
HAL Id: hal-00935308
https://hal.science/hal-00935308

Submitted on 23 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Constraint Solver for PHP Arrays
Ivan Enderlin, Alain Giorgetti, Fabrice Bouquet

To cite this version:
Ivan Enderlin, Alain Giorgetti, Fabrice Bouquet. A Constraint Solver for PHP Arrays. ICST Work-
shops, Jan 2013, Luxembourg. pp.218 - 223. �hal-00935308�

https://hal.science/hal-00935308
https://hal.archives-ouvertes.fr


A Constraint Solver for PHP Arrays

Ivan Enderlin, Alain Giorgetti and Fabrice Bouquet

Institut FEMTO-ST (UMR 6174) - University of Franche-Comté - INRIA CASSIS Project

16 route de Gray - 25030 Besançon cedex, France

Email: {ivan.enderlin,alain.giorgetti,fabrice.bouquet}@femto-st.fr

Abstract—In previous works, we have proposed Praspel, a
framework for contract-based testing in PHP. Among others, it
includes a specification language and a unit test generator which
automatically generates test data from formal preconditions. The
generator sometimes rejects data, when they do not satisfy parts
of the preconditions. In many cases, generation with rejection
is not efficient enough. Thus we investigate practical contexts
where more efficient generation algorithms can be designed and
we extend Praspel with their implementation.

After strings, that we have already considered, the most
frequent data type in PHP is arrays. They cover most of the
needs for collections, because they can store key-value pairs of
any kind, they do not have a specific length or depth, and they
are efficiently implemented. In this paper, we report on a study to
know what are the most popular constraints on PHP arrays. Then
we formalize these constraints and we present an implementation
in PHP of a constraint solver for these constraints. In this context,
the constraint-based approach removes all the rejections.

Keywords-array, constraint, solver, php, realistic domain,
praspel

I. INTRODUCTION

Contract-based testing [1] is a promising approach to in-

crease software safety and security. It is based on the notion

of Design by Contract, introduced by Meyer [2] with the Eiffel

language [3]. A contract is a formal specification associated

to the code of a program. It mainly consists of invariants, pre-

and postconditions. Invariants describe properties that should

hold at each step of the execution. Pre- and postconditions

respectively represent conditions that have to hold for a

method to be invoked, and conditions that have to hold after

execution of the method.

Various contract languages extend programming languages

with contracts: JML extends Java [4], ACSL extends C [5],

Spec# extends C# [6], etc. Among the numerous advantages

of contracts, formal properties can be exploited for (unit)

testing. Indeed, the information contained in invariants and

preconditions can be used to generate test data. In addition,

these assertions can be checked at run time and thus provide

a (partial) test oracle for free.

In previous works, we have introduced Praspel [7], a tool-

supported specification language for contract-based testing in

PHP [8]. Praspel extends contracts with the notion of realistic

domain, which makes it possible to assign a domain of values

to data (class attributes or method parameters). A library of

predefined realistic domains is already available along with a

test environment [9].

Validating PHP web applications often involves to ma-

nipulate strings and arrays. Strings have been already ad-

dressed [10] by introducing grammar-based testing in Praspel.

This paper focus on PHP arrays, which are always associative

arrays. They cover most of the needs for collections, because

they can store key-value pairs of any kind (they can be

homogeneous and heterogeneous), they do not have a specific

length or depth, and they are efficiently implemented. When

generating arrays for testing, the main difficulty is to satisfy

their properties, which are formalized by predicates in their

specification. We address this issue in the context of PHP and

Praspel, by designing a specific constraint solver.

Our contributions are twofold. First, after studying the

most popular conditions on PHP arrays, we propose a syntax

to specify them in Praspel and a semantics of these array

specifications. Second, we propose a new constraint solver in

PHP for PHP, to generate arrays satisfying these conditions.

These two contributions are embedded in realistic domains and

can be used in Praspel annotations of a PHP program.

The paper is organized as follows. Section II briefly intro-

duces the notion of realistic domain and its implementation

in Praspel for PHP. Section III presents a language of array

conditions in Praspel, inspired by a study to know what are

the most popular conditions expressed on arrays in popular

PHP code. Section IV presents the constraint solver. Then,

Section V reports on an experimentation validating our ap-

proach and tool, and showing its usefulness and efficiency in

practice. Related works are presented in Section VI. Finally,

Section VII concludes and presents future works.

II. REALISTIC DOMAINS AND PRASPEL

This section is a reminder of [7]. It shortly presents the

notion of realistic domain and its application to PHP programs.

Realistic domains are designed for test generation purposes.

They specify which values can be assigned to a data in a given

program. They are well-suited to PHP, since this language is

dynamically typed (i.e. no types are syntactically assigned to

data) and realistic domains thus introduce a specification of

data types mandatory for test data generation. We first intro-

duce general features of realistic domains. Then we present

their implementation in PHP and the Praspel framework.

A. Features of Realistic Domains

Realistic domains refine usual datatypes (integer, string,

array, etc.). They are intended to specify data domains relevant

for specific application contexts. For example, email addresses

constitute a realistic domain: many applications identify a user

by her email address, so we need to validate and generate such



data, and an email address is more than a string: it obeys to

a specific syntax that makes it not obvious to generate.

The first feature of a realistic domain (named its predi-

cability) is to carry a characteristic predicate of its values,

used to check if a value belongs to the possible set of values

described by the realistic domain. The second feature of a

realistic domain (named its samplability) is to propose a

value generator, called the sampler, that generates values in

the realistic domain. For instance, a sampler for the realistic

domain of email addresses can generate strings representing

syntactically correct email addresses defined by a regular

expression.

B. Realistic Domains in PHP

In PHP, we have implemented realistic domains as classes

providing at least two methods, corresponding to the two

features of realistic domains. The first method is named

predicate($q) and takes as input a value $q: it returns

a boolean indicating the membership of the value to the

realistic domain. The second method is named sample()

and generates values that belong to the realistic domain.

Our implementation of realistic domains in PHP exploits

the PHP object programming paradigm and takes benefit from

the following three principles:

1) Inheritance: PHP realistic domains can inherit from

each other. A realistic domain child inherits the two features of

its parent, namely predicability and samplability, and is able

to redefine them. Consequently, we say that all the realistic

domains constitute a hierarchical universe.

2) Interfaces: All data are represented by realistic domains.

Some of them implement interfaces which characterize them.

Useful interfaces for our current concerns are:

• Constant: represents an immutable realistic domain

with only one value, such as 42, true, etc.

• Interval: represents an interval by its lower and upper

bounds, that can be dynamically reduced,

• Nonconvex: allows to discredit values, i.e. to specify

that a value no longer belongs to a realistic domain and

should therefore not be generated,

• Finite: allows to count the number of values,

• Enumerable: allows to iterate over all the values.

Thus, a realistic domain that implements the Interval and

Nonconvex interfaces is an interval with “holes”. Counting

and exhaustive generation of a finite realistic domain take

discredited values into account.

3) Parameterization: Realistic domains may have param-

eters, like a function does. Data given to a realistic domain

are called arguments. This feature helps generating structured

data such as arrays, objects, graphs, automata, etc.

Example 1 (Realistic domains with arguments). The realis-

tic domain string(0x61, 0x7a, boundinteger(4,

12)) admits as arguments two integers (that represent two

Unicode code-points) and a domain of integers to specify its

possible length. The realistic domain boundinteger(X,

Y ) contains all the integers between X and Y . We can also

write X..Y as syntactic sugar for this domain. The realistic

domain string(X, Y , L) is intended to contain all the

strings of length (in the domain) L built of characters from X

to Y code-points.

When describing parameters, because all data are realistic

domains, we can multi-type hint the parameters, i.e. filter with

multiple realistic domain names. For instance, the first two

parameters of the realistic domain string() are described

as Constinteger | Conststring, so can be a constant

integer or a constant string. Then, the syntax string(’a’,

’z’, 4..12) is strictly equivalent to the previous one. If

we write string(true, ’z’, 4..12), an error will be

thrown. The realistic domain itself handles the cast.

C. Praspel and Contract-Based Testing in PHP

Praspel means PHP Realistic Annotation and SPEcification

Language. It is a language and a framework for contract-based

testing in PHP, based on realistic domains.

Praspel annotations are written inside comments in the

source code. Invariants document classes and pre- and post-

conditions document methods. The general form of Praspel

annotations is shown in Figure 1. For lack of space, named

behaviors and specification of exceptions are not presented. In

this specification, I1, . . . , Ih are invariant clauses, assumed

to be satisfied at the beginning and at the end of each

method invocation. Formulas R1, . . . , Rn and A1, . . . , Ak

are precondition clauses, that have to hold at the invocation of

the foo method. Formulas E1, . . . , Em are postconditions that

have to be established when method foo terminates without

throwing an exception. In postconditions, Praspel provides the

two additional constructs \result and \old(e), which

respectively designate the value returned by the method, and

the value of expression e at the pre-state of the method

invocation.

PHP does not provide a type system, but Praspel contracts

make it possible to give typing informations, assigning realistic

domains to data (class attributes or method parameters). The

construction i: t1(. . .) or . . . or tn(. . .) associates at

least one realistic domain, among t1(. . . ), . . . , tn(. . . ), to

the identifier i. Every identifier holds a realistic domain

disjunction, thanks to the or keyword. Identifiers can also

be passed into arguments of realistic domains.

Example 2 (Identifiers in Praspel). The declarations:

length: 4..12

str : string(’a’, ’z’, length)

show a dependency between two identifiers: The third argu-

ment of the realistic domain of the second identifier str is

the first identifier length.

Praspel provides a set of more than 30 predefined realistic

domains, called the standard library. Some of them correspond

to scalar types (integer, float, boolean. . . ), other ones

to classes and arrays (detailed in Section III).

Contractual assertions are made of realistic domain declara-

tions, possibly completed with additional predicates, expressed



in PHP using the \pred construct.

class C {
/** @invariant I1 and . . . and Ih */

/** @requires R1 and . . . and Rn;

* @ensures E1 and . . . and Ej; */

function foo ( $x1. . . ) { body } }

Figure 1. Syntax of contracts in Praspel

Test generation in Praspel is decomposed into two steps.

First, a test generator computes test data from contracts.

Second, a dedicated test execution framework runs the test

cases (i.e. invokes the methods with the computed test data,

and checks the assertions at run time) so as to establish the

test verdict.

III. ARRAYS IN PRASPEL

In PHP, an array is always an associative array (or map,

or dictionary), i.e. a collection of key-value pairs, where each

key appears at most once. Keys can be null, booleans (casted

into integers), integers, floats (reduced to their integer parts)

or strings. Values can be of many kinds. An array can be

homogeneous or heterogeneous. In an homogeneous array

all the keys have the same type, and all the values too. In

an heterogeneous array keys may have distinct types, and/or

values may have distinct types. Keys can be auto-incremented,

by adding 1 to the last integer index starting by 0. The length

(or size) of an array is its number of elements. An array

has no predefined length, but its length (stored internally by

the PHP engine) can be retrieved thanks to the PHP function

count(). An array has also no predefined depth, i.e. it can

contain arbitrary arrays.

A. Array Description

In Praspel, array(D,L) denotes the realistic domain of

arrays whose domains and codomains are described by D and

whose length is in the disjunction L of realistic domains of

non-negative integers. D is a comma-separated list, between

[ and ], of array descriptions of the form from K to V ,

where K and V are realistic domain disjunctions, respectively

for keys and values. When the from keyword is missing, it

is transformed into a realistic domain representing an auto-

incremented integer starting at 0 with a step of 1.

Example 3 (Homogeneous and heterogeneous arrays). This

syntax is illustrated by the following array declarations:

a1: array([to boolean()], 7..42)

a2: array([from 0..5 or 10 to integer()], 7)

a3: array([from 0..10 to boolean(),

from 20..30 to float()], 7)

a4: array([from 0..10 or 20..30

to boolean() or float()], 7)

The identifier a1 is declared as a homogeneous array of

booleans with a length between 7 and 42. This length is a

realistic domain that implements the Interval interface.

The identifier a2 is declared as a homogeneous array of length

7, whose keys are integers between 0 and 5 or simply 10, and

whose values are integers. Its length is a realistic domain that

implements the Constant interface, the domain for its keys is

the disjunction of two realistic domains (0..5 and 10..23)

which implement the Interval interface, etc. The identifiers

a3 and a4 are declared as heterogeneous arrays. Both arrays

can contain the pairs (5,true) and (15,4.2), but a4 can

contain the pair (5,4.2), whereas a3 can not contain it.

Actually, we introduce a normal form that removes disjunc-

tions in array descriptions (in from . . .to . . . constructs). An

array description is in normal form when it can not be reduced

by the rewriting rule (from F1 or F2 to T1 or T2 → from

F1 to T1, from F1 to T2, from F2 to T1, from F2 to

T2).

Example 4 (Array description in normal form). The following

declaration of a4 is in normal form:

a4: array([from 0..10 to boolean(),

from 0..10 to float(),

from 20..30 to boolean(),

from 20..30 to float()], 7)

B. Collecting Information

When generating test data, the Praspel testing tool calls the

sample() method on a realistic domain and then checks

whether the predicates declared with \pred() hold. For an

array with conditions, a random generator may produce a lot

of rejected data before getting a valid one. The idea is to

determine the most popular conditions on arrays expressed in

PHP (usually written in the \pred() construct), to allow

them inside Praspel, and to use a solver to satisfy these

conditions.

To achieve this, we have selected 61 PHP projects, from

Github and SourceForge, for their popularity, impact on the

industry and complexity. All these projects represent 28 066

files and 5 220 547 lines of code. In this code we count the

number of occurrences of each array function available in

the PHP standard library. It appeared that the three most

used functions are: count(), array_key_exists() and

in_array(). The count() function counts the number

of values in an array, the array_key_exists() function

checks whether a key is present in an array (independently of

its associated value, e.g. it returns true even if the value is

null), and finally, the in_array() function checks whether

a value is present in an array. All these functions work on one

array at a time. This study suggests that we could consider

these side-effect-free Boolean functions as the most frequent

conditions on arrays.

C. Array Conditions

We extend the syntax of the array declaration a :

array(D,L) in Praspel with the following conditions on

arrays.

A pair condition is of the form a[K]: V where K

and V are realistic domain disjunctions. The condition means

that the pairs constituted of all the keys in K and at least

one value in V are present in the array a. K only accepts

realistic domains that implements the Constant, Interval

and Enumerable interfaces. This is equivalent to use the



array_key_exists() and in_array() functions com-

bined.

If we would like to express a constraint only on K, we

can use the symbol _. The condition a[K]: _ means

that all the keys from K must be present in the array a. It

is equivalent to use only the array_key_exists function

with all values in K in conjunction.

The condition a[_]: V means that all the values in

V must be present in the array a. It is equivalent to use the

in_array function with all the values in V in conjunction.

Instead of the : symbol, we can use the symbol !: to

express a negation. The condition a[K]!: V means that

all the keys in K have a value in the array a and that this

value is not in V . It works similarly with the symbol _. For

example, the condition a[K]!: _ means that no key in K

appears in a.

Keys of an array are always unique, but not its values.

We can express a unicity condition on values by writing the

condition a is unique. In this case, we cannot have the

same value twice in the array a.

Example 5 (Array Conditions). To illustrate all kinds of

conditions, we will use the following example that uses a:

length: 0..5 or 10

a : array([to string(’a’, ’e’, 1)], length)

a[0]: ’b’ or ’d’

a is unique

IV. CONSTRAINT SOLVER

Given a conjunction of array conditions on an array a, we

propose to invoke a constraint solver to construct an array

satisfying all these conditions. This section explains how array

conditions are transformed into constraints for the solver. One

of these conditions is assumed to be an array declaration of

the form a: array(D,L), where D is assumed to be in

normal form, without loss of generality. In other words, D

is a list of p constructs from Fi to Ti with 1 ≤ i ≤ p.

We also assume that L is L1 or . . . or Lm (with m ≥ 1),

where L1, . . . , Lm are realistic domains that inherit from the

Integer realistic domain and that are non-negatives.

In Example 5, p = 1, m = 2, L1 = [0..5] and L2 = {10}.

In the array description, no domain is declared. In this case the

default realistic domain integerpp(0,1) is used (an auto-

incremented integer: 0, 1, 2, 3, etc). In this example F1 =
integerpp(0,1) and T1 = string(’a’,’e’,1).

Without risk of confusion, a domain disjunction D1 or . . .

or Dn will often be identified with the set D1 ∪ · · · ∪Dn.

A. Variables

The constraint variables are: (i) the array size –noted S–

which is a non-negative integer, (ii) the sets X and Y , which

respectively are the array domain (set of keys) and codomain

(set of values), (iii) the array content noted H , which is a

total function from X to Y , since keys are unique in a PHP

array, (iv) the realistic domains1 X1, . . . , Xp (resp. Y1, . . . ,

1In fact, the solver will not handle realistic domains, but only sets.

Yp), which are subsets of the realistic domains F1, . . . , Fp

(resp. T1, . . . , Tp) compatible with all the array conditions.

We are essentially interested in finding the content of X and

the values of the function H , i.e. the content of H considered

as a hashtable, possibly also the values of the Xis and Yis for

checking purposes. The other variables are introduced only to

simplify the expression of constraints.

When x ∈ X holds, H(x) = y means that the key-value

pair (x, y) is in the array. We extend H to subsets of X by

the function Ĥ defined by Ĥ(E) = {H(x) s.t. x ∈ E} for

any subset E of X .

B. Cardinality Constraints

Let card(E) denote the cardinality of the finite set E. The

constraints card(X) = S and S ≥ 0 say that the array size is

its number of keys and is non-negative.

By default, there is no unicity constraint on the codomain,

so we only have the constraint card(Y ) ≤ card(X) How-

ever, in presence of the array condition a is unique, this

constraint becomes card(Y ) = card(X).

C. Constraints on the Array Size

When propagating constraints, the solver may refine the

domains L1, . . . , Lm of possible values for the array size

S for i in {1, . . . ,m}, and the array size S should be in one

of these sets, i.e. the constraint to define domain of S is:

S ∈ L1 ∪ · · · ∪ Lm

In Example 5, we have L1 ⊆ [0..5] and L2 ⊆ {10}. The

size S is constrained by S ∈ L1 ∪ L2.

D. Constraints on Domains and Codomains

The domain X and codomain Y of H are related by the

constraint Y = Ĥ(X).

We expect that the constraint solver proposes us the ar-

ray domain X (resp. codomain Y ) as a disjunction X1 or

. . . or Xp (resp. Y1 or . . . or Yp) of realistic domains

compatible with all the array conditions. We should have

the equalities X =
⋃

1≤i≤p

Xi and Y =
⋃

1≤i≤p

Yi, and the

inclusions: Xi ⊆ Fi and Yi ⊆ Ti for i in {1, . . . , p}. The

pair (Xi, Yi) with 1 ≤ i ≤ p should also satisfy the constraint

Ĥ(Xi) = Yi meaning that Yi is the codomain of the restriction

of H to Xi (⊆ X).

E. Constraints on Pairs

For each array condition a[K]: V where K and V are

domain disjunctions, we introduce the constraints: K ⊆ X

and Ĥ(K) ⊆ V . A negated pair condition a[K]!: V is

translated into the constraints: K ⊆ X and Ĥ(K) ∩ V = ∅.

For the condition a[0]: ’b’ or ’d’ in Example 5, we

have K = {0} and V = {’b’,’d’}. The constraints are

{0} ⊆ X and Ĥ({0}) ⊆ {’b’,’d’}.



F. Constraints on Keys or Values

The condition a[K]: _ is translated into the constraint

K ⊆ X , and its negation a[K]!: _ into the constraint

K ∩ X = ∅. The condition a[_]: V is translated into

the constraint V ⊆ Y , and its negation a[_]!: V into the

constraint V ∩ Y = ∅.

G. Propagation and consistency

Propagation of constraints uses an AC3 algorithm [11]

implemented in PHP. So, we use five kinds of domains

associated to five kinds of realistic domains: Constant,

Interval, Nonconvex, Finite and Enumerable (see

Section II-B2). For each kind of domain, we have implemented

a revise method to allow the domain reduction. So, the

consistency is also checking that there is no empty domain

for the four variables S, H , X and Y but not for Xi and Yi.

The goal is to detect inconsistencies as soon as possible.

H. Labelling

The labelling is the process of finding a value for each

variable. In order to make the solver converge quickly to a

solution, we use a heuristic that consists in chosing a value

for the variable S at first. This helps to unfold the ∀ and ∃
quantifiers (because Fi and Ti are enumerables, we manipulate

finite sets). Then, the solver tries to compute the sets Xi

and Yi. We use a random generator to generate a value in a

realistic domain, to select a realistic domain in a disjunction,

etc. The generated value is then propagated. If an inconsistency

is detected, we add a new constraint to discredit the value,

and then generate another one. For instance, if S = 5 leads

to an inconsistency, we add the constraint S 6= 5. The added

constraint is removed during the backtracking step.

When all variables are labelled, i.e. each one has a valid

value, the solver returns the solution.

V. EXPERIMENTATION

In all that follows, the word system stands for the expres-

sion “conjunction of array conditions”. This section presents

an experimentation evaluating the solver efficiency, i.e. its

capability to avoid or reduce rejection when generating data

from systems. We measure the number of backtracks in the

solver, the time to generate data from satisfiable systems of

array conditions, and how many unsatisfiable systems are

detected. The experimentation is composed of three steps:

system generation, then data generation (i.e. system solving)

and finally a measuring step. We generate systems on arrays

containing strings and integers, and of length 5 to 20.

The Praspel language (and in particular its sublanguage

of array conditions) is described by a grammar. In order to

generate systems, we re-use a previous work in grammar-based

testing [10] proposing three algorithms generating data from

grammars: a uniform random generator, a bounded exhaustive

test generator, and a rule-coverage-based test generator. Since

the grammar of array conditions is small, the last generator

does not generate a sufficiently wide collection of systems.

Bounded exhaustive testing is more costly than random testing,

n generated backtracks backtracks per rejected generation
systems system systems time (ms)

10 14 0 0 0 6.484
15 86 34 0.40 0 42.167
18 210 91 0.43 0 141.694
19 275 103 0.37 0 229.001
20 492 114 0.23 0 372.241

Table I
EXPERIMENTATION RESULTS.

but it is more precise and well adapted to small grammars. We

retain the bounded exhaustive test generator: for increasing

values of n it enumerates all the systems composed of a

sequence of n tokens: In this generator, a single token value of

each variable token (i.e. interval bounds and particular array

lengths, keys and values) is generated at random.

With n = 3, we can generate conditions of the form arr

is unique. With n = 6, we can generate constraints of the

form arr[0]: 0. With n = 8, we can generate constraints of

the form arr[0]: 0 or 1. With n = 11, we can generate

for instance the system in Example 5.

The second step calls the solver with each produced system

to generate an array satisfying it. Every generated array is

evaluated by the predicate associated to the system of array

conditions, to check the solver soundness. During the data

generation step, some marks are placed to count only the array

generation time, without counting the compiling time. We also

measure the number of backtracks in the solver and the number

of rejected systems. When a system is rejected, its backtracks

are not counted.

Since our grammar-based testing algorithms use an isotropic

random generation to generate token values, these values can

differ from one system to another. It may lead to different

generation times and numbers of backtracks. To avoid peaks

in the results, we report the average of 100 generations of

systems sharing the same pattern.

Table I shows our experimentation results. In the first

column, n is the length of the generated sequences of tokens

representing systems of array conditions. Column 2 gives the

number of distinct system patterns with this length. Columns

3, 5 and 6 respectively give average numbers of backtracks

and rejected systems for 100 runs, and an average generation

time. Column 4 gives the rate of backtracks per system pattern.

For n ≤ 20, we observe that no system is rejected,

which is a great improvement by comparison with random

generation. All generated data satisfy their specification. The

solver successfully and quickly generates data with a low

number of backtracks. For n = 20, which represents ap-

proximatively 3 constraints with disjunctions, the exhaustive

generation algorithm generates 492 distinct systems of array

conditions and the execution produces only 114 backtracks,

so approximatically 1 backtrack for 4 systems. This is a

good result. Nevertheless, we were not able to characterize

the number of backtracks with the number of constraints.

Finally, this experimentation allowed us to find a bug in our

solver. This bug always led to a rejection when only a certain

constraint was analyzed. Thus, it shows that the validation



process also helps finding bugs.

VI. RELATED WORKS

Various works consider Design-by-Contract for unit test

generation [12], [13]. Our specification language is based on

JML [4] and ACSL [5]. Thanks to an expressive specification

language, Praspel performs general runtime assertion checks.

Realistic domains present some similarities with Eiffel’s

types [3], especially regarding inheritance between realistic

domains. Nevertheless, the two properties of predicability and

samplability displayed by realistic domains do not exist in

Eiffel. Moreover, Praspel adds clauses that Eiffel contracts do

not support, as @throwable and @behavior, which are

inspired from JML.

Euclide [14] is a constraint-based testing tool that could take

as input additional safety properties defined in ACSL [15].

Our approach differs by handling conditions directly in the

contract. All constructions present in Praspel are well-handled

for both aspects: validation and generation. The CLP frame-

work INKA [16] helps computing structural test data from a

C program. It transforms the problem of automatic test data

generation into a CLP problem over finite domains. In the

same way, FDCC [17] is a combined approach for solving

constraints over finite domains and arrays. The tricky part

of FDCC lies in a bi-directional communication mechanism

between two solvers. Our constraints are more specific but we

use only one solver.

VII. CONCLUSION AND FUTURE WORKS

We have presented in this paper an extension of the Praspel

language to specify usual conditions on PHP arrays. We have

expressed its semantics by constraints. We have designed and

implemented in PHP a constraint solver to generate test data

from these constraints. It uses a random generator to ensure

a diversity of generated solutions. This solver is integrated

in realistic domains and can be used within the Praspel

framework. A first validation shows cases where rejection has

been totally removed. It also shows that the solver dramatically

increases the generation speed.

In a near future, we plan to lead a more complete exper-

imentation. Then, we plan to formalize more constraints and

extend our solver. We also plan to transform constraints into

the formalism proposed by MiniZinc [18] in order to compare

our solver to other ones regarding performances and capabili-

ties to find solutions. As a string is an array of characters, we

would like to apply the same process on strings with the help

of existing and promising solving techniques [19].

REFERENCES

[1] B. K. Aichernig, “Contract-based testing,” in Formal Methods at the

Crossroads: From Panacea to Foundational Support, ser. Lecture Notes
in Computer Science. Springer, 2003, vol. 2757, pp. 34–48.

[2] B. Meyer, “Applying “design by contract”,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[3] ——, “Eiffel: programming for reusability and extendibility,” SIGPLAN

Not., vol. 22, no. 2, pp. 85–94, 1987.
[4] G. T. Leavens, A. L. Baker, and C. Ruby, “JML: A notation for

detailed design,” in Behavioral Specifications of Businesses and Systems,
H. Kilov, B. Rumpe, and I. Simmonds, Eds. Boston: Kluwer Academic
Publishers, 1999, pp. 175–188.

[5] P. Baudin, J.-C. Filliâtre, T. Hubert, C. Marché, B. Monate, Y. Moy, and
V. Prevosto, ACSL: ANSI C Specification Language (preliminary design

V1.2), 2008.
[6] M. Barnett, K. Leino, and W. Schulte, “The Spec# Programming

System: An Overview,” in Proceedings of the International Workshop

on Construction and Analysis of Safe, Secure and Interoperable Smart

devices (CASSIS’04), ser. LNCS, vol. 3362. Marseille, France: Springer-
Verlag, March 2004, pp. 49–69.

[7] I. Enderlin, F. Dadeau, A. Giorgetti, and A. B. Othman, “Praspel: A
specification language for contract-based testing in php,” in ICTSS, ser.
Lecture Notes in Computer Science, B. Wolff and F. Zaı̈di, Eds., vol.
7019. Springer, 2011, pp. 64–79.

[8] PHP Group, “The PHP website,” 2010, URL: http://php.net.
[9] I. Enderlin, “Hoa project, a set of PHP libraries,” 2010, URL: http://hoa-

project.net.
[10] I. Enderlin, F. Dadeau, A. Giorgetti, and F. Bouquet, “Grammar-Based

Testing Using Realistic Domains in PHP,” in ICST, G. Antoniol,
A. Bertolino, and Y. Labiche, Eds. IEEE, 2012, pp. 509–518.

[11] A. Macworth, “Consistency in network of relations,” Journal of Artificial

Intelligence, vol. 8, no. 1, pp. 99–118, 1977.
[12] Y. Cheon and G. T. Leavens, “A Simple and Practical Approach to Unit

Testing: The JML and JUnit Way,” in ECOOP 2002 — Object-Oriented

Programming, 16th European Conference, ser. LNCS, B. Magnusson,
Ed., vol. 2374. Berlin: Springer, Jun. 2002, pp. 231–255.

[13] P. Madsen, “Unit Testing using Design by Contract and Equivalence
Partitions,” in XP’03: Proceedings of the 4th international conference

on Extreme programming and agile processes in software engineering.
Berlin, Heidelberg: Springer, 2003, pp. 425–426.

[14] A. Gotlieb, “Euclide: A Constraint-Based Testing Framework for Critical
C Programs,” in ICST. IEEE Computer Society, 2009, pp. 151–160.

[15] ——, “Tcas software verification using constraint programming,”
Knowledge Eng. Review, vol. 27, no. 3, pp. 343–360, 2012.

[16] A. Gotlieb, B. Botella, and M. Rueher, “A CLP Framework for Comput-
ing Structural Test Data,” in Computational Logic, ser. Lecture Notes in
Computer Science, J. W. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K.
Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv, and P. J. Stuckey, Eds.,
vol. 1861. Springer, 2000, pp. 399–413.

[17] S. Bardin and A. Gotlieb, “FDCC: A Combined Approach for Solving
Constraints over Finite Domains and Arrays,” in CPAIOR, ser. Lecture
Notes in Computer Science, N. Beldiceanu, N. Jussien, and E. Pinson,
Eds., vol. 7298. Springer, 2012, pp. 17–33.

[18] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “Minizinc: Towards a standard cp modelling language,” in CP,
ser. Lecture Notes in Computer Science, C. Bessiere, Ed., vol. 4741.
Springer, 2007, pp. 529–543.

[19] V. Ganesh, A. Kiezun, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D.
Ernst, “Hampi: A string solver for testing, analysis and vulnerability de-
tection,” in CAV, ser. Lecture Notes in Computer Science, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 1–19.


