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Abstract

Because of their tractability and their natural interpretations in term of market quan-
tities, Hawkes processes are nowadays widely used in high frequency finance. However,
in practice, the statistical estimation results seem to show that very often, only nearly
unstable Hawkes processes are able to fit the data properly. By nearly unstable, we mean
that the L1 norm of their kernel is close to unity. We study in this work such processes
for which the stability condition is almost violated. Our main result states that after
suitable rescaling, they asymptotically behave like integrated Cox Ingersoll Ross models.
Thus, modeling financial order flows as nearly unstable Hawkes processes may be a good
way to reproduce both their high and low frequency stylized facts. We then extend this
result to the Hawkes based price model introduced by Bacry et al. in [6]. We show that
under a similar criticality condition, this process converges to a Heston model. Again, we
recover well known stylized facts of prices, both at the microstructure level and at the
macroscopic scale.

Keywords: Point processes, Hawkes processes, limit theorems, microstructure modeling,
high frequency data, order flows, Cox Ingersoll Ross model, Heston model.

1 Introduction

A Hawkes process (Nt)t≥0 is a self exciting point process, whose intensity at time t, denoted
by λt, is of the form

λt = µ+
∑

0<Ji<t

φ(t− Ji) = µ+

∫

(0,t)
φ(t− s)dNs,

where µ is a positive real number, φ a regression kernel and the Ji are the points of the
process before time t (see Section 2 for more accurate definitions). These processes have
been introduced in 1971 by Hawkes, see [22, 23, 24], in the purpose of modeling earthquakes
and their aftershocks, see [1]. However, they are also used in various other disciplines. In
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particular, in recent years, with the availability of (ultra) high frequency data, finance has
become one of the main domains of application of Hawkes processes.

The introduction of Hawkes processes in finance is probably due to Chavez-Demoulin et al.,
see [14], in the context of value at risk estimation and to Bowsher, see [12], who jointly
studied transaction times and midquote changes, using the Hawkes framework. Then, in [9],
Bauwens and Hautsch built so-called latent factor intensity Hawkes models and applied them
to transaction data. Another pioneer in this type of approach is Hewlett. He considered in
[26] the particular case of the foreign exchange rates market for which he fitted a bivariate
Hawkes process on buy and sell transaction data. More recently, Bacry et al. have developed
a microstructure model for midquote prices based on the difference of two Hawkes processes,
see [6]. Moreover, Bacry and Muzy have extended this approach in [7] where they design a
framework enabling to study market impact. Beyond midquotes and transaction prices, full
limit order book data (not only market orders but also limit orders and cancellations) have
also been investigated through the lenses of Hawkes processes. In particular, Large uses in [33]
a ten-variate multidimensional Hawkes process to this purpose. Note that besides microstru-
ture problems, Hawkes processes have also been introduced in the study of other financial
issues such as daily data analysis, see [17], financial contagion, see [2], or Credit Risk, see [18].

The popularity of Hawkes processes in financial modeling is probably due to two main reasons.
First, these processes represent a very natural and tractable extension of Poisson processes.
In fact, comparing point processes and conventional time series, Poisson processes are often
viewed as the counterpart of iid random variables whereas Hawkes processes play the role of
autoregressive processes, see [16] for more details about this analogy. Another explanation
for the appeal of Hawkes processes is that it is often easy to give a convincing interpretation
to such modeling. To do so, the branching structure of Hawkes processes is quite helpful.
Recall that under the assumption ‖φ‖1 < 1, where ‖φ‖1 denotes the L1 norm of φ, Hawkes
processes can be represented as a population process where migrants arrive according to a
Poisson process with parameter µ. Then each migrant gives birth to children according to a
non homogeneous Poisson process with intensity function φ, these children also giving birth
to children according to the same non homogeneous Poisson process, see [24]. Now consider
for example the classical case of buy (or sell) market orders, as studied in several of the pa-
pers mentioned above. Then migrants can be seen as exogenous orders whereas children are
viewed as orders triggered by other orders.

Beyond enabling to build this population dynamics interpretation, the assumption ‖φ‖1 < 1
is crucial in the study of Hawkes processes. To fix ideas, let us place ourselves in the classical
framework where the Hawkes process (Nt) starts at −∞. In that case, if one wants to get
a stationary intensity with finite first moment, then the condition ‖φ‖1 < 1 is necessary.
Furthermore, even in the non stationary setting, this condition is usually required in order to
obtain classical ergodic properties for the process, see [5]. For these reasons, this condition is
often called stability condition in the Hawkes literature.

From a practical point of view, a lot of interest has been recently devoted to the parameter
‖φ‖1. For example, Hardiman, Bercot and Bouchaud, see [21], and Filimonov and Sornette,
see [19, 20], use the branching interpretation of Hawkes processes on midquote data in order
to measure the so-called degree of endogeneity of the market. This degree is simply defined
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by ‖φ‖1, which is also called branching ratio. The intuition behind this interpretation of
‖φ‖1 goes as follows: The parameter ‖φ‖1 corresponds to the average number of children of
an individual, ‖φ‖21 to the average number of grandchildren of an individual,. . . Therefore, if
we call cluster the descendants of a migrant, then the average size of a cluster is given by∑

k≥1 ‖φ‖k1 = ‖φ‖1/(1 − ‖φ‖1). Thus, in the financial interpretation, the average proportion
of endogenously triggered events is ‖φ‖1/(1−‖φ‖1) divided by 1+ ‖φ‖1/(1−‖φ‖1), which is
equal to ‖φ‖1.

This branching ratio can be measured using parametric and non parametric estimation meth-
ods for Hawkes processes, see [35, 36] for likelihood based methods and [4, 38] for functional
estimators of the function φ. In [21], very stable estimations of ‖φ‖1 are reported for the E
mini S&P futures between 1998 and 2012, the results being systematically close to one. In
[19], values of order 0.7-0.8 are obtained on several assets. A debate on the validity of these
results is currently ongoing between the two groups. In particular, it is argued in [21] that
the choice of exponential kernels in [19] may lead to spurious results, whereas various bias
that could affect the study in [21] are underlined in [20]. In any case, we can remark that
both groups find values close to one for ‖φ‖1, which is consistent with the results of [4], where
estimations are performed on Bund and Dax futures.

This seemingly persistent statistical result should definitely worry users of Hawkes processes.
Indeed, it is rarely suitable to apply a statistical model where the parameters are pushed to
their limits. In fact, these obtained values for ‖φ‖1 on empirical data are not really surpris-
ing. Indeed, one of the most well documented stylized fact in high frequency finance is the
persistence (or long memory) in flows and market activity measures, see for example [11, 34].
Usual Hawkes processes, in the same way as autoregressive processes, can only exhibit short
range dependence, failing to reproduce this classical empirical feature, see [29] for details.

In spite of their relative inadequacy with market data, Hawkes processes possess so many
appealing properties that one could still try to apply them in some specific situations. In
[21], it is suggested to use the without ancestors version of Hawkes processes introduced by
Brémaud and Massoulié in [13]. For such processes, ‖φ‖1 = 1 but, in order to preserve sta-
tionarity and a finite expectation for the intensity, one needs to have µ = 0. This is probably
a relevant approach. However setting the parameter µ to 0 is not completely satisfying since
this parameter has a nice interpretation (exogenous orders). Moreover it is not found to be
equal to zero in practice, see [21]. Finally, a time-varying µ is an easy way to reproduce
seasonalities observed on the market, see [7] (however, for simplicity, we work in this paper
with a constant µ > 0).

These empirical measures of ‖φ‖1, close to one, are the starting point of this work. Indeed,
our aim is to study the behavior at large time scales of nearly unstable Hawkes processes,
which correspond to these estimations. More precisely, we consider a sequence of Hawkes
processes observed on [0, T ], where T goes to infinity. In the case of a fixed kernel (not de-
pending on T ) with norm strictly smaller than one, scaling limits of Hawkes processes have
been investigated in [5]. In this framework, Bacry et al. obtain a deterministic limit for
the properly normalized sequence of Hawkes processes, as it is the case for suitably rescaled
Poisson processes. In their price model consisting in the difference of two Hawkes processes,
a Brownian motion (with some volatility) is found at the limit. These two results are in

3



fact quite intuitive. Indeed, in the same way as Poisson processes and autoregressive mod-
els, Hawkes processes enjoy short memory properties. In this work, we show that when the
Hawkes processes are nearly unstable, these weakly dependent-like behaviors are no longer
observed at intermediate time scales. To do so, we consider that the kernels of the Hawkes
processes depend on T . More precisely, we translate the near instability condition into the
assumption that the norm of the kernels tends to one as the observation scale T goes to infinity.

Our main theorem states that when the norm of the kernel tends to one at the right speed
(meaning that the observation scale and kernel’s norm balance in a suitable way), the limit
of our sequence of Hawkes processes is no longer a deterministic process, but an integrated
Cox Ingersoll Ross process (CIR for short), as introduced in [15]. In practice, it means that
when observing a Hawkes process with kernel’s norm close to one at appropriate time scale,
it looks like an integrated CIR. Furthermore, for the price model defined in [6], in the limit,
the Brownian motion obtained in [5] is replaced by a Heston model, see [25] for definition.
This is probably more in agreement with empirical data.

The paper is organized as follows. The assumptions and main results, notably the convergence
towards an integrated CIR are given in Section 2. The case of the difference of two Hawkes
processes is studied in Section 3. The proofs are relegated to Section 4 except some auxiliary
results which can be found in an appendix.

2 Scaling limits of nearly unstable Hawkes processes

We give in this section our main results about the limiting behavior of a sequence of nearly un-
stable Hawkes processes. We start by presenting our assumptions and defining our asymptotic
setting.

2.1 Assumptions and asymptotic framework

We consider a sequence of point processes (NT
t )t≥0 indexed by T 1. For a given T , (NT

t )
satisfies NT

0 = 0 and the process is observed on the time interval [0, T ]. Furthermore, our
asymptotic setting is that the observation scale T goes to infinity. The intensity process (λTt )
is defined for t ≥ 0 by

λTt = µ+

∫ t

0
φT (t− s)dNT

s ,

where µ is a positive real number and φT a non negative measurable function on R
+ which

satisfies ‖φ‖1 < +∞. For a given T , the process (NT
t ) is defined on a probability space

(ΩT ,FT ,PT ) equipped with the filtration (FT
t )t∈[0,T ], where FT

t is the σ-algebra generated

by (NT
s )s≤t. Moreover we assume that for any 0 ≤ a < b ≤ T and A ∈ FT

a

E[(NT
b −NT

a−)1A] = E[

∫ b

a
λTs 1Ads],

1Of course by T we implicitly means Tn with n ∈ N tending to infinity.
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which sets λT as the intensity of NT . In particular, if we denote by (JT
n )n≥1 the jump times

of (NT
t ), the process

NT
t∧JT

n

−
∫ t∧JT

n

0
λTs ds

is a martingale and the law of NT is characterized by λT . From Jacod [27], such construction
can be done. The process NT is called a Hawkes process.

Let us now give more specific assumptions on the function φT . We denote by ‖.‖∞ the L∞

norm on R
+.

Assumption 1. For t ∈ R
+,

φT (t) = aTφ(t),

where (aT )T≥0 is a sequence of positive numbers converging to one such that for all T , aT < 1
and φ is a non negative measurable function such that

∫ +∞

0
φ(s)ds = 1 and

∫ +∞

0
sφ(s)ds = m <∞.

Moreover, φ is differentiable with derivative φ′ such that ‖φ′‖∞ < +∞ and ‖φ′‖1 < +∞.

Remark 2.1. Note that under Assumption 1, ‖φ‖∞ is finite.

Thus, the form of the function φT depends on T so that its shape is fixed but its L1 norm
varies with T . For a given T , this L1 norm is equal to aT and so is smaller than one, implying
that the stability condition is in force. Note that in this framework, we have almost surely
no explosion2:

lim
n→+∞

JT
n = +∞.

However, remark that we do not work in the stationary setting since our process starts at
time t = 0 and not at t = −∞.

The case where ‖φT ‖1 is larger than one corresponds to the situation where the stability
condition is violated. Since aT = ‖φT ‖1 < 1 tends to one, our framework is a way to
get close to instability. Therefore we call our processes nearly unstable Hawkes processes.
There are of course many other ways to make the L1 norm of φT converge to one than the
multiplicative manner used here. However, this parametrization is sufficient for applications
and very convenient to illustrate the different regimes that can be obtained.

2.2 Observation scales

In our framework, two parameters degenerate at infinity: T and (1−aT )−1. The relationship
between these two sequences will determine the scaling behavior of the sequence of Hawkes
processes. Recall that it is shown in [5] that when ‖φ‖1 is fixed and smaller than one, after
appropriate scaling, the limit of the sequence of Hawkes processes is deterministic, as it is
for example the case for Poisson processes. In our setting, if 1 − aT tends “slowly” to zero,
we can expect the same result. Indeed, we may have T large enough so that we reach the

2In fact, for a Hawkes process, the no explosion property can be obtained under weaker conditions, for
example

∫
t

0
φ(s)ds < ∞ for any t > 0, see [5].
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asymptotic regime and for such T , aT is still sufficiently far from unity. This is precisely what
happens, as stated in the next theorem.

Theorem 2.1. Assume T (1 − aT ) → +∞. Then, under Assumption 1, the sequence of
Hawkes processes is asymptotically deterministic, in the sense that the following convergence
in L2 holds:

sup
v∈[0,1]

1− aT
T

|NT
Tv − E[NT

Tv]| → 0.

On the contrary, if 1−aT tends too rapidly to zero, the situation is likely to be quite intricate.
Indeed, for given T , the Hawkes process may already be very close to instability whereas T
is not large enough to reach the asymptotic regime. The last case, which is probably the
most interesting one, is the intermediate case, where 1 − aT tends to zero in such a manner
that a non deterministic scaling limit is obtained, while not being in the preceding degenerate
setting. We largely detail this situation in the next subsection.

2.3 Non degenerate scaling limit for nearly unstable Hawkes processes

We give in this section our main result, that is a non degenerate scaling limit for a sequence
of properly renormalized nearly unstable Hawkes processes. Before giving this theorem, we
wish to provide intuitions on how it is derived. Let MT be the martingale process associated
to NT , that is, for t ≥ 0,

MT
t = NT

t −
∫ t

0
λTs ds.

We also set ψT the function defined on R
+ by

ψT (t) =
∞∑

k=1

(φT )∗k(t),

where (φT )∗1 = φT and for k ≥ 2, (φT )∗k denotes the convolution product of (φT )∗(k−1) with
the function φT . Note that ψT (t) is well defined since ‖φT ‖1 < 1. In the sequel, it will be
convenient to work with another form for the intensity. We have the following result, whose
proof is given in Section 4.

Proposition 2.1. For all t ≥ 0, we have

λTt = µ+

∫ t

0
ψT (t− s)µds+

∫ t

0
ψT (t− s)dMT

s .

Now recall that we observe the process (NT
t ) on [0, T ]. In order to be able to give a proper

limit theorem, where the processes live on the same time interval, we rescale our processes so
that they are defined on [0, 1]. To do that, we consider for t ∈ [0, 1]

λTtT = µ+

∫ tT

0
ψT (Tt− s)µds+

∫ tT

0
ψT (Tt− s)dMT

s .

For the scaling in space, a natural multiplicative factor is (1− aT ). Indeed, in the stationary
case, the expectation of λTt is µ/(1 − ‖φT ‖1). Thus, the order of magnitude of the intensity
is (1− aT )

−1. This is why we define

CT
t = λTtT (1− aT ). (1)
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Understanding the asymptotic behavior of CT
t will be the key to the derivation of a suitable

scaling limit for our sequence of renormalized processes. We will see that this behavior is
closely connected to that of the function ψT . About ψT , one can first remark that the
function defined for x ≥ 0 by

ρT (x) = T
ψT

‖ψT ‖1
(Tx) (2)

is the density of the random variable

XT =
1

T

IT∑

i=1

Xi,

where the (Xi) are iid random variables with density φ and IT is a geometric random variable
with parameter 1 − aT (∀k > 0,P[IT = k] = (1 − aT )(aT )

k−1). Now let z ∈ R. The
characteristic function of the random variable XT , denoted by ρ̂T , satisfies

ρ̂T (z) = E[eizX
T

] =
∞∑

k=1

(1− aT )(aT )
k−1

E[ei
z

T

∑
k

i=1 Xi ]

=
∞∑

k=1

(1− aT )(aT )
k−1(φ̂(

z

T
))k =

φ̂( z
T )

1− aT
1−aT

(φ̂( z
T )− 1)

,

where φ̂ denotes the characteristic function of X1. Since

∫ +∞

0
sφ(s)ds = m <∞,

the function φ̂ is continuously differentiable with first derivative at point zero equal to im.
Therefore, using that aT and φ̂( z

T ) both tend to one as T goes to infinity, ρ̂T (z) is equivalent
to

1

1− izm
T (1−aT )

.

Thus, we precisely see here that the suitable regime so that we get a non trivial limiting law
for XT is that there exists λ > 0 such that

T (1− aT ) →
T→+∞

λ. (3)

When (3) holds, we write d0 = m/λ. In fact we have just proved the following result.

Proposition 2.2. Assume that (3) holds. Under Assumption 1, the sequence of random
variable XT converges in law towards an exponential random variable with parameter 1/d0.

This simple result is of course not new. For example this type of geometric sums of random
variable is studied in detail in [31]. Note also that when X1 is exponentially distributed, XT

is also exponentially distributed, even for a fixed T .
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Assume from now on that (3) holds and set uT = T (1 − aT )/λ (so that uT goes to one).
Proposition 2.2 is particularly important since it gives us the asymptotic behavior of ψT in
this setting. Indeed, it tells us that

ψT (Tx) = ρT (x)
aT
λuT

≈ λ

m
e−x λ

m

1

λ
=

1

m
e−x λ

m .

Let us now come back to the process CT
t , which can be written

CT
t = (1− aT )µ+ µ

∫ t

0
uTλψ

T (Ts)ds+

∫ t

0

√
λψT (T (t− s))

√
CT
s dB

T
s , (4)

with

BT
t =

1√
T

√
uT

∫ tT

0

dMT
s√
λTs

. (5)

By studying its quadratic variation, we will show that BT represents a sequence of martingales
which converges to a Brownian motion. So, heuristically replacing BT by a Brownian motion

B and ψT (Tx) by 1
me

−x λ

m in (4), we get

C∞
t = µ(1− e−t λ

m ) +

√
λ

m

∫ t

0
e−(t−s) λ

m

√
C∞
s dBs.

Applying Itô’s formula, this gives

C∞
t =

∫ t

0
(µ− C∞

s )
λ

m
ds+

√
λ

m

∫ t

0

√
C∞
s dBs,

which precisely corresponds to the stochastic differential equation (SDE) satisfied by a CIR
process.

Before stating the theorem which makes the preceding heuristic derivation rigorous, we con-
sider an additional assumption.

Assumption 2. There exists Kρ > 0 such that for all x ≥ 0 and T > 0,

|ρT (x)| ≤ Kρ.

Note that Assumption 2 is in fact not really restrictive. Indeed, if φ is decreasing, then any
ρT is decreasing. Thus, since |ρT (0)| is bounded, Assumption 2 holds in that case. Also,
from [37] (Page 214, point 5), we get that if ‖φ‖∞ < ∞ and

∫ +∞
0 |s|3φ(s)ds < +∞, then

Assumption 2 follows. From [31] (Chapter 5, Lemma 4.1), another sufficient condition to get
Assumption 2 is that the random variable X1 with density φ can be written (in law) under
the form X1 = E + Y , where E follows an exponential law with parameter γ > 0 and Y is
independent of E. We now give our main theorem.

Theorem 2.2. Assume that (3) holds. Under Assumptions 1 and 2, the sequence of renor-
malized Hawkes intensities (CT

t ) defined in (1) converges in law, for the Skorohod topology,
towards the law of the unique strong solution of the following Cox Ingersoll Ross stochastic
differential equation on [0, 1]:

Xt =

∫ t

0
(µ−Xs)

λ

m
ds+

√
λ

m

∫ t

0

√
XsdBs.
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Furthermore, the sequence of renormalized Hawkes process

V T
t =

1− aT
T

NT
tT

converges in law, for the Skorohod topology, towards the process

∫ t

0
Xsds, t ∈ [0, 1].

2.4 Discussion

• Theorem 2.2 implies that when ‖φ‖1 is close to 1, if the observation time T is suitably
chosen (that is of order 1/(1−‖φ‖1)), a non degenerate behavior (neither explosive, nor
deterministic) can be obtained for a rescaled Hawkes process.

• This can for example be useful for the statistical estimation of the parameters of a
Hawkes process. Indeed, designing an estimating procedure based on the fine scale
properties of a Hawkes process is a very hard task: Non parametric methods are difficult
to use and present various instabilities, see [4, 20], whereas parametric approaches are of
course very sensitive to model specifications, see [20, 21]. Considering an intermediate
scale, where the process behaves like a CIR model, one can use statistical methods
specifically developed in order to estimate CIR parameters, see [3] for a survey. Of
course, only the parameters λ, m and µ can be recovered this way. Therefore, there
is clearly an information loss in this approach. However, it still enables to get access
to quantities which are important in practice, see Section 1. In some sense, it can be
compared to the extreme value theory based method for extreme quantile estimation,
where one assumes that the random variables of an iid sample belong to some max stable
attraction domain. Indeed, these two methods lie between a fully parametric one, where
a parametric form is assumed (for the law of the random variables or the function φ),
and a fully non parametric one, where a functional estimator (of the repartition function
or of φ) is used in order to reach the quantity of interest (the quantile or the L1 norm
of φ).

• CIR processes are a very classical way to model stochastic (squared) volatilities in
finance, see the celebrated Heston model [25]. Also, it is widely acknowledged that
there exists a linear relationship between the cumulated order flow and the integrated
squared volatility, see for example [40]. Therefore, our setting where ‖φ‖1 is close to
one and the limiting behavior obtained in Theorem 2.2 seem in good agreement with
market data.

• For the stationary version of a Hawkes process, one can show that the variance of NT
T

is of order T (1− ‖φT ‖1)−3, see for example [13]. Therefore, if T (1− aT ) tends to zero,

that is ‖φT ‖1 goes rapidly to one, then the variance of (1−aT )
T NT

T blows up as T goes to
infinity. This situation is therefore very different from the one studied here and out of
the scope of this paper.

• The assumption
∫ +∞
0 sφ(s)ds < +∞ is crucial in order to approximate ψT by an expo-

nential function using Proposition 2.2. Let us now consider the fat tail case where the
preceding integral is infinite. More precisely, let us take a function φ which is of order
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1
x1+α , 0 < α < 1, as x goes to infinity. In that case, following the proof of Proposition
2.2, we can show the following result, where we borrow the notations of Proposition 2.2.

Proposition 2.3. Let Eα
C be a random variable whose characteristic function satisfies

E[eizE
α

C ] =
1

1− C(iz)α
.

Assume φ̂(z)− 1 ∼0 σ(iz)
α for some σ > 0, 0 < α < 1, and (1− aT )T

α → λ > 0. Then
XT converges in law towards the random variable Eα

σ

λ

.

Thus, when the shape of the kernel is of order x−(1+α), the “right” observation scale is
no longer T ∼ 1/(1− ‖φ‖1) but T ∼ 1/(1− ‖φ‖1)

1
α . Remark also that if we denote by

Eα,β the (α, β) Mittag-Leffler function, that is

Eα,β(z) =
∞∑

n=1

zn

Γ(αn+ β)
,

see for example [39], then the density φαC of Eα
C is linked to this function since

φα1 (x) = xα−1Eα,α(−xα).

Now let us consider the asymptotic setting where µT = µTα−1,φT = aTφ with aT =
1− λ

Tα and φ as in Proposition 2.3. If we apply the same heuristic arguments as those
used in Section 2 to the renormalized intensity

CT
t =

λTtT (1− aT )

Tα−1
,

we get the following type of limiting law for our sequence of Hawkes intensities:

Xt = µ

∫ t

0
φασ

λ

(t− s)ds+

∫ t

0
φασ

λ

(t− s)
1√
λ

√
XsdBs.

These heuristic arguments are however far from a proof. Indeed, in this case, we prob-
ably have to deal with a non semi-martingale limit. Furthermore, tightness properties
which are important in the proofs of this paper are much harder to show (in particular
the function φαC is not bounded). We leave this case for further research.

• In the classical time series setting let us mention the paper [8] where the authors study
the asymptotic behavior of unstable integer-valued autoregressive model (INAR pro-
cesses). In this case, CIR processes also appear in the limit. This is in fact not so
surprising since INAR processes share some similarities with Hawkes processes. In par-
ticular, they can somehow be viewed as Hawkes processes for which the kernel would
be a sum of Dirac functions.
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3 Extension of Theorem 2.2 to a price model

In the previous section, we have studied one-dimensional nearly unstable Hawkes processes.
For financial applications, they can for example be used to model the arrival of orders when
the number of endogenous orders is much larger than the number of exogenous orders, which
seems to be the case in practice, see [19, 21]. In this section, we consider the high frequency
price model introduced in [6], which is essentially defined as a difference of two Hawkes
processes. Using the same approach as for Theorem 2.2, we investigate the limiting behavior
of this model when the stability condition is close to saturation.

3.1 A Hawkes based price model

In [6], tick by tick moves of the midprice (Pt)t≥0 are modeled thanks to a two dimensional
Hawkes process in the following way: For t ≥ 0,

Pt = N+
t −N−

t ,

where (N+, N−) is a two dimensional Hawkes process with intensity

(
λ+t
λ−t

)
=

(
µ
µ

)
+

∫ t

0

(
φ1(t− s) φ2(t− s)
φ2(t− s) φ1(t− s)

)(
dN+

s

dN−
s

)
,

with φ1 and φ2 two non negative measurable functions such that the stability condition

∫ +∞

0
φ1(s)ds+

∫ +∞

0
φ2(s)ds < 1

is satisfied.

This model takes into account the discreteness and the negative autocorrelation of prices
at the microstructure level. Moreover, it is shown in [5] that when one considers this price
at large time scales, the stability condition implies that after suitable renormalization, it
converges towards a Brownian motion (with a given volatility).

3.2 Scaling limit

In the same spirit as in Section 2, we consider the scaling limit of the Hawkes based price
process when the stability condition becomes almost violated. More precisely, following the
construction of multivariate Hawkes processes of [5], for every observation interval [0, T ], we
define the Hawkes process (NT+, NT−) with intensity

(
λT+
t

λT−
t

)
=

(
µ
µ

)
+

∫ t

0

(
φT1 (t− s) φT2 (t− s)
φT2 (t− s) φT1 (t− s)

)(
dNT+

s

dNT−
s

)
,

with φT1 and φT2 two non negative measurable functions. Note that in this construction,
NT+ and NT− do not have common jumps, see [5] for details. We consider the following
assumption.

Assumption 3. For i = 1, 2 and t ∈ R
+,

φTi (t) = aTφi(t),

11



where (aT )T≥0 is a sequence of positive numbers converging to one such that for all T , aT < 1
and φ1 and φ2 are two non negative measurable functions such that

∫ +∞

0
φ1(s) + φ2(s)ds = 1 and

∫ +∞

0
s
(
φ1(s) + φ2(s)

)
ds = m <∞.

Moreover, for i = 1, 2, φi is differentiable with derivative φ′i such that ‖φ′i‖∞ < +∞ and
‖φ′i‖1 < +∞.

We will also make the following technical assumption.

Assumption 4. Let

ψT
+ =

∑

k≥1

(aT (φ1 + φ2))
∗k and ρT (x) = T

ψT
+

‖ψT
+‖1

(Tx).

There exists Kρ > 0 such that for all x ≥ 0 and T > 0,

|ρT (x)| ≤ Kρ.

We work with the renormalized price process

P T
t =

1

T
(NT+

Tt −NT−
Tt ). (6)

The following theorem states that if we consider the rescaled price process over the right time
interval, that is if we take T of order 1/(1− ‖φ1‖1 − ‖φ1‖2), it asymptotically behaves like a
Heston model, see [25].

Theorem 3.1. Let φ = φ1 − φ2. Assume that (3) holds. Under Assumptions 3 and 4,
the sequence of Hawkes based price models (P T

t ) converges in law, for the Skorohod topology,
towards a Heston type process P on [0, 1] defined by:

{
dCt = (2µλ − Ct)

λ
mdt+

1
m

√
CtdB

1
t C0 = 0

dPt =
1

1−‖φ‖1

√
CtdB

2
t P0 = 0,

with (B1, B2) a bidimensional Brownian motion.

4 Proofs

We gather in this section the proofs of Theorem 2.1, Proposition 2.1, Theorem 2.2 and The-
orem 3.1. In the following, c denotes a constant that may vary from line to line.

4.1 Proof of Theorem 2.1

Let v ∈ [0, 1]. From Lemma 4 in [5], we get

E[NT
Tv] = µTv + µ

∫ Tv

0
ψT (Tv − s)sds

12



and

NT
Tv − E[NT

Tv] =MT
Tv +

∫ Tv

0
ψT (Tv − s)MT

s ds.

Thus, using that

‖ψT ‖1 =
‖φT ‖1

1− ‖φT ‖1
,

we deduce

1− ‖φT ‖1
T

(NT
Tv − E[NT

Tv]) ≤
1− ‖φT ‖1

T
(1 + ‖ψT ‖1) sup

t∈[0,T ]
|MT

t | ≤
1

T
sup

t∈[0,T ]
|MT

t |.

Now recall that MT is a square integrable martingale with quadratic variation process NT .
Thus we can apply Doob’s inequality which gives

E[( sup
t∈[0,T ]

MT
t )

2] ≤ 4 sup
t∈[0,T ]

E[(MT
t )

2] ≤ 4E[NT
T ] ≤ 4µ

T

1− ‖φT ‖1
.

Therefore, we finally obtain

E

[
sup

v∈[0,1]

(1− ‖φT ‖1
T

(NT
Tv − E[NT

Tv])
)2]

≤ 4µ

T (1− ‖φT ‖1)
,

which gives the result since T (1− ‖φT ‖1) tends to infinity.

4.2 Proof of Proposition 2.1

From the definition of λT , using the fact that φ is bounded on [0, t], we can write

λTt = µ+

∫ t

0
φT (t− s)dMT

s +

∫ t

0
φT (t− s)λTs ds.

We now recall the following classical lemma, see for example [5] for a proof.

Lemma 4.1. If f(t) = h(t)+
∫ t
0 φ

T (t−s)f(s)ds with h a measurable locally bounded function,
then

f(t) = h(t) +

∫ t

0
ψT (t− s)h(s)ds.

We apply this lemma to the function h defined by

h(t) = µ+

∫ t

0
φT (t− s)dMT

s .

Thus, we obtain

λTt = µ+

∫ t

0
φT (t− s)dMT

s +

∫ t

0
ψT (t− s)

(
µ+

∫ s

0
φT (s− r)dMT

r

)
ds. (7)

Now remark that using Fubini theorem and the fact that

ψT ∗ φT = ψT − φT ,

13



we get

∫ t

0
ψT (t− s)

∫ s

0
φT (s− r)dMT

r ds =

∫ t

0

∫ t

0
1r≤sψ

T (t− s)φT (s− r)dsdMT
r

=

∫ t

0

∫ t−r

0
ψT (t− r − s)φT (s)dsdMT

r

=

∫ t

0
ψT ∗ φT (t− r)dMT

r

=

∫ t

0
ψT (t− r)dMT

r −
∫ t

0
φT (t− r)dMT

r .

We conclude the proof rewriting (7) using this last equality.

4.3 Proof of Theorem 2.2

Before starting the proof of Theorem 2.2, we give some preliminary lemmas.

4.3.1 Preliminary lemmas

We start with some lemmas on φ and its Fourier transform φ̂ (the associated characteristic
function).

Lemma 4.2. Let δ > 0. There exists ε > 0 such that for any real number z with |z| ≥ δ,

|1− φ̂(z)| ≥ ε.

Proof. Since φ is bounded, φ̂(z) tends to zero as z tends to infinity. Consequently, there exists
b > δ such that for all z such that |z| ≥ b,

|φ̂(z)| ≤ 1

2
.

Now, letM denote the supremum of the real part of φ̂ on [−b,−δ]∪ [δ, b], since φ̂ is continuous
this supremum is attained at some point z0. We have M = Re(φ̂(z0)) = E[cos(z0X)], with X
a random variable with density φ. Since φ is continuous, almost surely, X does not belong
to 2π/z0Z. Thus M = E[cos(z0X)] < 1. Therefore, taking ε = min(12 , 1 −M) we have the
lemma.

Using that ‖φ′‖1 < +∞, integrating by parts, we immediately get the following lemma.

Lemma 4.3. Let z ∈ R. We have |φ̂(z)| ≤ c/|z|.

We now turn to the function ρT defined in (2). We have the following result.

Lemma 4.4. There exist c > 0 such that for all real z and T ≥ 1,

|ρ̂T (z)| ≤ c(1 ∧ |1
z
|).
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Proof. First note that as the Fourier transform of a random variable, |ρ̂T | ≤ 1. Furthermore,
using Lemma 4.2 together with the fact that

∫ +∞

0
xφ(x)dx = m < +∞,

we get that there exist δ > 0 and ε > 0 such that if |x| ≤ δ,

|Im(φ̂)(x)| ≥ m

2
|x|

and if |x| ≥ δ,
|1− φ̂(x)| ≥ ε.

Therefore, we deduce that if |z/T | ≤ δ,

|ρ̂T (z)| = |(1− aT )φ̂(
z
T )

1− aT φ̂(
z
T )

| ≤ (1− aT )

aT |Im(φ̂)( z
T )|

≤ 2(1− aT )T

aTm|z| ≤ c/|z|

and, thanks to Lemma 4.3, if |z/T | ≥ δ

|ρ̂T (z)| ≤ (1− aT )|φ̂( z
T )|

|1− φ̂( z
T )|

≤ c(1− aT )T

|z|ε ≤ c/|z|.

The next lemma gives us the L2 convergence of ρT .

Lemma 4.5. Let ρ(x) = λ
me

−xλ

m be the density of the exponential random variable with
parameter λ/m. We have the following convergence, where |.|2 denotes the L2 norm on R

+:

|ρT − ρ|2 → 0.

Proof. Using the Fourier isometry, we get

|ρT − ρ|2 =
1

2π
|ρ̂T − ρ̂|2.

From Proposition 2.2, for given z, we have (ρ̂T (z) − ρ̂(z)) → 0. Thanks to Lemma 4.4, we
can apply the dominated convergence theorem which gives that this convergence also takes
place in L2.

We now give a Lipschitz type property for ρT .

Lemma 4.6. There exists c > 0 such that for all x ≥ 0, y ≥ 0 and T ≥ 1,

|ρT (x)− ρT (y)| ≤ cT |x− y|.

Proof. We simply compute the derivative of ρT on R+, which is given by

(ρT )′(x) = T
(
φ′(Tx)

T

‖ψT ‖1
+ φ′ ∗ ρT (Tx)

)
.

Using that ‖ψT ‖1 = aT /(1− aT ) together with the fact that T (1− aT ) → λ, we get

|(ρT )′(x)| ≤ T (c‖φ′‖∞ + ‖φ′‖1‖ρT ‖∞).
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We now consider the function fT defined for x ≥ 0 by

fT (x) =
m

λ

aT
uT
ρT (x)− e

− x

d0 .

We have the following obvious corollaries.

Corollary 4.1. We have ∫
|fT (x)|2dx→ 0.

Corollary 4.2. There exists c > 0 such that for any z ≥ 0,

|fT (z)| ≤ c.

Corollary 4.3. There exists c > 0 such that for any z ≥ 0,

|f̂T (z)| ≤ c(|1
z
| ∧ 1).

Corollary 4.4. There exists c > 0 such that for all x ≥ 0, y ≥ 0 and T ≥ 1,

|fT (x)− fT (y)| ≤ cT |x− y|.

We finally give a lemma on the integrated difference associated to the function fT .

Lemma 4.7. For any 0 < ε < 1, there exists cε so that for all t, s ≥ 0,

∫

R

(fT (t− u)− fT (s− u))2du ≤ cε|t− s|1−ε.

Proof. Defining gTt,s(u) = fT (t− u)− fT (s− u), we easily get

|ĝTt,s(w)| = |e−iwt − e−iws||f̂T (w)|.

Thus, from Corollary 4.3 together with the fact that

|e
−iwt − e−iws

w(t− s)
| ≤ 1,

we get

∫

R

(fT (t− u)− fT (s− u))2du ≤ c

∫

R

|ĝTt,s(w)|2dw

≤ c

∫

R

|e−iwt − e−iws|2(| 1
w2

| ∧ 1)dw

≤ c

∫

R

21+ε|e
−iwt − e−iws

w(t− s)
|1−ε(| 1

w2
| ∧ 1)w1−εdw|t− s|1−ε

≤ cε|t− s|1−ε.
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4.3.2 Proof of the first part of Theorem 2.2

We now begin with the proof of the first assertion in Theorem 2.2. We split this proof into
several steps.

Step 1: Convenient rewriting of CT

In this step, our goal is to obtain a suitable expression for CT
t . Let d0 = m/λ. Inspired by

the limiting behavior of ψT given in Proposition 2.2, we write Equation (4) under the form

CT
t = RT

t + µ(1− e
− t

d0 ) +

√
λ

m

∫ t

0
e
− t−s

d0

√
CT
s dB

T
s ,

where RT
t is obviously defined. Using integration by parts (for finite variation processes), we

get

CT
t = RT

t +
µ

d0

∫ t

0
e
− v

d0 dv +

√
λ

m

∫ t

0

√
CT
v dB

T
v −

√
λ

md0

∫ t

0

( ∫ v

0
e
− v−s

d0

√
CT
s dB

T
s

)
dv.

Then remarking that

√
λ

md0

∫ v

0
e
− v−s

d0

√
CT
s dB

T
s =

1

d0

(
CT
v −RT

v − µ(1− e
− v

d0 )
)
,

we finally derive

CT
t = UT

t +
1

d0

∫ t

0
(µ− CT

s )ds+

√
λ

m

∫ t

0

√
CT
s dB

T
s , (8)

with

UT
t = RT

t +
1

d0

∫ t

0
RT

s ds.

The form (8) will be quite convenient in order to study the asymptotic behavior of CT
t .

Indeed, we will show that UT
t vanishes so that (8) almost represents a stochastic differential

equation.

Step 2: Preliminaries for the convergence of UT

We now want to prove that the sequence of processes (UT
t )t∈[0,1] converges to zero in law,

for the Skorohod topology, and therefore uniformly on compact sets on [0, 1] (ucp). We show
here that to do so, it is enough to study a (slightly) simpler process than UT . First, it is clear
that showing the convergence of (RT

t )t∈[0,1] to zero gives also the convergence of UT . Now
recall that

RT
t = µ(1−aT )−µ((1−e−

t

d0 )−
∫ t

0
aTT

ψT

‖ψT ‖1
(Ts)ds)+

√
λ

∫ t

0

(
ψT (T (t−s))− 1

m
e
− t−s

d0

)√
CT
t dB

T
s .

Since aT tends to one, the first term tends to zero. For t ∈ [0, 1], Proposition 2.2 gives us the
convergence of ∫ t

0
aTT

ψT

‖ψT ‖1
(Ts)ds
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towards 1− e
− t

d0 . Using Dini’s theorem, we get that this convergence is in fact uniform over
[0, 1]. Thus, using Equation (5), we see that it remains to show that (Y T

t )t∈[0,1] goes to zero,
with

Y T
t =

∫ t

0
(mψT (T (t− u))− e

− t−u

d0 )dM
T
t ,

where M
T
t =MT

tT /T .

Step 3: Finite dimensional convergence of Y T

We now show the finite dimensional convergence of (Y T
t )t∈[0,1].

Lemma 4.8. For any (t1, ..., tn) ∈ [0, 1]n, we have the following convergence in law:

(Y T
t1 , ..., Y

T
tn ) → 0.

Proof. First note that the quadratic variation of M
T

at time t is given by NT
tT /T

2, whose
predicable compensator process at time t is simply equal to

1

T 2

∫ tT

0
λTs ds.

Using this together with the fact that

E[λTt ] = µ+ µ

∫ t

0
ψT (t− s)ds ≤ µ+ µ

aT
1− aT

≤ cT,

we get

E[(Y T
t )2] ≤ c

∫ t

0
(mψT (T (t− s))− e

− t−s

d0 )2ds.

Now remark that
mψT (T (t− s))− e

− t−s

d0 = fT (t− s),

where fT is defined by fT (x) = 0 for x < 0 and

fT (x) =
m

λ

aT
uT
ρT (x)− e

− x

d0

for x ≥ 0, with ρT the function introduced in Equation (2). From Corollary 4.1,

E[(Y T
t )2] → 0,

which gives the result.

Step 4: A Kolmogorov type inequality for Y T

To prove the convergence of Y T towards 0, it remains to show its tightness. We have the
following Kolmogorov type inequality on the moments of the increments of Y T , which is a
first step in order to get the tightness.

Lemma 4.9. For any ε > 0, there exists cε > 0 such that for all T ≥ 1, 0 ≤ t, s ≤ 1,

E[(Y T
t − Y T

s )4] ≤ cε(|t− s|3/2−ε +
1

T 2
|t− s|1−ε). (9)
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Proof. Let µE[M
T
4 ] denote the fourth moment measure ofMT , see Appendix for definition and

properties. We have

E[(Y T
t − Y T

s )4] =
1

T 4

∫

[0,T ]4

( 4∏

i=1

[
fT (t− ti

T
)− fT (s− ti

T
)
])
µE[M

T
4 ](dt1, dt2, dt3, dt4).

Therefore, using Lemma A.17, we obtain

E[(Y T
t − Y T

s )4] ≤ c

T 3

∫ T

0
|fT (t− u

T
)− fT (s− u

T
)|4du

+
c

T 3

∫ T

0
|fT (t− u

T
)− fT (s− u

T
)|3du

∫ T

0
|fT (t− u

T
)− fT (s− u

T
)|du

+
c

T 2

∫ T

0
|fT (t− u

T
)− fT (s− u

T
)|2du

∫ T

0
|fT (t− u

T
)− fT (s− u

T
)|2du

+
c

T 3

( ∫ T

0
|fT (t− u

T
)− fT (s− u

T
)|du

)2
∫ T

0
|fT (t− u

T
)− fT (s− u

T
)|2du.

Then, using Cauchy Schwarz inequality together with Corollary 4.2 and Lemma 4.7, we get

∫ T

0
|fT (t− u

T
)− fT (s− u

T
)|du ≤ cεT

√
|t− s|1−ε

and for p = 2, 3, 4,

∫ T

0
|fT (t− u

T
)− fT (s− u

T
)|pdu ≤ cεT |t− s|1−ε,

which enables to conclude the proof.

Step 5: Tightness

Let us define Ỹ T the linear interpolation of Y T with mesh 1/T 4:

Ỹ T
t = Y T

⌊tT4⌋
T4

+ (tT 4 −
⌊
tT 4

⌋
)(Y T

⌊tT4⌋+1

T4

− Y T
⌊tT4⌋
T4

).

We use this interpolation since for t − s = 1/T 4, both terms on the right hand side of (9)
have the same order of magnitude and for t− s > 1/T 4 the second term becomes negligible.
We have the following lemma.

Lemma 4.10. The sequence (Ỹ T ) is tight.

Proof. We want to apply the classical Kolmogorov tightness criterion, see [10], that states
that if there exist γ > 1 and c > 0 such that for any 0 ≤ s ≤ t ≤ 1,

E|Ỹ T
t − Ỹ T

s |4 ≤ c|t− s|γ ,

then Ỹ T is tight. Remark that such inequality can of course not hold for Y T since it is not
continuous. Let nTt =

⌊
tT 4

⌋
and nTs =

⌊
sT 4

⌋
. Let 0 < ε, ε′ ≤ 1/4 and T ≥ 1. There are three

cases:
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• If nTt = nTs , using Lemma 4.9, we obtain that

E[(Ỹ T
t − Ỹ T

s )4]

is smaller than

|t− s|4T 16
E[(Y

nT
t
+1

T4

− Y
nT
t

T4

)4] ≤ cε
1

T 4(3/2−ε)
T 16|t− s|4 ≤ cε

1

T 4(3/2−ε)
T 16|t− s|1+ε′ 1

T 4(3−ε′)
.

Since 0 < ε, ε′ ≤ 1/4, this leads to

E[(Ỹ T
t − Ỹ T

s )4] ≤ cε|t− s|1+ε′ .

• If nTt = nTs + 1,

E[(Ỹ T
t − Ỹ T

s )4] ≤ cE[(Ỹ T
t − Ỹ T

nT
t

T4

)4] + cE[(Ỹ T
nT
t

T4

− Ỹ T
s )4] ≤ cε|t− s|1+ε′ .

• If nTt ≥ nTs + 2, using again Lemma 4.9, we get

E[(Ỹ T
t − Ỹ T

s )4] ≤ cE[(Ỹ T
t − Ỹ T

nT
t

T4

)4] + cE[(Ỹ T
nT
s +1

T4

− Ỹ T
s )4] + cE[(Ỹ T

nT
t

T4

− Ỹ T
nT
s +1

T4

)4]

≤ cε(
1

T 4
)1+ε′ + cε|

nTt
T 4

− nTs + 1

T 4
| 32−ε ≤ cε|t− s|min( 3

2
−ε,1+ε′).

Hence the Kolmogorov criterion holds, which implies the tightness of Ỹ T .

We now show that the difference between Y T and Ỹ T tends uniformly to zero.

Lemma 4.11. We have the following convergence in probability:

sup
|t−s|≤ 1

T4

|Y T
t − Y T

s | → 0.

Proof. Recall that for 0 ≤ s ≤ t ≤ 1,

|Y T
t − Y T

s | = |
∫ s

0
fT (t− u)− fT (s− u)dM

T
u +

∫ t

s
fT (t− u)dM

T
u |.

Thus, we have that |Y T
t − Y T

s | is smaller than

∫ sT

0
|fT (t− u/T )− fT (s− u/T )|(dNT

u + λudu)
1

T
+

∫ tT

sT
|fT (t− u/T )|(dNT

u + λudu)
1

T
.

Using Corollaries 4.2 and 4.4, we obtain

|Y T
t − Y T

s | ≤ c|t− s|(NT
T +

∫ T

0
λTu du) + c(NT

tT −NT
sT +

∫ tT

sT
λTu du)

1

T
.

Consider now
sup

|t−s|≤1/T 4

|Y T
t − Y T

s |.
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This is smaller than

c
1

T 4
(NT

T +

∫ T

0
λTu du) + 2c max

i=0,...,⌊T 4⌋

1

T
(NT

i+1

T4 T
−NT

i

T4 T
+

∫ i+1

T4 T

i

T4 T
λTu du). (10)

From Lemma A.5, we have

E
[
NT

T +

∫ T

0
λTu du

]
≤ cT 2.

Thus, the first term on the right hand side of (10) tends to zero. For the second term, we use
Lemma A.15 (with t = i+1

T 4 T and s = i
T 4T ) which gives that

E
[( 1
T
(NT

i+1

T4 T
−NT

i

T4 T
+

∫ i+1

T4 T

i

T4 T
λTu du)

)3] ≤ c

T 5
.

So, for any ε > 0, using Markov inequality, we get

P
[ 1
T
(NT

i+1

T4 T
−NT

i

T4 T
+

∫ i+1

T4 T

i

T4 T
λTu du) ≥ ε

]
≤ c

T 5ε3
.

From this inequality, since the maximum is taken over a number of terms of order T 4, we easily
deduce that the second term on the right hand side of (10) tends to zero in probability.

We end this step by the proposition stating the convergence of Y T .

Proposition 4.1. The process Y T converges ucp to 0 on [0, 1].

Proof. We have
sup
t∈[0,1]

|Y T
t | ≤ sup

t∈[0,1]
|Ỹ T

t |+ sup
t∈[0,1]

|Ỹ T
t − Y T

t |.

From Lemma 4.8 and Lemma 4.10 we get that Ỹ T tends to zero, in law for the Skorohod
topology. This implies the ucp convergence. Applying Lemma 4.11 we get the result.

Step 6: Limit of a sequence of SDEs

In this last step, we show the convergence of the process (CT
t )t∈[0,1] towards a CIR process.

To do so, we use the fact that CT can almost be written under the form of a stochastic
differential equation. Indeed, recall that

CT
t = UT

t +
1

d0

∫ t

0
(µ− CT

s )ds+

√
λ

m

∫ t

0

√
CT
s dB

T
s ,

with

BT
t =

1√
T

√
uT

∫ tT

0

dMT
s√
λTs

.

Then we aim at applying Theorem 5.4 in [32] to CT . This result essentially says that for a
sequence of SDEs where the functions and processes defining the equations satisfy some con-
vergence properties, the laws of the solutions of the SDEs converge to the law of the solution

21



of the limiting SDE. We now check these convergence properties.

The sequence of processes (BT ) is a sequence of martingales with jumps uniformly bounded
by c/

√
µ. Furthermore, for t ∈ [0, 1], the quadratic variation of (BT ) at point t is equal to

uT
T

∫ tT

0

dNT
s

λTs
= uT

(
t+

∫ tT

0

dMT
s

TλTs

)
.

Now, remark that

E
[
(

∫ tT

0

dMT
s

TλTs
)2
]
≤ E

[ ∫ T

0

1

T 2λTs
ds
]
≤ c/(Tµ).

Therefore, we get that for any t ∈ [0, 1], the quadratic variation of (BT ) at point t converges
in probability to t. Thus, we can apply Theorem VIII.3.11 in [28] to deduce that (BT

t )t∈[0,1]
converges in law for the Skorohod topology towards a Brownian motion.

Since UT converges to a deterministic limit, we get the convergence in law, for the product
topology, of the couple (UT

t , B
T
t )∈[0,1] to (0, Bt)∈[0,1], with B a Brownian motion. The com-

ponents of (0, Bt) being continuous, the last convergence also takes place for the Skorohod
topology on the product space.

Finally, recall that the (CIR) stochastic differential equation

Xt =

∫ t

0
(µ−Xs)

1

d0
ds+

√
λ

m

∫ t

0

√
XsdBs

admits a unique strong solution on [0, 1]. This, together with the preceding elements enables
us to readily apply Theorem 5.4 in [32] to the sequence CT , which gives the result.

4.3.3 Proof of the second part of Theorem 2.2

We now give the proof of the second part of Theorem 2.2 which deals with the sequence of
Hawkes processes NT . Let

V T
t =

(1− aT )

T
NT

tT .

We write

V T
t =

∫ t

0
CT
s ds+ M̂T

t ,

where

M̂T
t =

(1− aT )

T
(NT

tT −
∫ tT

0
λTs ds)

is a martingale. Using Doob’s inequality, we obtain

E[(supt∈[0,1]M̂
T
t )

2] ≤ 4E[(M̂T
1 )

2] ≤ 4(
(1− aT )

T
)2E[NT

T ] ≤
4µ(1− aT )

T
→ 0.

Moreover, (CT , t) converges in law over [0, 1] to (C, t) for the Skorokod topology. This last
remark and Theorem 2.6 in [30] on the limit of sequences of stochastic integrals give the
result.
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4.4 Proof of Theorem 3.1

We first introduce some notations. In this proof, we write

φT = φT1 − φT2 and ψT =

+∞∑

k=1

(φT )∗k.

Moreover, we set

CT
t =

λT+
tT + λT−

tT

T

and define

(B1)Tt =

∫ tT

0

dMT+
s + dMT−

s√
T (λT+

s + λT−
s )

, (B2)Tt =

∫ tT

0

dMT+
s − dMT−

s√
T (λT+

s + λT−
s )

,

with

MT+
s = NT+

s −
∫ s

0
λT+
s ds, MT−

s = NT−
s −

∫ s

0
λT−
s ds.

Finally, we set

M
T+
t =

MT+
Tt

T
, M

T−
t =

MT−
Tt

T
.

We split the proof of Theorem 3.1 into several steps.

Step 1: Convenient rewriting

In this first step, we rewrite the price, intensity and martingale processes under more conve-
nient forms. We have

λT+
t − λT−

t =

∫ t

0
φT (t− s)(λT+

s − λT−
s )ds+

∫ t

0
φT (t− s)(dMT+

s − dMT−
s ).

Therefore, in the same way as for the proof of Proposition 2.1, we get

λT+
t − λT−

t =

∫ t

0
ψT (t− s)(dMT+

s − dMT−
s ).

From this last expression, we easily obtain

NT+
t −NT−

t =

∫ t

0

(
1 + ΨT (t− u)

)
(dMT+

u − dMT−
u ), (11)

with

ΨT (x) =

∫ x

0
ψT (s)ds.

Finally, note that

M
T+
t −M

T−
t =

1

T
(MT+

Tt −MT−
Tt ) =

∫ t

0

√
CT
s d(B

2)Ts . (12)
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Step 2: Preliminary result

For s ∈ [0, 1], we define

XT
s =

λT+
sT − λT−

sT

T
.

We have the following important result.

Lemma 4.12. The process XT converges ucp to 0 on [0, 1].

Proof. We write

XT
t =

∫ t

0
fT1 (t− s)d(M

T+
s −M

T−
s ),

with fT1 (x) = ψT (Tx). Remark that Corollaries 4.1, 4.2, 4.3 and 4.4 are valid if in their
statement, fT is replaced by fT1 . In the proof of Theorem 2.2, we have shown the convergence
to zero of the process

Y T
t =

∫ T

0
fT (t− s)dM

T
s .

Therefore, applying the same strategy but replacing fT by fT1 and M
T
by M

T+ −M
T−

, it
is clear that we get the result.

Step 3: Convergence of (B1, B2)

In this step, we prove the convergence of (B1, B2) towards a two-dimensional Brownian mo-
tion. To do so, we study the quadratic (co-)variations of the processes. Let i ∈ {1, 2},
j ∈ {1, 2}. We denote by [(Bi)T , (Bj)T ]t the quadratic co-variation of Bi and Bj at time t.

Lemma 4.13. We have the following convergence in probability:

[(Bi)T , (Bj)T ]t → t1i=j .

Proof. There are three cases:

• If i = j = 1, using that NT+ and NT− have no common jumps, we get,

[(B1)T , (B1)T ]t =

∫ tT

0

dNT+
s + dNT−

s

T (λT+
s + λT−

s )
= t+

∫ tT

0

dMT+
s + dMT−

s

T (λT+
s + λT−

s )
.

Furthermore,

E
[( ∫ tT

0

dMT+
s + dMT−

s

T (λT+
s + λT−

s )

)2] ≤ ct

Tµ
→ 0.

Therefore we have the result for i = j = 1.

• If i = j = 2, the proof goes similarly.

• If i = 1 and j = 2,

[(B1)T , (B2)T ]t =

∫ tT

0

dNT+
s − dNT−

s

T (λT+
s + λT−

s )
=

∫ tT

0

dMT+
s − dMT−

s + λT+
s ds− λT−

s ds

T (λT+
s + λT−

s )
.
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As for the case i = j = 1, we easily get
∫ tT

0

dMT+
s − dMT−

s

T (λT+
s + λT−

s )
→ 0.

It remains to show the convergence to zero of ZT
t defined by

ZT
t =

∫ t

0

XT
s

CT
s

ds.

For any ε > 0, we have

|ZT
t | ≤

∫ t

0
(1 ∧ |X

T
s

ε
|)ds+

∫ t

0
1CT

s <εds.

From Lemma 4.12, we have the convergence of the process XT to zero. Furthermore, in
Lemma 4.15 we will show that CT converge in law over [0, 1] towards a CIR process denoted
by C. Therefore, since the limiting processes are continuous, we have the joint convergence
of (XT , C

T ) to (0, C). We now use Skorohod representation theorem (without changing
notations). Almost surely, for T large enough, we have

sup
s∈[0,1]

|XT
s | ≤ ε2, sup

s∈[0,1]
|CT

s − Cs| ≤ ε.

This implies ∫ t

0
(1 ∧ |X

T
s

ε
|)ds+

∫ t

0
1CT

s <εds ≤ ε+

∫ 1

0
1Cs<2εds.

Recall that the set of zeros of a CIR process on a finite time interval has zero Lebesgue
measure. Thus, using the dominated convergence theorem, we easily see that choosing ε
conveniently, the second term in the preceding inequality can be made arbitrarily small,
which ends the proof.

Thus for any T , (B1)T and (B2)T are two martingales with uniformly bounded jumps and
their quadratic (co-)variations satisfy Lemma 4.13. Consequently, Theorem VIII.3.11 of [28]
gives us the following lemma.

Lemma 4.14. We have
((B1)T , (B2)T ) → (B1, B2),

in law, for the Skorohod topology, where (B1, B2) is a two-dimensional Brownian motion.

Step 4: Convergence of (CT , (B2)T )

The aim of this step is to prove that the couple (CT , (B2)T ) converges in law towards (C, (B2)),
with C a CIR process and B2 a Brownian motion, independent of C. More precisely, we have
the following lemma.

Lemma 4.15. The couple of process (CT , (B2)T ) converges in law, for the Skorohod topology,
over [0, 1], towards (C,B2), where B2 is a Brownian motion independent of C and C is a
CIR process satisfying

Ct =

∫ t

0
(
2µ

λ
− Cs)

λ

m
ds+

1

m

∫ t

0

√
CsdWs,

with W another Brownian motion, independent of B2.
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Proof. Let us consider the process NT = NT+ +NT−. It is a point process with intensity

λTt = λT+
t + λT−

t = 2µ+ aT

∫ t

0
(φ1 + φ2)(t− s)dNT

s .

Therefore, we are in the framework of Theorem 2.2: NT is a Hawkes process whose kernel
has a norm that tends to 1 at the right speed and its renormalized intensity CT converges
towards a CIR. Remark that the renormalizing factor here is 1/T and not (1− aT ), which is
not an issue since (3) holds. Thus we get the convergence of CT towards a CIR. To obtain
the joint convergence, we just need to write the same proof as for Theorem 2.2 (up to obvious
changes), but using this time Theorem 5.4 in [32] together with Lemma 4.14.

Step 5: Technical results

This fifth step consists in proving two technical results. The first one is the following.

Lemma 4.16. The process

RT
t =

∫ t

0

∫ +∞

T (t−u)
ψT (s)dsd(M

T+
u −M

T−
u )

converges ucp to 0 on [0, 1].

Proof. We write

RT
t =

∫ t

0
fT2 (t− u)d(M

T+
u −M

T−
u ),

with

fT2 (x) =

∫ +∞

Tx
ψT (s)ds.

The result follows in the same way as in the proof of Lemma 4.12.

We now give the last lemma of this step.

Lemma 4.17. We have ∫ ∞

0

∫ ∞

x
φi(s)dsdx <∞.

Proof. Using integration by parts together with Assumption 4, we get
∫ ∞

0

∫ ∞

x
φi(s)dsdx =

∫ ∞

0
xφi(x)dx+ lim

x→∞
x

∫ ∞

x
φi(s)ds ≤ 2m.

Step 6: End of the proof

We finally show Theorem 3.1 in this step. Using (11) we write

P T
t = (1 +

‖φ‖1
1− ‖φ‖1

)(M
T+
t −M

T−
t )

−
∫ t

0

∫ +∞

T (t−u)
ψT (s)dsd(M

T+
u −M

T−
u )− (

‖φ‖1
1− ‖φ‖1

− aT ‖φ‖1
1− aT ‖φ‖1

)(M
T+
t −M

T−
t ).
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Using Theorem 2.6 in [30] together with Lemma 4.15 and Equation (12), we get the conver-

gence of the process M
T+ −M

T−
, over [0, 1], for the Skorohod topology, towards

∫ t

0

√
CsdB

2
s .

Moreover, in Lemma 4.16, we have shown that the second term in the decomposition of P T
t

tends to zero. Finally, the third term also vanishes since ‖φ‖1 < 1. This concludes the proof.

27



A Appendix: Lemmas on the moment measures of Hawkes

processes

We give in this appendix some useful formulas related to the moment measures of Hawkes
processes. As previously, Hawkes processes are denoted by N (or NT ) and we keep the same
notations for the associated quantities M and λ (or MT and λT ). We also introduce the
cumulated intensities:

Λt =

∫ t

0
λt(s)ds, ΛT

t =

∫ t

0
λT (s)ds.

A.1 Expectation of product measures

Let us first recall the standard definitions of product measures and their expectations. For a
random, real valued, increasing process X on [0, T ], we denote by µX1 its associated random
Stieltjes measure on [0, T ] and for k ∈ N

∗, we write µXk the product measure on [0, T ]k built
from µX1 . More generaly, when X1, ..., Xn are n increasing processes and k1, ..., kn are n

integers such that k1+ ...+kn = k, we denote by µX
1
k1

⊗...⊗Xn

kn the product measure on [0, T ]k

built from µX
1
k1 ,..., µX

n

kn .

If X1, ..., Xn are now random, real valued, finite variation processes, we can write them as
the difference of two random, real valued, increasing processes: Xi = (Xi)+ − (Xi)−, (Xi)+

being the total variation of the process and (Xi)− = (Xi)+ − Xi. We have the following
definition.

Definition A.1. The product measures µXk and µX
1
k1

⊗...⊗Xn

kn are defined as the signed sums

µXk =
∑

I∈{−,+}k

(−1)#{i;Ii=−}µX
I1
1 ⊗...⊗X

Ik
1 ,

and

µX
1
k1

⊗...⊗Xn

kn =
∑

I∈{−,+}k

(−1)#{i;Ii=−}µ(X
1)

I1
1 ⊗...⊗(X1)

Ik1
1 ⊗...⊗(Xn)

Ik
1 .

We now define the expectation measure.

Definition A.2. Let µ be a signed random measure on (Ω,Σ) which writes µ = µ+−µ− with
µ+ and µ− two finite positive random measures such that their expectation measures E[µ+]
and E[µ−] (defined as A 7→ E[µ+(A)] and A 7→ E[µ−(A)], see [16]) are both finite. We define
its expectation measure E[µ] as

∀A ∈ Σ, E[µ](A) = E[µ+(A)]− E[µ−(A)],

Remark A.1. The latter definition does not depend on the pair (µ+, µ−).

Remark A.2. From Definition A.1, we have the decomposition

µXk = µX
+
k − µX

−

k

with µX
+
k and µX

−

k two finite positive random measures. In the same way,

µX
1
k1

⊗...⊗Xn

kn = µ(X
1
k1

⊗...⊗Xn

kn
)+ − µ(X

1
k1

⊗...⊗Xn

kn
)−
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with µ(X
1
k1

⊗...⊗Xn

kn
)+ and µ(X

1
k1

⊗...⊗Xn

kn
)− two finite positive random measures. We will later

show that the expectations of µX
+
k , µX

−

k , µ(X
1
k1

⊗...⊗Xn

kn
)+ and µ(X

1
k1

⊗...⊗Xn

kn
)− are finite for

the processes that we will consider (Λ, N or M). Therefore, we can define

µE[Xk] = E[µXk ] and µE[X
1
k1

⊗...⊗Xn

kn
] = E[µX

1
k1

⊗...⊗Xn

kn ].

Lemma A.1. Let µ be a signed random measure on (Ω,Σ), which writes µ = µ+ − µ− with
µ+ and µ− two finite positive random measures whose expectations are finite on Ω. For any
(deterministic) Σ-measurable bounded function g : Ω → R, we have

E[

∫
gdµ] =

∫
gdE[µ].

Proof. If µ is a positive random measure, g 7→ E[
∫
gdµ] coincides with g 7→

∫
gdE[µ] for

g = 1S with S ∈ Σ. Therefore, using Beppo Levy Theorem, these two linear forms coincide
for any positive measurable function g and so for any bounded measurable function g. We
then only need to decompose µ = µ+ − µ−.

Lemma A.2. In the above framework, the expectations of the product measures can be char-
acterized on the products of closed intervals3 as:

µE[Xk]([r1, s1]× ...× [rk, sk]) = E[(Xs1 −Xr−1
)...(Xsk −Xr−

k

)], (13)

and

µE[X
1
k1

⊗...⊗Xn

kn
]([r1, s1]× ...× [rk, sk]) = E[(X1

s1 −X1
r−1
)...(X1

sk1
−X1

r−
k1

)...(Xn
sk

−Xn
r−
k

)].

Proof. Let us prove (13). The measure µXk is a sum of 2k terms:

µXk = µX
+
k − µX

−

1 ⊗X+
k−1 − µX

+
1 ⊗X−

1 ⊗X+
k−2 + ...+ (−1)kµX

−

k .

Applying it to a product of closed intervals and taking expectation, we get

µE[Xk]([r1, s1]×...×[rk, sk]) = µE[X+
k
]([r1, s1]×...×[rk, sk])+...+(−1)kµE[X−

k
]([r1, s1]×...×[rk, sk]),

which is precisely equal to

E[(Xs1 −Xr−1
)× ...× (Xsk −Xr−

k

)].

Remark A.3. For the processes X that we will consider here, for any t ≥ 0, almost surely,
Xt = Xt− , therefore

µE[Xk]([r1, s1]× ...× [rk, sk]) = E[(Xs1 −Xr1)...(Xsk −Xrk)],

and

µE[X
1
k1

⊗...⊗Xn

kn
]([r1, s1]× ...× [rk, sk]) = E[(X1

s1 −X1
r1)...(X

1
sk1

−X1
rk1

)...(Xn
sk

−Xn
rk
)].

3Note that when we write an interval [r, s], we always assume that r ≤ s.
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These concepts will be useful since they will allow us to compute from the expectations of
product measures important expressions. Indeed, we have the following lemma.

Lemma A.3. We have

E[(Xs −Xr)
k] =

∫

Ik
µE[Xk](dt1, ..., dtk),

with I = [r, s], and for f bounded measurable

E[(

∫

I
f(t)dXt)

k] =

∫

Ik
f(t1)...f(tk)µ

E[Xk](dt1, ..., dtk).

Furthermore, we have the following characterization result.

Lemma A.4. Let µ1 and µ2 be two signed (random) measures on ([0, T ]k, B([0, T ]k)), which
write µi = µ+i − µ−i with µ+i and µ−i two finite positive random measures. If µ1 and µ2
coincide on the products of closed intervals, then µ1 and µ2 are equal.

Proof. For any product of closed intervals R,

µ+1 (R)− µ−1 (R) = µ+2 (R)− µ−2 (R)

Therefore,
µ+1 (R) + µ−2 (R) = µ+2 (R) + µ−1 (R).

µ+1 + µ−2 and µ+2 + µ−1 are two finite positive measures which coincide on the products of
closed intervals therefore they are equal and for every Borel set A:

µ+1 (A) + µ−2 (A) = µ+2 (A) + µ−1 (A),

Therefore,
µ+1 (A)− µ−1 (A) = µ+2 (A)− µ−2 (A),

which ends the proof.

In the next paragraphs, we will compute some of these expectations of product measures for
X = N or M and k = 1, 2, 3 or 4.

A.2 First order properties

We start from a result which we borrow from [5].

Lemma A.5. There exists c such that for all t, s ≥ 0 and T ≥ 1,

E[λTt ] = µ(1 +

∫ t

0
ψT (t− s)ds) ≤ cT.

E[NT
t −NT

s ] =

∫ t

s
E[λTu ]du ≤ cT (t− s).
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A.3 Second order properties

Lemma A.6. The second moment measure of the martingale M satisfies

µE[M2](dt1, dt2) = δt1(dt2)E[λ(t1)]dt1.

Remark A.4. By Lemma A.6, we mean that for every measurable function h : [0, T ]2 → R:

∫

[0,T ]2
h(t1, t2)µ

E[M2](dt1, dt2) =

∫

[0,T ]2
h(t1, t2)δt1(dt2)E[λ(t1)]dt1.

Remark A.5. By symmetry between t1 and t2 this lemma also writes

µE[M2](dt1, dt2) = δt2(dt1)E[λ(t2)]dt2.

Proof. From Remark A.2, µM2 is equal to the difference of two positive finite random measures
and thus, by definition, so is µE[M2]. We prove that for a partition (E−, E+, E0) of [0, T ]2

that we define below, these two measures restricted to E−, E+ and E0 coincide. To do so, we
show that the value of these two measures applied to any product of closed intervals included
into E−, E+ or E0 are equal and use Lemma A.4.

• Let R− = [r1, s1] × [r2, s2] be a product of closed intervals included in E− = {(x, y) ∈
[0, T ]2; y > x ≥ 0}:

µE[M2](R−) = E[(Ms1 −Mr1)(Ms2 −Mr2)] = 0.

because M is a martingale and (since R− ⊂ E−) s1 < r2.

Therefore µE[M2] restricted to E− is null.

• In the same way, µE[M2] restricted to E+ = {(x, y);x > y ≥ 0} is null.

• Let R0 = {(x, y) ∈ [0, T ]2; t1 ≤ y = x ≤ t2} be a product of closed intervals of
E0 = {(x, y) ∈ [0, T ]2; y = x}, then almost surely:

µM2(R0) = (µN2 + µΛ2 − µN1⊗Λ1 − µΛ1⊗N1)(R0)

=

∫ t2

t1

(Ns+ −Ns−)dNs

= Nt2 −Nt1 .

Therefore:

µE[M2](R0) = E[Nt1 −Nt2 ] =

∫

R0

δt1(dt2)E[λ(t1)]dt1.

This implies the lemma.

Lemma A.7. Let us now consider M1 ⊗ Λ1. We have

µE[M1⊗Λ1](dt1, dt2) = E[λ(t1)]ψ(t2 − t1)dt1dt2.
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Proof. From Remark A.2, µM1⊗Λ1 is equal to the difference of two positive finite random
measures and thus, by definition, so does µE[M1⊗Λ1]. Let us prove this equality on any
product of closed intervals of [0, T ]2: R = [r1, s1] × [r2, s2] and use Lemma A.4. Using the
decomposition

λu = E[λu] +

∫ u

0
ψ(u− s)dMs,

we get

µE[M1⊗Λ1](R) = E[(M(s1)−M(r1))

∫ s2

r2

λudu]

= E[

∫ s1

r1

dMv(

∫ s2

r2

(E[λu] +

∫ u

0
ψ(u− s)dMs)du)].

Now since if x < 0 then ψ(x) = 0, we have

= E[

∫ s1

r1

∫ s2

0
(

∫ s2

r2

ψ(u− s)du)dMsdMv]

=

∫ s1

r1

∫ s2

0
(

∫ s2

r2

ψ(u− s)du)µE[M2](ds, dv)

=

∫ s2

r2

∫ s1

r1

ψ(u− v)E[λv]dvdu.

This ends the proof.

Lemma A.8. We have

µE[Λ2](dt1, dt2) = E[λ(t1)]E[λ(t2)]dt1dt2 +
( ∫ t1∧t2

0
E[λ(u)]ψ(t1 − u)ψ(t2 − u)du

)
dt1dt2. (14)

Proof. As in the previous proof, we will prove the equality of the two measures on any product
of closed intervals of [0, T ]2: R = [r1, s1]× [r2, s2] and use the decomposition

λt1 = E[λt1 ] +

∫ t1

0
ψ(t1 − u)dMu.

We have

µE[Λ2](R) = E[

∫ s1

r1

λt1dt1

∫ s2

r2

λt2dt2]

=

∫ s1

r1

∫ s2

r2

E[λt1 ]E[λt2 ]dt1dt2 + E[

∫ s2

r2

∫ s1

0

∫ s1

r1

ψ(t1 − u)dt1dMudΛt2 ]

=

∫ s1

r1

∫ s2

r2

E[λt1 ]E[λt2 ]dt1dt2 +

∫ s2

r2

∫ s1

0

∫ s1

r1

ψ(t1 − u)dt1µ
E[M1⊗Λ1](du, dt2)

=

∫ s1

r1

∫ s2

r2

E[λt1 ]E[λt2 ]dt1dt2 +

∫ s1

r1

∫ s2

r2

(

∫ t1∧t2

0
E[λ(u)]ψ(t1 − u)ψ(t2 − u)du)dt1dt2
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Using the previous lemmas, we obtain the following result.

Lemma A.9. We have

µE[N2](dt1, dt2) = δt1(dt2)E[λ(t1)]dt1 + E[λ(t1)]ψ(t2 − t1)dt1dt2

+ E[λ(t2)]ψ(t1 − t2)dt1dt2 +
( ∫ t1∧t2

0
E[λ(u)]ψ(t1 − u)ψ(t2 − u)du

)
dt1dt2

Proof. Indeed, we only need to notice that

µE[N2] = µE[M2] + µE[M1⊗Λ1] + µE[Λ1⊗M1] + µE[Λ2]

and use the symmetry property of product measures:

µE[X1⊗X2](dt1, dt2) = µE[X2⊗X1](dt2, dt1)

to prove the lemma.

Applied to our sequence of Hawkes processes, this gives us the following second order bound.

Lemma A.10. There exists c such that for all t > s ≥ 0, T ≥ 1:

E[(NT
t −NT

s )
2 + (ΛT

t − ΛT
s )

2] ≤ c(T (t− s) + T 2(t− s)2).

Proof. We use Lemma A.3 and the bounds ‖ψT ‖1 ≤ cT , ‖ψT ‖∞ ≤ c and E[λTt ] ≤ cT.

A.4 Third order properties

Lemma A.11. The expectation of the third order product measure of M satisfies

µE[M3](dt1, dt2, dt3) = δt3(dt2)δt2(dt1)E[λ(t1)]dt3 + E[λ(t2)]δt3(dt2)ψ(t2 − t1)dt1dt3

+ E[λ(t3)]δt1(dt3)ψ(t3 − t2)dt2dt1 + E[λ(t1)]δt2(dt1)ψ(t1 − t3)dt3dt2.

Proof. We proceed as in the proof of Lemma A.6 considering [0, T ]3 as the disjoint union of

• {(x, y, z) ∈ [0, T ]3;x, y < z}∪{(x, y, z) ∈ [0, T ]3;x, z < y}∪{(x, y, z) ∈ [0, T ]3; z, y < x}
on which µE[M3] is null. Indeed, if [s1, t1]×[s2, t2]×[s3, t3] ⊂ {(x, y, z) ∈ [0, T ]3;x, y < z}
(then s3 > t2, t1), µ

E[M3]([s1, t1]× [s2, t2]× [s3, t3]) = E[(Mt1 −Ms1)(Mt2 −Ms2)(Mt3 −
Ms3)] = 0 since M is a martingale.

• {(x, y, z) ∈ [0, T ]3;x < y = z} on which µE[M3](dt1, dt2, dt3) = E[λ(t2)]δt3(dt2)ψ(t2 −
t1)dt1dt3

Indeed, let us consider a product of closed intervals R = {(x, y, z) ∈ [0, T ]3; r1 ≤ x ≤
s1 < r2 ≤ y = z ≤ s2} of this set. Almost surely,

µM3(R) = (Ms1 −Mr1)×
∫ s2

r2

(Mx+ −Mx−)dMx

= (Ms1 −Mr1)× (Ns2 −Nr2)

= (Ms1 −Mr1)× ((Ms2 −Mr2) + (Λs2 − Λr2)).

Therefore, taking expectations and using Lemmas A.6 and A.7, we get our expression.

33



• {(x, y, z) ∈ [0, T ]3; y < x = z} on which µE[M3](dt1, dt2, dt3) = E[λ(t3)]δt1(dt3)ψ(t3 −
t2)dt2dt1 in the same way.

• {(x, y, z) ∈ [0, T ]3; z < y = x} on which µE[M3](dt1, dt2, dt3) = E[λ(t1)]δt2(dt1)ψ(t1 −
t3)dt3dt2 in the same way.

• {(x, y, z) ∈ [0, T ]3;x = y = z} on which µE[M3](dt1, dt2, dt3) = δt3(dt2)δt2(dt1)E[λ(t1)]dt3.

Lemma A.12. Let |µ| be the absolute variation of the measure µ. We have

|µE[M2⊗Λ1]|(dt1, dt2, dt2) ≤ δt2(dt1)dt2dt3(µ
2(1 + ‖ψ‖1)2 + µ‖ψ‖∞(1 + ‖ψ‖1)

+ µ(1 + ‖ψ‖1)2‖ψ‖∞) + dt1dt2dt3(2(1 + ‖ψ‖1)‖ψ‖∞).

Proof. We write

λu = E[λu] +

∫ u

0
ψ(u− v)dMv.

Then, we proceed as in the proof of Lemma A.7 to get

µE[M2⊗Λ1](dt1, dt2, dt3) = E[λ(t1)]δt2(dt1)E[λ(t3)]dt2dt3 + ψ(t3 − t2)δt2(dt1)E[λ(t1)]dt2dt3

+ E[λ(t1)]ψ(t3 − t2)ψ(t2 − t1)dt1dt2dt3

+ E[λ(t2)]ψ(t3 − t1)ψ(t1 − t2)dt1dt2dt3

+ δt2(dt1)[

∫ t3

0
E[λ(s)]ψ(t3 − s)ψ(t1 − s)ds]dt2dt3.

Finally, we use that for all t, E[λ(t)] ≤ µ(1 + ‖ψ‖1).

In the same way we get the following lemmas.

Lemma A.13. We have

|µE[M1⊗Λ2]|(dt1, dt2, dt3) ≤ dt1dt2dt3(‖ψ‖∞µ(1 + ‖ψ‖1) + ‖ψ‖∞(µ2(1 + ‖ψ‖1)2

+ µ‖ψ‖∞(1 + ‖ψ‖1) + µ(1 + ‖ψ‖1)2‖ψ‖∞) + 2(1 + ‖ψ‖1)2‖ψ‖∞).

Lemma A.14. The quantity |µE[Λ3]|(dt1, dt2, dt3) is smaller than

dt1dt2dt3[µ(1 + ‖ψ‖1)2‖ψ‖∞ + (1 + ‖ψ‖1)(‖ψ‖∞µ(1 + ‖ψ‖1) + ‖ψ‖∞(µ2(1 + ‖ψ‖1)2

+ µ‖ψ‖∞(1 + ‖ψ‖1) + µ(1 + ‖ψ‖1)2‖ψ‖∞) + 2(1 + ‖ψ‖1)2‖ψ‖∞)].

This gives us the following third order bound.

Lemma A.15. There exists c such that for all, t, s ≥ 0 and T ≥ 1,

E[(NT
t −NT

s )
3 + (ΛT

t − ΛT
s )

3] ≤ c(T (t− s) + T 3(t− s)3).
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Proof. Let us write I = [s, t]. Using Lemma A.3, we have

E[|(NT
t −NT

s )
3|] ≤

∫

I3
|µE[NT

3 ]|(dt1, dt2, dt3).

Moreover,

|µE[NT
3 ]| ≤ |µE[MT

3 ]|+ |µE[MT
2 ⊗ΛT

1 ]|+ |µE[ΛT
1 ⊗MT

2 ]|+ |µE[MT
1 ⊗ΛT

1 ⊗MT
1 ]|

+ |µE[MT
1 ⊗ΛT

2 ]|+ |µE[ΛT
2 ⊗MT

1 ]|+ |µE[ΛT
1 ⊗MT

1 ⊗ΛT
1 ]|+ |µE[ΛT

3 ]|.
Therefore, from the previous Lemmas and simple symmetry properties of product measures,
we have (using that (1 + ‖ψT ‖1) = cT and ‖ψT ‖∞ ≤ c)

|µE[NT
3 ]|(dt1, dt2, dt3) ≤ c(Tδt2(dt1)δt3(dt2)dt3 + T 2δt2(dt1)dt2dt3

+ T 2δt3(dt2)dt3dt1 + T 2δt1(dt3)dt1dt2 + T 3dt1dt2dt3).

The integration of this bound on [s, t]3 gives the result.

A.5 Fourth order properties

Proceeding as in the proof of Lemmas A.6 and A.11, we get the following result.

Lemma A.16. For 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4, µ
E[M4](dt1, dt2, dt3, dt4) is equal to

δt3(dt4)[δt3(dt2)δt2(dt1)E[λ(t1)]dt3 + E[λ(t1)]δt3(dt2)ψ(t2 − t1)dt1dt3

+ E[λ(t2)]δt1(dt3)ψ(t3 − t2)dt2dt1 + E[λ(t3)]δt2(dt1)ψ(t1 − t3)dt3dt2

+ E[λ(t1)]δt2(dt1)E[λ(t3)]dt2dt3 + ψ(t3 − t2)δt2(dt1)E[λ(t1)]dt2dt3

+ E[λ(t1)]ψ(t3 − t2)ψ(t2 − t1)dt1dt2dt3 + E[λ(t2)]ψ(t3 − t1)ψ(t1 − t2)dt1dt2dt3

+ δt2(dt1)[

∫ t3

0
E[λ(s)]ψ(t3 − s)ψ(t1 − s)ds]dt2dt3].

Denoting by Sn the n-permutation group, this gives us the following bound.

Lemma A.17. There exists c such that, for any positive t1, t2, t3, t4 ≥ 0 and T ≥ 1,

|µE[MT
4 ]|(dt1, dt2, dt3, dt4) ≤ c

∑

σ∈S4

[Tδtσ(1)
(dtσ(2))dtσ(1)δtσ(2)

(dtσ(3))δtσ(3)
(dtσ(4))

+ Tδtσ(1)
(dtσ(2))dtσ(1)dtσ(3)dtσ(4)

+ T 2δtσ(1)
(dtσ(2))dtσ(1)δtσ(3)

(dtσ(4))dtσ(3)

+ Tδtσ(1)
(dtσ(2))dtσ(1)δtσ(2)

(dtσ(3))dtσ(4)]

Proof. From Lemma A.16 and using the bounds ‖ψT ‖1 ≤ cT , ‖ψT ‖∞ ≤ c and E[λTt ] ≤ cT ,
we have that for t1 ≤ t2 ≤ t3 ≤ t4,

|µE[MT
4 ]|(dt1, dt2, dt3, dt4) ≤ δt3(dt4)c[Tδt2(dt3)δt1(dt2)dt1

+ Tδt2(dt3)dt1dt2 + Tδt3(dt1)dt2dt3

+ Tδt1(dt2)dt3dt1 + Tdt1dt2dt3 + T 2δt1(dt2)dt1dt3]

Therefore, by considering [0, T ]4 as the union of the 4! sets of the form {(t1, t2, t3, t4); tσ(1) ≤
tσ(2) ≤ tσ(3) ≤ tσ(4)} where σ is a permutation, we get the result.
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