
\[
= 15 \sum_{j=1}^K U_j^{7/3} + \epsilon^5 \sum_{j=1}^K \hat{U}_j - 15 \left(\sum_{j=1}^K (U_j + \epsilon^{5/2} \hat{U}_j) + \eta \epsilon^{5/2} \right)^{7/3} + O(\epsilon^8)
\]
\[
= \epsilon^5 \sum_{j=1}^K \hat{U}_j + O\left[\sum_{i \neq j} (U_j^{4/3} (U_i + \epsilon^{5/2}) + \epsilon^{10/3} \sum_{j=1}^K U_j + \epsilon^{35/6}) \right].
\]

According to the definition of \(U_j = U_{\Lambda_j, q_j}\) and the fact that in \(\mathcal{M}_\delta\) the points \(Q_j\) remain far from each other, we have

\[(7.1) \quad U_j = O(\langle z - \bar{Q} \rangle^{-3}) \quad U_i^{4/3} U_i = O(\epsilon^3 < z - \bar{Q} >^{-4}) \quad \text{for} \ i \neq j.\]

From (2.3), (2.2) and (2.5), we have also

\[(7.2) \quad \hat{U}_j = O(\langle z - \bar{Q} \rangle^{-1/2}).\]

Combining these informations, estimate (2.14) follows. Estimates for \(D_\Lambda S_\epsilon[W]\) and \(D_{\bar{Q}} S_\epsilon[W]\) are obtained exactly in the same way.

We turn now to the proof of the energy estimate (2.15). From (2.10) and (2.11) we deduce that

\[(7.3) \quad \int_{\Omega_\epsilon} |\nabla W|^2 + \epsilon^{5/2} \int_{\Omega_\epsilon} W^2 = 15 \sum_{j=1}^K \int_{\Omega_\epsilon} U_j^{7/3} W + \epsilon^5 \sum_{j=1}^K \int_{\Omega_\epsilon} \hat{U}_j W + o(\epsilon^3).\]
The definition (2.8) of W and (7.2) yield $|W - \eta e^{5/2}| = O(< z - \tilde{Q} >^{-3})$, whence, in view of (7.2) and (2.2)

$$
\varepsilon^5 \sum_{j=1}^{K} \int_{\Omega_{\varepsilon}} \hat{U}_j W = \eta \varepsilon^5 \int_{\Omega_{\varepsilon}} \sum_{j=1}^{K} (-\Psi_j - c_3 \varepsilon^2 \lambda_j^{3/2} \hat{H}(\varepsilon z, Q_j)) + o(\varepsilon^3)
$$

$$
= -c_3 \eta \varepsilon^3 \sum_{j=1}^{K} \lambda_j^{3/2} \int_{\Omega} H(x, Q_j) dx + o(\varepsilon^3)
$$

$$
= -\eta \varepsilon^3 \sum_{j=1}^{K} \lambda_j^{3/2} \int_{\Omega} \frac{1}{|x - Q_j|^3} dx + o(\varepsilon^3).
$$

Concerning the first terms in the right hand side of (7.3), we remark that in view of the definitions of U_i, \hat{U}_i and (2.2), for $i \neq j$ we have on $B_j = B(\tilde{Q}_j, \frac{\delta}{2})$

$$(U_i + \varepsilon^{5/2} \hat{U}_i) (z) = \frac{\varepsilon^3 \lambda_i^{3/2}}{|Q_j - Q_i|^3} - c_3 \varepsilon^3 \lambda_i^{3/2} \hat{H}(Q_j, Q_i) + O(\varepsilon^4 |z - \tilde{Q}_j| + \varepsilon^{7/2}).$$

As $U_i + \varepsilon^{5/2} \hat{U}_i = O(< z - \tilde{Q} >^{-3} + \varepsilon^{5/2})$ and, outside of B_j, $U_j^{7/3} = O(\varepsilon^7)$, we obtain for $i \neq j$

$$15 \int_{\Omega_{\varepsilon}} U_j^{7/3} (U_i + \varepsilon^{5/2} \hat{U}_i) = c_5 \varepsilon^3 \lambda_i^2 \lambda_j^{3/2} G(Q_i, Q_j) + o(\varepsilon^3)$$

noticing that

$$15 \int_{\Omega_{\varepsilon}} U_j^{7/3} = c_5 \lambda_j^{3/2}.$$

In the same way we find, for $i = j$

$$15 \int_{\Omega_{\varepsilon}} U_j^{7/3} (U_j + \varepsilon^{5/2} \hat{U}_j) = 15 \int_{\mathbb{R}^5} U_j^{10/3} - 15 \varepsilon^{5/2} \int_{\Omega_{\varepsilon}} U_j^{7/3} \Psi_j
$$

$$- c_5^2 \varepsilon^3 \lambda_j^2 \hat{H}(Q_j, Q_j) + o(\varepsilon^3).$$

Thus we obtain

$$\int_{\Omega_{\varepsilon}} |\nabla W|^2 + \varepsilon^{5/2} \int_{\Omega_{\varepsilon}} W^2 = 15 K \int_{\mathbb{R}^5} U_j^{10/3} - 15 \varepsilon^{5/2} \sum_{j=1}^{K} \int_{\mathbb{R}^5} U_j^{7/3} \Psi_j$$

$$- c_5^2 \varepsilon^3 \left[\sum_{j=1}^{K} \lambda_j^2 \hat{H}(Q_j, Q_j) - \sum_{i \neq j} \lambda_i^{3/2} \lambda_j^{3/2} G(Q_i, Q_j) \right]$$

$$+ \eta \varepsilon^{5/2} c_5 \sum_{j=1}^{K} \lambda_j^{3/2} - \eta \varepsilon^3 \sum_{j=1}^{K} \lambda_j^{3/2} \int_{\Omega} \frac{1}{|x - Q_j|^3} dx + o(\varepsilon^3).$$

(7.5)
It only remains to estimate

\[
\int_{\Omega_\varepsilon} W^{10/3}_+ = \int_{\Omega_\varepsilon} \left(\sum_{j=1}^K (U_j + \varepsilon^{5/2} \hat{U}_j) + \eta \varepsilon^{5/2} \right)^{10/3}
\]

\[
= \int_{\Omega_\varepsilon} \left(\sum_{j=1}^K U_j \right)^{10/3} + \frac{10}{3} \varepsilon^{5/2} \int_{\Omega_\varepsilon} \left(\sum_{j=1}^K U_j \right)^{7/3} \left(\sum_{j=1}^K \hat{U}_j \right) + \frac{10}{3} \eta \varepsilon^{5/2} \int_{\Omega_\varepsilon} \left(\sum_{j=1}^K U_j \right)^{7/3}
\]

\[
+ O \left(\int_{\Omega_\varepsilon} \left(\varepsilon^{5} \sum_{j=1}^K U_j^{4/3} + \varepsilon^{25/3} \right) \right)
\]

\[
= \sum_{j=1}^K \int_{\Omega_\varepsilon} U_j^{10/3} + \frac{10}{3} \sum_{i \neq j} \int_{\Omega_\varepsilon} U_j^{7/3} (U_i + \hat{U}_i) + \frac{10}{3} \varepsilon^{5/2} \sum_{j=1}^K \int_{\Omega_\varepsilon} U_j^{7/3} \hat{U}_j
\]

\[
+ \frac{10}{3} \eta \varepsilon^{5/2} \sum_{j=1}^K \int_{\Omega_\varepsilon} U_j^{7/3} + o(\varepsilon^3)
\]

since, as a consequence of the definition of the \(U_j\)’s and the fact that the \(Q_j\)’s remain far from each other in \(\mathcal{M}_\delta\) (see for instance (7.1))

\[
\varepsilon^5 \int_{\Omega_\varepsilon} U_j^{4/3} = O(\varepsilon^4) \quad \text{and, for} \quad i \neq j, \quad \int_{\Omega_\varepsilon} U_j^{4/3} U_i = O(\varepsilon^2), \quad \int_{\Omega_\varepsilon} U_j^{4/3} U_i^2 = O(\varepsilon^4).
\]

Therefore, the same computations as above yield

\[
\int_{\Omega_\varepsilon} W^{10/3}_+ = K \int_{\mathbb{R}^5} U_{1,0}^{10/3} - \frac{10}{3} \varepsilon^{5/2} \sum_{j=1}^K \int_{\mathbb{R}^5} U_j^{7/3} \Psi_j + \frac{2}{9} \eta \varepsilon^{5/2} c_5 \sum_{j=1}^K \lambda_j^{3/2}
\]

\[
- \frac{2}{9} c_5^2 \varepsilon^3 \left[\sum_{j=1}^K \lambda_j^3 H(Q_j, Q_j) - \sum_{i \neq j} \lambda_i^{3/2} \lambda_j^{3/2} G(Q_i, Q_j) \right] + o(\varepsilon^3).
\]
Combining this expansion with (7.5), we obtain
\[J_\varepsilon[W] = \frac{1}{2} \int_{\Omega_\varepsilon} |\nabla W|^2 + \frac{\varepsilon^{5/2}}{2} \int_{\Omega_\varepsilon} W^2 - \frac{9}{2} \int_{\Omega_\varepsilon} W^{10/3} \]
\[= 3K \int_{\mathbb{R}^5} U_{1,0}^{10/3} + \frac{15}{2} \varepsilon^{5/2} \sum_{j=1}^{K} U_j^{7/3} \Psi_j - \frac{1}{2} \eta \varepsilon^{5/2} c_5 \sum_{j=1}^{K} \Lambda_j^{3/2} \]
\[+ \frac{1}{2} c_5^2 \varepsilon^{3} \left[\sum_{j=1}^{K} \Lambda_j^3 H(Q_j, Q_j) - \sum_{i \neq j} \Lambda_i^{3/2} \Lambda_j^{3/2} G(Q_i, Q_j) \right] \]
\[- \frac{c_5}{2|\Omega|} \varepsilon^{3} \left(\sum_{j=1}^{K} \Lambda_j^3 \right)^2 \sum_{j=1}^{K} \Lambda_j^{3/2} \int_\Omega \frac{1}{|x - Q_j|^3} dx + o(\varepsilon^3). \]

Lastly, we notice that in view of (2.1)
\[15 \int_{\mathbb{R}^5} U_j^{7/3} \Psi_j = \int_{\mathbb{R}^5} U_j^2 = (\int_{\mathbb{R}^5} U_{1,0}^2) \Lambda_j^2 = \frac{c_5 \pi}{16} \Lambda_j^2 \]
whence, according to the definition (2.9) of \(\eta \)
\[15 \sum_{j=1}^{K} \int_{\mathbb{R}^5} U_j^{7/3} \Psi_j - \eta c_5 \sum_{j=1}^{K} \Lambda_j^{3/2} = \frac{c_5 \pi}{16} \sum_{j=1}^{K} \Lambda_j^2 - \frac{c_5^2}{|\Omega|} \left(\sum_{j=1}^{K} \Lambda_j^3 \right)^2. \]

Finally we obtain
\[J_\varepsilon[W] = A_0 - \varepsilon^{5/2} D_0 (\sum_{j=1}^{K} \Lambda_j^3)^2 + \varepsilon^{5/2} B_0 \sum_{j=1}^{K} \Lambda_j^2 + \varepsilon^3 E_0 \left[\sum_{j=1}^{K} \Lambda_j^3 H(Q_j, Q_j) \right. \]
\[- \sum_{i \neq j} \Lambda_i^{3/2} \Lambda_j^{3/2} G(Q_i, Q_j) - F_0 (\sum_{j=1}^{K} \Lambda_j^{3/2}) \sum_{j=1}^{K} \Lambda_j^{3/2} \int_\Omega \frac{1}{|x - Q_j|^3} dx \left] + o(\varepsilon^3) \right. \]
where \(A_0, B_0, D_0, E_0, F_0 > 0 \) are all generic constants which can be traced back from the computations, namely:
\[A_0 = \frac{3\pi c_5}{256} \quad B_0 = \frac{\pi c_5}{32} \quad D_0 = \frac{c_5^2}{2|\Omega|} \quad E_0 = \frac{c_5^2}{2} \quad F_0 = \frac{1}{c_5|\Omega|}. \]

To prove estimate (2.16), we observe that:
\[D_\Lambda J_\varepsilon[W] = \int_{\Omega} S_\varepsilon[W] \partial_\Lambda W = \int_{\Omega} S_\varepsilon[W] \partial_\Lambda (U_j + \varepsilon^{5/2} \hat{U}_j + \eta \varepsilon^{5/2}) + O(\varepsilon^3). \]
Then, the rest of the proof is similar to the previous one. (Note that we just need, here, an error in \(O(\varepsilon^3) \).)
8. Appendix B: Proof of Lemma 3.1

To prove (3.6), we show that there exists a constant C, independent of x and y, such that

$$|G(x, y)| \leq \frac{C}{|x - y|^3}.$$

We recall the decomposition of G:

$$G(x, y) = K(|x - y|) - H(x, y)$$

where $K(|x - y|)$ is the singular part of G and $H(x, y)$ is the regular part. As $|K(|x - y|)| = \frac{1}{c_5|x-y|^3}$, it remains to show that

$$|H(x, y)| \leq \frac{C}{|x - y|^3}. \tag{8.1}$$

Note that if for some fixed $d_0 > 0$, $d(x, \partial \Omega) > d_0$ or $d(y, \partial \Omega) > d_0$, then $|H(x, y)| \leq C$ and (8.1) holds. So we just need to estimate $H(x, y)$ for $d(x, \partial \Omega)$ and $d(y, \partial \Omega)$ small. For $y \in \Omega$ such that $d = d(y, \partial \Omega)$ is sufficiently small, there exists a unique point $\bar{y} \in \partial \Omega$ such that $d = |y - \bar{y}|$. Let y^* be the reflection point of y through the boundary, i.e. $y^* - y = 2(\bar{y} - y)$, and consider the following auxiliary function

$$H^*(x, y) = K(|x - y^*|)$$

H^* satisfies $\Delta H^* = 0$ in Ω and, on $\partial \Omega$

$$\frac{\partial}{\partial \nu}(H^*(x, y)) = - \frac{\partial}{\partial \nu}(K(|x - y|)) + O\left(\frac{1}{d^2}\right).$$

Since both $K(|x - y|)$ and $K(|x - y^*|)$ are uniformly bounded, we derive that

$$H(x, y) = -H^*(x, y) + O\left(\frac{1}{d^2}\right)$$

which proves (8.1) for $x, y \in \Omega$. This implies, for $x \in \Omega$

$$|u(x)| \leq C \int_{\Omega} \frac{|f(y)|}{|x - y|^3} dy. \tag{8.2}$$

If $x \in \partial \Omega$, we consider a sequence of points $x_i \in \Omega, x_i \to x \in \partial \Omega$ and take the limit in (8.2). Lebesgue’s Dominated Convergence Theorem applies and (3.6) is proved. \qed
References

O. Rey, J. Wei, *Blow-up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity; II: N ≥ 4*, submitted.

[47] X. Wang, J. Wei, On the equation $\Delta u + K(x)u^{\frac{n+2}{n-k+2}} = 0$ in \mathbb{R}^n, Rend. Circolo Matematico di Palermo II (1995), 365-400.

Centre de Mathématiques de l’Ecole Polytechnique, 91128 Palaiseau Cedex, France

E-mail address: rey@math.polytechnique.fr

Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong

E-mail address: wei@math.cuhk.edu.hk