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Abstract

The team orienteering problem (TOP) is a particular vehicle routing problem in which the aim is to maximize
the profit gained from visiting customers without exceeding a travel cost/time limit. This paper proposes a
new and fast evaluation process for TOP based on an interval graph model and a Particle Swarm Optimiza-
tion inspired algorithm (PSOiA) to solve the problem. Experiments conducted on the standard benchmark
of TOP clearly show that our algorithm outperforms the existing solving methods. PSOiA reached a relative
error of 0.0005% whereas the best known relative error in the literature is 0.0394%. Our algorithm detects
all but one of the best known solutions. Moreover, a strict improvement was found for one instance of the
benchmark and a new set of larger instances was introduced.

Keywords: Vehicle routing, knapsack problem, interval graph, optimal split, swarm intelligence.

Introduction

The term Orienteering Problem (OP), first introduced in [19], comes from an outdoor game played in
mountainous or forested areas. In this game, each individual player competes with the others under the
following rules. Each player leaves a specific starting point and tries to collect as many rewards as possible
from a set of check points in a given time limit before returning to the same starting point. Each check
point can reward each player at most once and each player is aware of the position of each check point as
well as the associated amount of rewards. There always exists an optimal strategy to achieve the maximum
amount of rewards. In general, finding such a strategy (or solving OP) is NP-Hard [19], the player should
select a correct subset of check points together with determining the shortest Hamiltonian circuit connecting
these points and the starting point. OP and its variants have attracted a good deal of attention in recent
years [1, 6, 35, 38] as a result of their practical applications [14, 19, 24, 36] and their hardness [11, 18, 22].
Readers are referred to Vansteenwegen et al. [39] for a recent survey of these problems.

Adding the cooperative aspect to OP, without neglecting the competitive one, yields to the Team Orien-
teering Problem (TOP) [13]. In this problem, the players are partitioned into teams and players of a team
work together to collect as many rewards as possible within the time limit. Each check point can reward
each team at most once. The specific vehicle routing problem, analogous to this game that we also denote
by TOP, is the problem where a limited number of vehicles are available to visit customers from a potential
set, the travel time of each vehicle being limited by a time quota, each customer having a specific profit
and being visited at most once. The aim of TOP is to organize an itinerary of visits so as to maximize the
total profit. Solving this problem is also NP-Hard [13]. The applications of TOP include athlete recruiting
[13], technician routing [8, 33] and tourist trip planning [38, 39]. In this paper, we are interested in TOP as

∗Corresponding author. E-mail: duc-cuong.dang@hds.utc.fr.

First version submitted on March, 2012



the core variant of OP for multiple vehicles. This work was motivated by several lines of research first put
forward by Veolia Environnement [8, 9].

As far as we know, there are only three exact algorithms for TOP [10, 12, 27]. In contrast to exact
solving approaches, a number of heuristics and metaheuristics have been developed for TOP. Two fast
heuristics were developed by Butt and Cavalier [11] and by Chao et al. [14]. Tang and Miller-Hooks [33]
proposed a tabu search embedded in an adaptive memory procedure. Two tabu search approaches and two
versions of a Variable Neighborhood Search (VNS) algorithm were developed by Archetti et al. [2]. Those
four methods make use of infeasible tours and of a repairing procedure. Among these, the slow version of
the VNS (SVNS) gave very good results on the standard benchmark. Later, Ke et al. [21] developed four
versions of an Ant Colony Optimization (ACO) approach. A guided local search and a skewed variable
neighborhood search were then proposed by Vansteenwegen et al. [37, 38]. More recently, Bouly et al. [9]
introduced giant tours, i.e. permutations of all customers, to represent solutions of TOP and designed an
effective Memetic Algorithm (MA). The results of MA [9] were as good as those of SVNS [2] with several
strict improvements. Souffriau et al. [32] submitted two versions of a Path Relinking (PR) approach and
independently produced the strict improvements. Like [2], PR approach uses a repairing procedure during
the relinking phase to deal with infeasible tours. Those tours are obtained from a gradual combination of
each of the random generated solutions with the best ones. The slow version of the Path Relinking (SPR),
despite its name, required very small computational times. It is also worth mentioning that Tricoire et al.
[35] proposed a VNS algorithm for a generalized version of OP and provided their results on the original
TOP instances. Furthermore, there are two methods based on Particle Swarm Optimization (PSO) designed
to TOP: Bonnefoy [7] developed a PSO algorithm combined with a linear programming technique whereas
Muthuswamy and Lam [25] introduced a discrete version of PSO (DPSO) to solve TOP.

In short, three methods stand out as the state-of-the-art algorithms for TOP: the slow version of the
VNS (SVNS) in [2], the MA algorithm in [9] and the slow version of the PR (SPR) in [32]. Unlike the
other two, MA proposed an interesting technique to represent the solutions of TOP, known as giant tours.
This technique was previously introduced in [5] for the Vehicle Routing Problem (VRP). According to a
recent survey on heuristic solutions for variants of VRP [40], it is classified as an indirect representation
of the solution space. Indeed, each giant tour represents a neighborhood of solutions from which the best
one can easily be extracted by an evaluation process. A heuristic using this representation tends to have
better visions during the search and a better chance to reach the global optimum. Several search algorithms
exploiting this strategy have been discussed in [28] for the case of VRP and variants.

In this paper, we propose an effective PSO-inspired algorithm (PSOiA) for TOP. This work is based on
our preliminary study of a PSO-based memetic algorithm (PSOMA), which was communicated in [16]. The
main contribution of our paper is a faster evaluation process than the one proposed in [9]. This enables
PSOiA and possibly further methods in the literature to examine a larger number of neighborhoods and
explore faster the search space. Experiments conducted on the standard benchmark of TOP clearly show
that PSOiA outperforms the existing solution methods of the literature. It achieves a relative error of
0.0005% and detects all but one of the best known solutions. Moreover, a strict improvement was found
for one instance of the benchmark. The remainder of this paper is organized as follows. Section 1 provides
a formal formulation of TOP. PSOiA and the new optimal split procedure are described in Section 2.
The dynamic management of the parameters and computational results on the standard benchmark are
described in Section 3. In section 4, we introduce a new set of large instances and provide the respective
results. Finally, some conclusions and further developments are discussed in Section 5.

1. Formulation of the problem

TOP is modeled with a graph G = (V ∪ {d} ∪ {a}, E), where V = {1, 2, ..., n} is the set of vertices
representing customers, E = {(i, j) | i, j ∈ V } is the edge set, d and a are respectively departure and arrival
vertices for vehicles. Each vertex i is associated with a profit Pi, and each edge (i, j) ∈ E is associated
with a travel cost Ci,j which is assumed to be symmetric and satisfying the triangle inequality. A tour
R is represented as an ordered list of q customers from V , so R = (R[1], . . . , R[q]). Each tour begins at
the departure vertex and ends at the arrival vertex. We denote the total profit collected from a tour R as
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P (R) =
∑i=q

i=1 PR[i], and the total travel cost/time as C(R) = Cd,R[1] +
∑i=q−1

i=1 CR[i],R[i+1] +CR[q],a. A tour
R is feasible if C(R) ≤ L with L being a predefined travel cost/time limit. The fleet is composed of m
identical vehicles. A solution S is consequently a set of m (or fewer) feasible tours in which each customer
is visited at most once. The goal is to find a solution S such that

∑

R∈S P (R) is maximized. One simple
way of reducing the size of the problem is to consider only accessible customers. A customer is said to be
accessible if a tour containing only this customer has a travel cost/time less than or equal to L. For mixed
integer linear programming formulations of TOP see [10, 12, 21, 27, 39].

2. A PSO-inspired algorithm

Particle Swarm Optimization (PSO) is a swarm intelligence algorithm proposed by Kennedy and Eberhart
[23] with the basic idea of simulating the collective behavior of wild animals in the nature. PSO was first used
for optimization problems in continuous space as follows. A set known as a swarm of candidate solutions,
referred to as particles, is composed of positions in the search space. The swarm explores the search space
according to Equations (1) and (2). In these equations, xt

i and vti are respectively the vectors of position
and velocity of particle i at instant t. Three values w, c1 and c2, called respectively inertia, cognitive factor
and social factor, are parameters of the algorithm. Two values r1 and r2 are random numbers generated in
the interval [0, 1]. Each particle i memorizes its best known position up to instant t as xlbest

i , and the best
known position up to instant t for the swarm is denoted as xgbest.

vt+1
i = w · vti + c1 · r1 · (x

lbest
i − xt

i) + c2 · r2 · (x
gbest − xt

i) (1)

xt+1
i = xt

i + vt+1
i (2)

With this design, PSO is highly successful at performing optimizations in continuous space [3, 20]. In
contrast, when applied to problems of combinatorial optimization, PSO encounters difficulties in interpreting
positions and velocities, as well as in defining position update operators. As a result, there are a variety
of discrete PSO variants (DPSO) [4], and it is difficult to choose an appropriate variant for any given
combinatorial optimization such as TOP.

2.1. Basic algorithm

Our PSO works with a population of particles, so called the swarm and denoted S. Each particle
memorizes its current position, i.e. a representation of a solution, and its best known position, called local
best position, according to an evaluation process. A basic iteration of the algorithm consists of updating the
position of each particle in the swarm. In the standard PSO, this update is influenced by PSO parameters
and it takes into account the current position, the local best position and the global best position. In our
method, each particle also has a small probability ph to be moved out of its current position and transfered
to a completely new position. This new position is generated using a randomized heuristic. Moreover, each
new position has pm probability to be improved through a local search process. The algorithm is stopped
after itermax consecutive position updates have failed to give rise to new local best. Because itermax is
usually set to be proportional to n

m
[9, 16], then from now when we say the stopping condition is k, that

means itermax = k · n
m
.

For convenience, the current, local best and global best positions of a particle x are denoted respectively
S[x].pos, S[x].lbest and S[best].lbest. The global scheme is summarized in Algorithm 1. Its components are
detailed in the next sections.

2.2. Position representation and evaluation

A position in our PSO is a permutation π of all accessible customers, usually referred to as a giant tour,
in a particular problem scenario. The principle of the split technique that optimally extracts a solution
from a giant tour was introduced by Bouly et al. [9] for TOP. The basic idea is the following. All possible
subsequences of π, denoted by (π[i], . . . , π[i+ li]) or 〈i, li〉π for short, that can form a feasible tour of TOP
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Algorithm 1: Basic algorithm

Data: S a swarm of N particles;
Result: S[best].lbest best position found;
begin

initialize and evaluate each particle in S (see Section 2.3);
iter ← 1;
while iter ≤ itermax do

foreach x in [1..N ] do
if rand(0, 1) < ph then

move S[x] to a new position (see Section 2.3);
else

update S[x].pos (see Section 2.5);

if rand(0, 1) < pm then
apply local search on S[x].pos (see Section 2.4);

evaluate S[x].pos (see Section 2.2);
update lbest of S (see Section 2.6);
if (update Rule 3 is applied) (see Section 2.6) then

iter ← 1;
else

iter ← iter + 1;

end

are considered. For convenience, we use the term extracted tours or simply tours in this section to refer to
these subsequences. The goal of a split procedure is then to find a set of m distinct tours (without shared
customer) such that the sum of their profits is maximized. Such a procedure guarantees that if a set of
tours forming an optimal solution for the TOP is currently present as subsequences in a permutation π∗,
the application of the split procedure on π∗ will return the optimal TOP solution.

The authors of [9] proposed a split procedure for TOP. The algorithm requires to find the longest path
in an acyclic auxiliary graph. This graph represents the successor relations between extracted tours, i.e. the
possibility of a tour to follow another in a valid solution. They also introduced the notion of saturated tours,
i.e. a tour in which li is maximal (denoted by lmax

i ), and proved that solutions containing only saturated
tours are dominant. Therefore, only saturated tours were considered in their procedure and the number of
arcs in the acyclic graph is reduced. The worst case complexity of their procedure is O(m · n2).

In this work, the limited number of saturated tours is exploited more efficiently to reduce the complexity
of the evaluation process. Before going in the detail of our new split procedure, we recall the definition of a
knapsack problem with conflicts (KPCG) [41] as follows. In a KPCG, we have a set of items to be put into
a knapsack. A value and a volume are associated to each item. The knapsack has a limited volume, so it
cannot generally hold all items. In addition to the knapsack volume, some items are in conflict with each
other and they cannot be put in the knapsack together. The aim of the KPCG is to find a subset of items
to fit into the knapsack such that the sum of their values is maximized. In such a problem, the conflicts
between items are usually modeled with a graph, called conflict graph. We also recall the definition of an
interval graph [34] as follows. A graph G = (V,E) is called an interval graph if there is a mapping I from
V to sets of consecutive integers (called intervals) such that for all i and j of V , [i, j] ∈ E if and only if
I(i) ∩ I(j) 6= ∅. Then the following proposition holds for the split procedure of TOP.

Proposition 2.1. The split procedure can be done optimally in O(m · n) time and space.

Proof. Each possible tour extracted from a giant tour is in fact a set of positions of customers in the giant
tour. Since these customers are adjacent in the giant tour, the positions are consecutive integers and the set
of extracted tours can be mapped to the set of vertices of an interval graph X. Additionally, an edge of X (or
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Figure 1: The new evaluation process for the same split problem described in [9] with 8 customers, m = 2 and L = 70.

a non-empty intersection between two sets of positions) indicates the presence of shared customers between
the associated tours. As mentioned above, a split procedure looks for m tours without shared customer such
that the sum of their profit is maximized. So this is equivalent to solve a knapsack problem with X as the
conflict graph, a unitary volume for each item and m as the knapsack’s volume. In this particular knapsack
problem, the number of items is equal to the number of possible tours. This number is equal to n when only
saturated tours are considered. Based on the work of Sadykov and Vanderbeck [30], we deduce that such a
problem can be solved in O(m · n) time and space.

Our new evaluation process is summarized as below. For each saturated tour starting with customer π[i],
we use P [i] to denote the sum of profits of its customers. Its first successor, denoted by succ[i], is computed
as follows:

succ[i] =

{

i+ lmax
i + 1 if i+ lmax

i + 1 ≤ n
0 otherwise

(3)

A two-dimensional array Γ of size m · n is used to memorize the maximum reachable profit during process.
The algorithm then browses the saturated tours in reversed order, meaning from customer π[n] to customer
π[1], and updates Γ based on the recurrence relation described in Equation 4.

Γ(i, j) =

{

max{Γ(succ[i], j − 1) + P [i],Γ(i+ 1, j)} if 1 ≤ i ≤ n and 1 ≤ j ≤ m
0 otherwise

(4)

At the end, Γ(1,m) corresponds to the profit of the optimal solution. A simple backtrack is then performed
on Γ in order to determine the corresponding tours. That is to say if Γ(succ[i], j − 1) + P [i] is used over
Γ(i+1, j) in the relation, then the saturated tour starting with customer π[i] belongs to the optimal solution.

Figure 1 depicts the same example of the split problem described in [9] but with the new evaluation
process. More precisely, in this problem we have 8 customers with π = (1, 2, 3, 4, 5, 6, 7, 8), profits (10, 30,
10, 40, 40, 50, 10, 120), L = 70 and m = 2. According to the distances given in the figure, the saturated
tours are 〈1, 0〉, 〈2, 2〉, 〈3, 1〉, 〈4, 1〉, 〈5, 2〉, 〈6, 1〉, 〈7, 1〉 and 〈8, 0〉 with profits 10, 80, 50, 80, 100, 60, 130 and
120 respectively. The interval model is shown in Figure 1.b and the detail of the first successor relations as
well as solving steps are given in Figure 1.c. The new algorithm actually returns the same solution composed
of the same saturated tours (starting with customers 5 and 8) as expected in [9].
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2.3. Randomized heuristics

Particle positions in the swarm, including local best positions, are initialized to a random sequence. In
order to accelerate the algorithm, a small portion of the swarm containing NIDCH particles will have their
local best positions generated using a good heuristic. During the search, a faster heuristic is occasionally
used to generate a completely new position for a particle. The heuristics that we use are randomized variants
of the Iterative Destruction/Construction Heuristic (IDCH) of [9].

The core component of IDCH is a Best Insertion Algorithm (BIA). Our BIA considers a partial solution
(which can be empty) and a subset of unrouted customers to be inserted in the solution. This constructive

method then evaluates the insertion cost
Ci,z+Cz,j−Ci,j

(Pz)α
of any unrouted customer z between any couple of

successive customers i and j in a tour r. The feasible insertion that minimizes the cost is then processed and
the method loops back to the evaluation of the remaining unrouted customers. If more than one possible
insertion minimizes the insertion cost, one of them is chosen at random. This process is iterated until no
further insertions are feasible, either because no tour can accept additional customers, or because all the
customers are routed. The only parameter of BIA is α and it is set to 1 in [9, 32]. In this work, a random
value of α is generated each time BIA is called. This generation makes our IDCH less predictable and
actually a randomized heuristic. The computational method used to generate α is detailed in Section 3.

IDCH is described as follows. Firstly, BIA is called to initialize the current solution from scratch. On
following iterations a small part of the current solution is destroyed by removing a limited random number
(1, 2 or 3) of random customers from tours, and a 2-opt procedure is used to reduce the travel cost of
tours. A reconstruction phase is then processed using a Prioritized Best Insertion Algorithm (PBIA). The
destruction and construction phases are iterated, and each time a customer remains unrouted after the
construction phase its priority is increased by the value of its associated profit. In the PBIA, the subset
of unrouted customers with the highest priority is considered for an insertion using a BIA call. When no
more of these customers can be inserted, unrouted customers with lower priorities are considered, and so on.
The idea behind this technique is to explore solutions composed of high profit customers. IDCH memorizes
the best discovered solutions so far and stops after a fixed number of Destruction/Construction iterations
without improvement of this solution. This number is set to n for the fast version of IDCH. This version is
used to generate a new position for a particle when it is moved out of its current position. For the slower
version used to initialize the PSO, this value is set to n2. In the slow version, after n iterations without
improvement a diversification process is applied. This involves destroying a large part of the solution while
removing a number (bounded by n/m rather than by 3) of customers from tours then applying 2-opt to
each tour to optimize the travel cost, and finally performing the reconstruction phase.

2.4. Improvement of positions through local search

In our PSO, whenever a new position, i.e. a new permutation, is found, it has a pm probability of being
improved using a local search technique (LS). This LS contains 3 neighborhoods which were proved to be
efficient for TOP [9]:

• shift operator : evaluate each permutation obtained by moving each customer i from its original position
to any other position in the permutation.

• swap operator : evaluate each permutation obtained by exchanging every two customers i and j in the
permutation.

• destruction/repair operator : evaluate the possibility of removing a random number (between 1 and
n
m
) of customers from an identified solution and then rebuilding the solution using BIA procedure

described in the previous section.

The procedure is as follows. One neighborhood is randomly chosen to be applied to the particle position.
As soon as an improvement is found, it is applied and the LS procedure is restarted from the new improved
position. The LS is stopped when all neighborhoods are fully applied without there being any improvement.
In addition, we enhanced the randomness of shift and swap operators. That is to say the possibilities of
moving or exchanging customers in those operators are evaluated in random order.
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2.5. Genetic crossover operator to update position

In combinatorial optimization, the particle position update of PSO can be interpreted as a recombination
of three positions/solutions according to inertia, cognitive and social parameters. There are various ways of
defining this kind of recombination operator [4]. In our approach, the recombination operator is similar to
a genetic crossover whose core component is an extraction of l customers from a permutation π. To make
sure that a customer can be extracted at most once from sequential calls of the core component, a set M is
used to mark extracted customers from previous calls. The extracted subsequence is denoted πl

M and the
procedure is described as follows:

• Step 1 : generate a random location r in π and initialize πl
M to empty.

• Step 2 : browse customers from π[r] to π[n] and add them to the end of πl
M if they are not in M . If

|πl
M | reaches l then go to Step 4, otherwise go to Step 3.

• Step 3 : browse customers from π[r] down to π[1] and add them to the beginning of πl
M if they are

not in M . If |πl
M | reaches l then go to Step 4.

• Step 4 : add customers from πl
M to M .

With the core component, the position update procedure of particle x from the swarm S with respect to
the three PSO parameters w, c1 and c2 is as follows:

• Phase 1 : apply sequentially but in a random order the core component to extract subsequences from
S[x].pos, S[x].lbest and S[best].lbest with a common set M of customers to be skipped. M is initialized
to the empty set and the desired numbers of customers to be extracted from S[x].pos, S[x].lbest and
S[best].lbest are respectively w ·n, (1−w) ·n · c1.r1

(c1.r1+c2.r2)
and (1−w) ·n · c2.r2

(c1.r1+c2.r2)
. Here r1 and r2

are real numbers whose values are randomly generated in the interval [0, 1] with a uniform distribution.
Real numbers obtained from those computations are truncated to integral values.

• Phase 2 : link three extracted subsequences in a random order to update S[x].pos.

To illustrate the update procedure, we consider an arbitrary instance of TOP with ten customers and
an arbitrary particle x with S[x].pos =(4, 5, 2, 6, 10, 1, 7, 8, 9, 3), S[x].lbest = (4, 2, 3, 8, 5, 6, 9,
10, 7, 1) and S[best].lbest = (1, 2, 4, 9, 8, 10, 7, 6, 3, 5). PSO parameters are w = 0.3, c1 = 0.5 and
c2 = 0.3. Random variables r1 and r2 generated are respectively 0.5 and 0.5. Then the desired numbers
of customers to be extracted for S[x].pos, S[x].lbest and S[best].lbest are respectively 3 (= ⌊0.3 ∗ 10⌋), 4
(= ⌊(1 − 0.3) ∗ 10 ∗ 0.5 ∗ 0.5/(0.5 ∗ 0.5 + 0.3 ∗ 0.5)⌋) and 3 (= 10 − 3 − 4). Random extraction order in
Phase 1 is (S[x].pos, S[x].lbest, S[best].lbest) and random linking order in Phase 2 is (S[x].lbest, S[x].pos,
S[best].lbest). Figure 2 gives an example of the update procedure that indicates the new position for the
particle x of (8, 5, 6, 9, 10, 1, 7, 2, 4, 3).

Our particle position update procedure therefore works with the standard PSO parameters w, c1 and
c2, the only restriction being that w has to be in the interval [0, 1[. Our PSO approach can be classified as
PSO with position only, given that no velocity vector is used [26]. It is noteworthy to mention that the core
component was created to adapt to a linear permutation order, but it can easily be adapted to a circular
order by changing Step 3.

2.6. Swarm local best update

In some situations, PSO can be trapped in a local optimum, especially when all the local best positions
of particles in the swarm are identical. In our approach, the fact that a particle can be randomly moved
out of its current position reduces this premature convergence. However, the effect of this reduction is only
partial because the probability to move a particle out of its current position is set to a small value. This
setting is due to two main reasons: firstly, a frequent use of the IDCH heuristic to generate new positions is
time-consuming and secondly, a frequent use of perturbing operations is undesired in a PSO algorithm [42].

7



  

4 5 2 6 10 1 7 8 9 3S[x].pos 10 1 7
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S[x].posS[x].lbest S[best].lbest

Order

Figure 2: An example of position update for an arbitrary instance of ten customers. Black dots represent random generated
locations r and shaded boxes represent marked customers from M during Phase 1.

So then to strengthen the diversification process, whenever a new position is found by a particle x in
the swarm S, instead of updating S[x].lbest, the algorithm will search for an appropriate particle y in the
swarm using a similarity measure and update S[y].lbest. The similarity measure is based on two criteria:
the total collected profit and the travel cost/time of the identified solution. Two positions are said to be
similar or identical if the evaluation procedure on these positions returns the same profit and a difference in
travel cost/time that is lower than a value δ. Our update rules are based on Sha and Hsu [31] but simplified
as follows. For convenience, the particle having the worst local best position of the swarm is denoted as
S[worst].

• Rule 1 : the update procedure is applied if and only if the performance of new position S[x].pos is
better than the worst local best S[worst].lbest.

• Rule 2 : if there exists a particle y in S such that S[y].lbest is similar to S[x].pos, then replace S[y].lbest
with S[x].pos.

• Rule 3 : if no such particle y according to Rule 2 exists, replace S[worst].lbest with S[x].pos. Each
successful application of this rule indicates that a new local best has been discovered by the swarm.

The implementation of these rules was made efficient through the use of a binary search tree to sort particles
by the performance of their local best positions using the two criteria. In the next section, the performance
of our PSO on the standard benchmark for TOP is discussed.

3. Numerical results on the standard benchmark

PSOiA is coded in C++ using the Standard Template Library (STL) for data structures. The program is
compiled with GNU GCC in a Linux environment, and all experiments were conducted on an AMD Opteron
2.60 GHz. In order to compare the performance of our approach with those of the existing algorithms in the
literature, we use 387 instances from the standard benchmark for TOP [13]. These instances comprise 7 sets.
Inside each set the original number of customers and customer positions are constant, however the maximum
tour duration L varies. Therefore the number of accessible customers are different for each instance. The
number of vehicles m also varies between 2 and 4.

3.1. Protocol and performance metrics

Our approach was tested using the same protocol as in [21, 25, 32]. For each instance of the benchmark,
the algorithms were executed 10 times. The average and maximal scores as well as the average and maximal
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computational times were recorded. In order to evaluate separately the performance of different configu-
rations or methods, the best known result in the literature for each instance, denoted by Zbest, is used as
the reference score of the instance. These best results for all instances of the benchmark are collected from
[2, 9, 16, 21, 32, 33] and also from our PSO algorithms, but not from Chao et al. [14] because the authors
used a different rounding precision and some of their results exceeded the upper bounds given in [10].

For an algorithm tested on an instance, obtained solutions of 10 runs are recorded and we use Zmax and
Zavg to denote respectively the maximal and average scores of these runs. Then the relative percentage
error (RPE) and the average relative percentage error (ARPE) are used to evaluate the performance of the
algorithm. RPE is defined as the relative error between Zbest and Zmax. It was used in [25, 32] to show the
performance of the algorithm over 10 runs.

RPE =
Zbest − Zmax

Zbest

· 100 (5)

ARPE is defined as the relative error between Zbest and Zavg. It was used in [25] to show the robustness
of the algorithm over 10 runs. In other words, a small value of ARPE indicates a higher chance of getting a
good score (or a small RPE) for a limited number of runs of the algorithm on the instance. The instances,
for which there is no accessible customer (or Zbest = 0) are discarded from the comparison. The number of
instances is then reduced to 353.

ARPE =
Zbest − Zavg

Zbest

· 100 (6)

For a set of instances, the respective average values of RPE and ARPE of the instances are computed
to show the performance and robustness of the algorithm. For a benchmark composed of different sets, the
average value of the latter ones on all the sets is computed to show the overall performance and robustness
of the algorithm on the benchmark. As a complement measure for a benchmark, NBest is used to denote
the number of instances in which Zbest are reached.

3.2. Parameter setting

Values of some parameters are directly taken from the previous studies of [9, 16]. Therefore, we did not
do further experiments on those parameters:

• N , the population size, is set to 40.

• NIDCH , the number of local best positions initialized with the slow version of IDCH, is set to 5.

• pm, the local search rate, is set to 1− iter
itermax

.

• δ, the similarity measurement of particles, is set to 0.01.

• c1, c2, the cognitive and social factors of the particles, are set to 0.5 (c1 = c2 = 0.5).

• w, the inertia parameter, decreases gradually as the algorithm proceeds. It is initialized to 0.9 and
multiplied by 0.9 after each iteration of the PSO.

• α, the control parameter of intuitive criteria of the BIA heuristic, is generated as follows. Two random
numbers r1 and r2 are first generated in [0, 1] with a uniform distribution, then α = 1 + 2 · r1

r1+r2
is

computed.

The most important parameter which could be up for discussion is the stopping condition k. We tested
PSOiA on the 353 instances of the benchmark using varied values of k from 10 to 100 with steps of 10.
In order to maximally exploit in these tests the crossover operator and the evaluation process, we set the
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Figure 3: Performance of PSOiA in terms of the stopping condition k.
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Figure 4: Performance of PSOiA in terms of the probability ph of a particle to be moved out of its current position.

probability ph of a particle to be moved out of its current position equal to 0.1. We will return to the ph
parameter later (once k is fixed) to check whether it is over-tuned.

Figures 3 illustrate the evolution of RPE, ARPE and the average computational time in terms of k. One
may notice that from k = 40, the algorithm starts to provide the best RPE and interesting values of ARPE.
On the other hand, the computational time linearly increases in terms of k, hence the value k = 40 were
selected to present our final results of PSOiA.

Next, we set k to 40 and varied the value of ph from 0 to 1 with a step equal to 0.1. Figures 4 show
the evolution of RPE, ARPE and the average computational time in terms of ph. In these tests, the
computational time linearly increases in terms of ph (with a small exception for ph = 1.0) and value 0.1 is
the right choice for the parameter.

3.3. Comparison with the literature

The results of PSOiA (k = 40) on instances of Chao’s benchmark are then compared with the state-of-
the-art algorithms in the literature:

• SVNS proposed by Archetti et al. [2], tested on an Intel Pentium 4 2.80 GHz,

• MA proposed by Bouly et al. [9], tested on an Intel Core 2 Duo 2.67 GHz,

• SPR proposed by Souffriau et al. [32], tested on an Intel Xeon 2.50 GHz,

• PSOMA (with w = 0.07, the best configuration) described in [16] as the preliminary study of this
work, tested on an AMD Opteron 2.60 GHz.

On the comparison between computers in use, machine performances of PSOiA, PSOMA, MA/MA10 [9]
and SPR [32] are almost the same: recent dual-core processors with clock frequency varying from 2.50 GHz
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Method Year
RPE average for each data set

NBest
4 5 6 7 avg

SVNS 2007 0.0680 0.0267 0 0.0627 0.0394 134
ACO 2008 0.3123 0.0355 0 0.0064 0.0885 128
MA 2010 0.0548 0.0612 0 0.0571 0.0433 129
SPR 2010 0.1157 0.0465 0 0.0454 0.0519 126
DPSO 2011 2.0911 0.7828 0.3375 1.7618 1.2433 39
MA10 2011 0.0304 0.0612 0 0.0127 0.0261 146

PSOMA 2011 0.0262 0.0151 0 0.0211 0.0156 146
PSOiA 2012 0.0019 0 0 0 0.0005 156

Table 1: Performance comparison based on RPE average for each data set of the relevant instances.

Method Year
ARPE average for each data set

4 5 6 7 avg

SVNS 2007 n/a n/a n/a n/a n/a
ACO 2008 1.8663 0.8228 1.1754 0.5118 1.0941
MA 2010 n/a n/a n/a n/a n/a
SPR 2010 n/a n/a n/a n/a n/a
DPSO 2011 5.1956 3.7100 2.0073 4.1986 3.7779
MA10 2011 0.2068 0.0953 0.0169 0.1056 0.1061

PSOMA 2011 0.2851 0.0904 0 0.1790 0.1386
PSOiA 2012 0.1105 0.0336 0 0.0305 0.0436

Table 2: Robustness comparison based on ARPE average for each data set of the relevant instances.

to 2.67 GHz. SVNS [2] used a computer with higher clock frequency (2.8 GHz) but that was a Pentium 4.
It is supposed to have a lower performance than the others.

In [32], the authors of SPR algorithm talk about the 157 relevant instances of sets 4, 5, 6 and 7 and
show only their results on these instances. Therefore, we will provide the comparison focused on these 157
instances. We also noted that results of SVNS were taken from the website of the first author of [2]. These
results were updated in 2008 and the rounding convention problem reported in [9, 21] was corrected. It
also appears that these results are better than the ones published in the journal article [2]. Additionally, a
different testing protocol which considered only 3 runs for each instance of the benchmark had been used
for SVNS and MA. So in [16], the source code of MA [9] was received from the authors and turned to match
the new testing protocol: 10 executions per instance. Results of this new test for MA is denoted by MA10.

Our results are also compared with the other swarm intelligence algorithms available in the literature:

• Sequential version of the Ant Colony Optimization (ACO) proposed by Ke et al. [21], tested on an
Intel CPU 3.0 GHz,

• Discrete Particle Swarm Optimization (DPSO) proposed by Muthuswamy and Lam [25], tested on an
Intel Core Duo 1.83 GHz.

Table 1 reports RPE averages for each data set of all methods. From this table, we observe that PSOMA
(with very basic PSO components) already outperforms the other methods in the literature. This motivates
our choice of testing the new optimal split procedure on PSO scheme instead of MA one. Regarding PSOiA,
the results are almost perfect with zero RPE for sets 5, 6, 7 and only one instance was missed for set 4 with
a very small value of RPE. Table 2 reports ARPE averages for each data set of the standard benchmark.
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Method
Average CPU time in seconds for each data set

1 2 3 4 5 6 7

SVNS 7.78 0.03 10.19 457.89 158.93 147.88 309.87
ACO 5.77 3.16 6.50 37.09 17.36 16.11 30.35
MA 1.31 0.13 1.56 125.26 23.96 15.53 90.30
SPR n/a n/a n/a 36.74 11.99 8.96 27.28
DPSO n/a n/a n/a n/a n/a n/a n/a
MA10 1.95 0.24 2.06 182.36 35.33 39.07 112.75

PSOMA 0.18 0.01 0.49 83.89 14.72 7.59 49.09
PSOiA 2.15 0.41 3.18 218.58 49.5 47.08 97.47

Table 3: Average CPU time for each data set of the standard benchmark.

Method
Maximal CPU time in seconds for each data set

1 2 3 4 5 6 7

SVNS 22 1 19 1118 394 310 911
ACO n/a n/a n/a n/a n/a n/a n/a
MA 4.11 0.531 3.963 357.053 80.19 64.292 268.005
SPR n/a n/a n/a n/a n/a n/a n/a
DPSO n/a n/a n/a n/a n/a n/a n/a
MA10 8.59 1.16 6.34 635.75 113.58 96.89 443.59

PSOMA 4.35 0.03 4.88 466.65 78.12 48.77 350.86
PSOiA 10.61 2.20 10.93 1274.52 170.09 115.93 420.50

Table 4: Maximal CPU time for each data set of the standard benchmark.

Method Year
Number of instances (%)

4 5 6 7 avg

SVNS 2007 n/a n/a n/a n/a n/a
ACO 2008 7 18 0 21 11
MA 2010 n/a n/a n/a n/a n/a
SPR 2010 n/a n/a n/a n/a n/a
DPSO 2011 0 2 0 0 1
MA10 2011 33 84 93 47 61

PSOMA 2011 26 76 100 33 55
PSOiA 2012 52 87 100 74 72

Table 5: Stability comparison based on the number of instances having zero APRE.
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From that table, we observe that PSOMA is less robust than MA10 on data sets 4 and 7. However, it is
more robust than MA10 on data sets 5 and 6. Finally, PSOiA is the most robust method. The ARPE
average on all data sets of PSOiA is 0.0436% which almost equivalent to the RPE averages on all data sets
of the state-of-the-art algorithms (SVNS, SPR and MA) reported in the literature (ranging from 0.0394%
to 0.0519%) as shown in Table 1.

Tables 3 and 4 report the average and maximal CPU times respectively for each data set of all methods.
From this table, we notice that ACO and SPR are fast methods. However, their performances are not
as good as SVNS, MA/MA10, PSOMA and PSOiA as seen in Tables 1 and 2. SVNS is slower than the
others. PSOMA is quite faster than MA10 but as mentioned above, MA10 is more robust than PSOMA.
Computational efforts required for PSOiA and MA10 are almost the same. Based on a remark of [35] and
our own verification, it is worthy to mention that the maximal CPU times of ACO method reported in [21]
are in fact the maximal average CPU times, i.e. for each instance the average CPU time is computed, then
the maximal value of these CPU times is reported for a whole set. Therefore, the maximal CPU times of
ACO method are marked as n/a (not available) in Table 4.

Table 5 reports the number of instances (in percent) for which the value of ARPE is zero, which means
that the results of all runs are identical or that the algorithm is stable. From this table, one may notice that
PSOiA is stable in most cases (72%). Additionally, the performance analysis of SVNS, MA, SPR, PSOMA
and PSOiA indicates that the results from data sets 4 and 7 are generally less stable than those from data
sets 5 and 6. This can be explained by the differences between the features of those instances. Data sets
4 and 7 contain up to 100 customers for which both profits and positions are randomly distributed. On
the other hand, data sets 5 and 6 have at most 64 customers arranged in a grid such that large profits are
assigned to customers located far away from the depots.

Finally, detailed results of MA10, PSOMA and PSOiA for the 157 instances are reported in Tables 7,
8, 9 and 10. For each instance, columns CPUavg report the average computational time in seconds of the
ten runs. Complete results of the 353 tested instances are available at http://www.hds.utc.fr/˜moukrim.
According to these results, p4.4.n is the only instance of the whole benchmark from which PSOiA was not
able to find the best known solution. One unit of profit was missed for this instance. Furthermore, a strict
improvement was detected for instance p4.2.q with a new score of 1268 instead of 1267.

4. A set of larger instances for the team orienteering problem

From the previous section, we observe that PSOiA achieves a value of RPE of 0.0005%. Therefore,
it would be very difficult to develop better heuristics for the current standard benchmark instances. In
order to promote algorithmic developments for TOP, we introduce a new set of benchmark instances with a
larger number of customers. Our new instances are based on the OP instances of Fischetti et al. [18] with
the transformation of Chao et al. [13]. This transformation consists of designing the travel length limit of

vehicles for TOP as LTOP = LOP

m
. In this formulation, m is the number of vehicles of the new TOP instance

and LOP is the travel length limit of the vehicle of the former OP instance.
We used instances from the two classes described in [18] to generate TOP instances. According to the

authors, the first class was derived from instances of the Capacitated Vehicle Routing Problem (CVRP)
[15, 29] in which customer demands were transformed into profits and varied values of LOP were considered.
The second class was derived from instances of the Traveling Salesman Problem (TSP) [29] in which customer
profits were generated in different ways: equal to 1 for each customer (gen1); using pseudo-random function
so that the output values are in [1, 100] (gen2); using distance-profit function such that large profits are
assigned to nodes far away from the depots (gen3).

In total, 333 new instances were used in our test. It can be seen that PSOiA is very stable for a large
part of those instances, especially the ones from the CVRP benchmark. So Table 11 reports the results
of PSOiA for which the value of ARPE is non-zero. A complete specification, including the number of
accessible customers n, the number of vehicles m, the travel length limit L and the way to generate the
profits for the customers gen, is also given for each instance. The values in the last row corresponding to
Zavg and CPUavg columns respectively indicate the ARPE and the average computational time on the set
of instances. All tested instances and the other results are available on the previously mentioned website.
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Generation Number of instances with ARPE zero (%) CPUavg

gen1 81% 4123.84
gen2 73% 4764.23
gen3 75% 5357.32

76% 4748.47

Table 6: Influence of profit generations on the stability of PSOiA

In addition, we also analyzed the computational behavior of PSOiA on the new instances according
to the various generations of the profits (namely gen1, gen2 and gen3). In this analysis, for each TSP
instance, three variants of TOP instances are available. This implies the same sample size of 93 instances
per generation and provides a fair comparison. Table 6 reports the number of instances (in percent) for
which the ARPE is zero and the average computational time CPUavg for each generation. From this table,
one may notice that PSOiA is more stable and requires less computational effort on generation gen1 (equal
profits) than on generations gen2 (random profits) and gen3 (large profits distributed to customers located
far away). Finally, it should be noted that the sample size to analyze the stability of PSOiA according to
the positions of the customers is not statistically large enough to reveal the detail.

5. Conclusion

This paper presented an effective Particle Swarm Optimization approach for the Team Orienteering
Problem. The approach uses giant tours to indirectly encode particle positions. A new fast evaluation
process based on an interval graph model was proposed. This process enabled more iterations for the PSO
without increasing the global computational time. Numerical results on the standard benchmark for TOP
demonstrate the competitiveness of the algorithm. Our approach outperforms the prior methods both in
terms of computational time and solution quality. Hence it improved considerably solving methods for
TOP, a new strict improvement on one instance was detected and the newly attained relative error for all
instances being 0.0005%. This success is due to the new accelerated split procedure, the good design of
the recombination operator to update particle positions, the introduction of extra positions to the swarm,
as well as the appropriate management of dynamic parameters. In summary, the results presented in this
paper are encouraging for the application of Particle Swarm Optimization to solve combinatorial problems,
as already indicated in [4] and for the application/acceleration of optimal split procedures in dealing with
vehicle routing problems, as already indicated in [17].
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Table 7: Results for set 4 of the benchmark.

Instance Zbest
MA10 PSOMA PSOiA

Zmax Zavg CPUavg Zmax Zavg CPUavg Zmax Zavg CPUavg

p4.2.a 206 206 206 13.71 206 206 0.21 206 206 5.88
p4.2.b 341 341 341 51.8 341 341 0.65 341 341 39.21
p4.2.c 452 452 452 83.16 452 452 2.05 452 452 67.12

continued on next page
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Table 7 – continued

Instance Zbest
MA10 PSOMA PSOiA

Zmax Zavg CPUavg Zmax Zavg CPUavg Zmax Zavg CPUavg

p4.2.d 531 531 530.7 143.67 531 530.8 29.77 531 531 124.29
p4.2.e 618 618 616.8 205.89 618 618 25.23 618 618 197.94
p4.2.f 687 687 679.6 204.92 687 681.4 109.12 687 687 322.64
p4.2.g 757 757 756 190.49 757 755.5 97.95 757 757 206.54
p4.2.h 835 835 828.1 245.31 835 826.1 126.94 835 833.6 257.24
p4.2.i 918 918 918 366.45 918 913.6 150.45 918 918 368.2
p4.2.j 965 965 962.6 300.78 965 963.1 167.88 965 965 258.36
p4.2.k 1022 1022 1020.7 370.53 1022 1020.2 180.83 1022 1021 350.07
p4.2.l 1074 1071 1070.8 281.38 1071 1066.9 160.98 1074 1072.3 357.41
p4.2.m 1132 1132 1129.4 303.22 1132 1129.9 201.95 1132 1130.6 321.08
p4.2.n 1174 1174 1172.7 374.27 1174 1170.3 158.34 1174 1172 427.5
p4.2.o 1218 1218 1216 306.18 1218 1211.7 154.13 1218 1210.9 415.43
p4.2.p 1242 1242 1241.2 311.23 1241 1238.4 198.04 1242 1239.5 347.47
p4.2.q 1268 1267 1264.3 313.03 1267 1264.6 192.02 1268 1266.2 588.22
p4.2.r 1292 1292 1288.7 352.5 1292 1287.8 178.19 1292 1289.9 470.01
p4.2.s 1304 1304 1301.8 297.88 1304 1302.1 190.02 1304 1303.8 486.19
p4.2.t 1306 1306 1306 292.66 1306 1306 167.27 1306 1306 408.65
p4.3.c 193 193 193 6.07 193 193 0.05 193 193 1.89
p4.3.d 335 335 335 29.92 335 335 1.08 335 335 16.6
p4.3.e 468 468 468 39.23 468 468 2.6 468 468 36.41
p4.3.f 579 579 579 107.55 579 579 6.3 579 579 72.88
p4.3.g 653 653 653 117.44 653 651.4 32.49 653 653 70.44
p4.3.h 729 728 724.7 138.95 729 724.7 60.24 729 729 194.18
p4.3.i 809 809 809 197.7 809 808.6 41.17 809 809 247.26
p4.3.j 861 861 859.5 175.98 861 857.6 85.71 861 860.9 229.11
p4.3.k 919 919 918.2 218.73 919 916.7 94.55 919 919 275.31
p4.3.l 979 979 975.2 206.99 979 977.4 89.28 979 976.9 258.33
p4.3.m 1063 1063 1057.9 231.16 1063 1058.4 103.42 1063 1062 281.42
p4.3.n 1121 1121 1115.9 197.23 1121 1115.6 104.57 1121 1118.4 309.03
p4.3.o 1172 1172 1169 306.3 1172 1169.7 145.44 1172 1172 371.72
p4.3.p 1222 1222 1219.4 301.81 1222 1222 123.77 1222 1222 284.61
p4.3.q 1253 1253 1250 220.44 1253 1250.2 112.58 1253 1252.2 448.69
p4.3.r 1273 1273 1270.2 218.38 1273 1269.5 115.4 1273 1269.4 288.72
p4.3.s 1295 1295 1293.8 255.25 1295 1291.5 115.6 1295 1289.5 278
p4.3.t 1305 1305 1303.7 210.95 1304 1301.1 124.38 1305 1304.3 305.85
p4.4.e 183 183 183 0.45 183 183 0.02 183 183 0.65
p4.4.f 324 324 324 16.5 324 324 0.2 324 324 8.61
p4.4.g 461 461 461 35.13 461 461 0.74 461 461 24.19
p4.4.h 571 571 571 52.23 571 567.1 5.56 571 571 36.74
p4.4.i 657 657 657 72.75 657 657 1.71 657 657 65.48
p4.4.j 732 732 732 95.06 732 731.2 9.2 732 732 81.35
p4.4.k 821 821 820.2 110.1 821 820.8 20.03 821 821 119.45
p4.4.l 880 880 879.1 113.9 880 879.1 54.34 880 879.5 101.6
p4.4.m 919 916 912.7 129.08 919 915.6 67.59 919 916.6 223.19
p4.4.n 977 969 965.5 197.89 969 964.2 72.07 976 967 257.14
p4.4.o 1061 1061 1057.7 185.94 1061 1051.6 91.63 1061 1060 208.36
p4.4.p 1124 1124 1119.8 226.38 1124 1115.9 102.16 1124 1122.7 193.14

continued on next page
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Table 7 – continued

Instance Zbest
MA10 PSOMA PSOiA

Zmax Zavg CPUavg Zmax Zavg CPUavg Zmax Zavg CPUavg

p4.4.q 1161 1161 1161 195.51 1161 1159.4 94.86 1161 1161 252.98
p4.4.r 1216 1216 1210.2 226.09 1216 1201 94.76 1216 1206.2 260.06
p4.4.s 1260 1260 1256.9 191.25 1259 1257.1 131.53 1260 1257.5 256.15
p4.4.t 1285 1285 1283 175.01 1285 1284.5 100.62 1285 1282.3 161.33

Table 8: Results for set 5 of the benchmark.

Instance Zbest
MA10 PSOMA PSOiA

Zmax Zavg CPUavg Zmax Zavg CPUavg Zmax Zavg CPUavg

p5.2.h 410 410 410 50.52 410 410 1.34 410 410 51.98
p5.2.j 580 580 580 41.63 580 580 1.45 580 580 54.37
p5.2.k 670 670 670 41.12 670 670 1.63 670 670 60.78
p5.2.l 800 800 800 65.16 800 800 37.6 800 800 88.15
p5.2.m 860 860 860 62.88 860 860 33.52 860 860 90.5
p5.2.n 925 925 925 53.75 925 925 25.21 925 925 72.46
p5.2.o 1020 1020 1020 47.56 1020 1020 29.7 1020 1020 65.93
p5.2.p 1150 1150 1150 96.04 1150 1150 59.14 1150 1150 109.63
p5.2.q 1195 1195 1195 53.26 1195 1195 36.71 1195 1195 116.62
p5.2.r 1260 1260 1260 68.66 1260 1260 37.6 1260 1260 92.78
p5.2.s 1340 1330 1325 63.44 1340 1329.5 37.04 1340 1340 85.78
p5.2.t 1400 1400 1397 52.27 1400 1400 37.39 1400 1400 111.2
p5.2.u 1460 1460 1460 68.79 1460 1460 44.59 1460 1460 110.39
p5.2.v 1505 1505 1503.5 65.45 1505 1504.5 43.79 1505 1505 112.4
p5.2.w 1565 1560 1560 50.22 1560 1560 47.45 1565 1562.5 124.13
p5.2.x 1610 1610 1610 57.27 1610 1610 50.02 1610 1610 124.68
p5.2.y 1645 1645 1645 66.25 1645 1645 37.98 1645 1645 112.34
p5.2.z 1680 1680 1680 64.77 1680 1679 41.75 1680 1680 122.55
p5.3.k 495 495 495 30.34 495 495 1.36 495 495 33.27
p5.3.l 595 595 595 39.81 595 595 1.25 595 595 53.91
p5.3.n 755 755 755 41.9 755 755 1.87 755 755 48.68
p5.3.o 870 870 870 34.7 870 870 2.13 870 870 48.93
p5.3.q 1070 1070 1070 49.38 1070 1070 23.28 1070 1070 51.54
p5.3.r 1125 1125 1125 43.97 1125 1125 22.68 1125 1125 46.7
p5.3.s 1190 1190 1189 41.16 1190 1189 26.6 1190 1190 59.48
p5.3.t 1260 1260 1260 54.36 1260 1260 32.65 1260 1260 69.12
p5.3.u 1345 1345 1345 51.74 1345 1345 26.21 1345 1345 57.97
p5.3.v 1425 1425 1425 48.05 1425 1425 29 1425 1425 56.21
p5.3.w 1485 1485 1481.5 44.83 1485 1477 36.32 1485 1484.5 76.2
p5.3.x 1555 1555 1547.5 50.42 1555 1546.5 36.79 1555 1552 76.78
p5.3.y 1595 1590 1590 54.95 1595 1590.5 30.46 1595 1591 70.54
p5.3.z 1635 1635 1635 61.91 1635 1635 32.64 1635 1635 84.24
p5.4.m 555 555 555 22.29 555 555 1.46 555 555 20.76
p5.4.o 690 690 690 33.08 690 690 1.69 690 690 42.91
p5.4.p 765 760 760 46.44 765 760.5 27.36 765 760.5 48.35
p5.4.q 860 860 860 50.91 860 860 1.53 860 860 61.58
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Table 8 – continued

Instance Zbest
MA10 PSOMA PSOiA

Zmax Zavg CPUavg Zmax Zavg CPUavg Zmax Zavg CPUavg

p5.4.r 960 960 960 64.85 960 960 1.39 960 960 76.4
p5.4.s 1030 1030 1029.5 39.19 1030 1029.5 18 1030 1030 30.82
p5.4.t 1160 1160 1160 48.1 1160 1160 2.09 1160 1160 47.63
p5.4.u 1300 1300 1300 66.82 1300 1300 2.1 1300 1300 67.26
p5.4.v 1320 1320 1320 37.87 1320 1320 1.77 1320 1320 97.97
p5.4.w 1390 1380 1380 29.24 1385 1381 19.37 1390 1386 40.5
p5.4.x 1450 1450 1450 47.34 1450 1448 25.75 1450 1450 63.41
p5.4.y 1520 1520 1520 46.84 1520 1520 32.06 1520 1520 102.12
p5.4.z 1620 1620 1620 50.43 1620 1620 37.84 1620 1620 86.55

Table 9: Results for set 6 of the benchmark.

Instance Zbest
MA10 PSOMA PSOiA

Zmax Zavg CPUavg Zmax Zavg CPUavg Zmax Zavg CPUavg

p6.2.d 192 192 192 11.37 192 192 0.14 192 192 5.76
p6.2.j 948 948 945.6 54.68 948 948 27.8 948 948 54.1
p6.2.l 1116 1116 1116 50.3 1116 1116 34.75 1116 1116 66.31
p6.2.m 1188 1188 1188 38.06 1188 1188 28.62 1188 1188 58.34
p6.2.n 1260 1260 1260 34.66 1260 1260 21.82 1260 1260 62.26
p6.3.g 282 282 282 8.3 282 282 0.17 282 282 5.85
p6.3.h 444 444 444 19.78 444 444 0.71 444 444 12.34
p6.3.i 642 642 642 33.84 642 642 1.3 642 642 31.16
p6.3.k 894 894 894 34.05 894 894 2.05 894 894 61.6
p6.3.l 1002 1002 1002 39.3 1002 1002 4.42 1002 1002 50.91
p6.3.m 1080 1080 1080 30.86 1080 1080 21.27 1080 1080 56.64
p6.3.n 1170 1170 1170 30.85 1170 1170 1.61 1170 1170 52.52
p6.4.j 366 366 366 7.28 366 366 0.18 366 366 5.23
p6.4.k 528 528 528 13.51 528 528 0.6 528 528 8.56
p6.4.l 696 696 696 18.96 696 696 1.12 696 696 27.37

Table 10: Results for set 7 of the benchmark.

Instance Zbest
MA10 PSOMA PSOiA

Zmax Zavg CPUavg Zmax Zavg CPUavg Zmax Zavg CPUavg

p7.2.d 190 190 190 12.81 190 190 0.11 190 190 4.36
p7.2.e 290 290 290 30.15 290 290 0.57 290 290 18.56
p7.2.f 387 387 386.4 59.79 387 386.4 7.86 387 387 40.48
p7.2.g 459 459 459 106.42 459 459 49.73 459 459 126.9
p7.2.h 521 521 520.6 113.88 521 521 32.42 521 521 188.66
p7.2.i 580 580 579.4 151.09 580 579.1 82.32 580 579.9 181.96
p7.2.j 646 646 646 159.48 646 645.3 54.9 646 646 134.9
p7.2.k 705 705 703.7 182.99 705 704.2 70.42 705 704.7 170.92
p7.2.l 767 767 767 205.35 767 767 73.7 767 767 210.89
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Table 10 – continued

Instance Zbest
MA10 PSOMA PSOiA

Zmax Zavg CPUavg Zmax Zavg CPUavg Zmax Zavg CPUavg

p7.2.m 827 827 827 203.14 827 827 104.68 827 827 177.68
p7.2.n 888 888 887.9 261.33 888 887.6 142.88 888 888 186.65
p7.2.o 945 945 945 221.07 945 945 109.36 945 945 208.93
p7.2.p 1002 1002 1001.6 274.36 1002 999.2 103.42 1002 1001.8 241.83
p7.2.q 1044 1044 1043.8 247.36 1044 1039.2 130.83 1044 1043.7 181.26
p7.2.r 1094 1094 1094 232.16 1094 1091.3 126.52 1094 1094 182.32
p7.2.s 1136 1136 1136 258.83 1136 1134.5 127.36 1136 1136 228.1
p7.2.t 1179 1179 1176.3 280.06 1179 1174.1 157.24 1179 1179 277.18
p7.3.h 425 425 424.8 43.6 425 424.2 3.62 425 425 27.88
p7.3.i 487 487 487 70.87 487 487 5.96 487 487 45.65
p7.3.j 564 564 563.6 98.35 564 562.7 30.49 564 564 54.98
p7.3.k 633 633 632.7 130.31 633 632 56.7 633 633 88.79
p7.3.l 684 684 682.1 112.98 683 682 50.14 684 684 100.72
p7.3.m 762 762 762 158.38 762 760.9 64.26 762 762 127.04
p7.3.n 820 820 820 164.08 820 817.6 114.61 820 820 175.64
p7.3.o 874 874 871 173.12 874 872.5 84.87 874 874 196.91
p7.3.p 929 929 926 165.55 927 924.8 73.3 929 928 162.61
p7.3.q 987 987 987 205.16 987 980.6 107.93 987 987 168.7
p7.3.r 1026 1026 1022.4 218.64 1026 1021.7 101.17 1026 1022.6 203.02
p7.3.s 1081 1081 1079.7 245.28 1081 1079.5 123.09 1081 1081 242
p7.3.t 1120 1120 1118.7 266.55 1120 1118.2 138.14 1120 1118.4 151.73
p7.4.g 217 217 217 10.06 217 217 0.08 217 217 1.72
p7.4.h 285 285 285 13.28 285 285 0.16 285 285 4.44
p7.4.i 366 366 366 29.69 366 366 0.46 366 366 12.68
p7.4.k 520 520 518.4 61.08 520 518.2 14.42 520 518.2 39.94
p7.4.l 590 590 587.9 80.05 590 588.4 19.85 590 590 53.8
p7.4.m 646 646 646 109.07 646 646 33.59 646 646 100.05
p7.4.n 730 726 726 113.62 726 725.9 37.48 730 728.8 110.63
p7.4.o 781 781 779.4 133.82 781 779.3 54.97 781 780.4 93.27
p7.4.p 846 846 843.7 167.49 846 841.4 62.24 846 846 124.32
p7.4.q 909 909 907 165.07 909 907 77.59 909 908.7 134.35
p7.4.r 970 970 970 147.92 970 970 65.89 970 970 143.04
p7.4.s 1022 1022 1020.8 170.42 1022 1020.7 62.23 1022 1022 150.72
p7.4.t 1077 1077 1077 180.48 1077 1077 88.03 1077 1077 128.13

Table 11: Results of the new instances.

Instance n m L gen
PSOiA

Zmax Zavg CPUavg

cmt101c m3 100 3 126.33 gen2 1300 1299 111.109
cmt151b m3 150 3 116.67 gen2 1385 1373.8 754.007
cmt151c m2 150 2 262.5 gen2 1963 1962 1799.641
cmt151c m3 150 3 175 gen2 1916 1909.1 1376.236
cmt151c m4 150 4 131.25 gen2 1880 1875.6 881.114
cmt200b m2 199 2 191 gen2 2096 2088.2 4180.987
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Table 11 – continued

Instance n m L gen
PSOiA

Zmax Zavg CPUavg

cmt200b m3 199 3 127.33 gen2 2019 2005 2711.659
cmt200b m4 198 4 95.5 gen2 1894 1889.7 1515.185
cmt200c m2 199 2 286.5 gen2 2818 2810.1 7320.261
cmt200c m3 199 3 191 gen2 2766 2751.2 4217.286
cmt200c m4 199 4 143.25 gen2 2712 2700.6 3004.103
eil101b m3 100 3 105 gen2 916 913.8 134.388
eil101c m2 100 2 236 gen2 1305 1304.8 452.79
eil101c m3 100 3 157.33 gen2 1251 1244.1 227.613
gil262a m2 241 2 297.5 gen2 4078 4056.4 5907.285
gil262a m4 112 4 148.75 gen2 3175 3174.2 271.83
gil262b m2 249 2 594.5 gen2 8081 8061.1 7473.182
gil262b m3 249 3 396.33 gen2 7585 7574.9 7276.798
gil262b m4 241 4 297.25 gen2 6781 6742 4878.641
gil262c m2 249 2 892 gen2 11030 11020 27500.87
gil262c m3 249 3 594.67 gen2 10757 10714.6 14553.762
gil262c m4 249 4 446 gen2 10281 10259.4 8472.009

bier127 gen1 m2 126 2 29570.5 gen1 106 104.8 1153.874
bier127 gen1 m3 126 3 19713.7 gen1 103 102.4 591.889
bier127 gen2 m2 126 2 29570.5 gen2 5464 5446.8 1132.566
bier127 gen2 m3 126 3 19713.7 gen2 5393 5376.2 648.084
bier127 gen2 m4 120 4 14785.2 gen2 5122 5119.2 657.569
bier127 gen3 m2 126 2 29570.5 gen3 2885 2884.3 1301.269
bier127 gen3 m3 126 3 19713.7 gen3 2706 2703.8 711.736
bier127 gen3 m4 120 4 14785.2 gen3 2402 2384.6 680.789
gil262 gen1 m3 210 3 396.333 gen1 101 100.9 1769.314
gil262 gen1 m4 102 4 297.25 gen1 78 77.1 155.755
gil262 gen2 m2 261 2 594.5 gen2 7498 7457.8 7356.652
gil262 gen2 m3 210 3 396.333 gen2 5615 5608.2 3304.551
gil262 gen3 m2 261 2 594.5 gen3 7183 7182.8 9129.303
gil262 gen3 m4 102 4 297.25 gen3 2507 2499.8 276.424
gr229 gen1 m4 227 4 441.25 gen1 223 220.8 11922.016
gr229 gen2 m3 228 3 588.333 gen2 11566 11551.3 14197.206
gr229 gen2 m4 227 4 441.25 gen2 11355 11255.5 18799.5
gr229 gen3 m3 228 3 588.333 gen3 8056 8051.6 14090.055
gr229 gen3 m4 227 4 441.25 gen3 7621 7600 11399.708

kroA150 gen2 m2 149 2 6631 gen2 4335 4334.4 892.981
kroA150 gen3 m3 127 3 4420.67 gen3 2726 2719.6 538.011
kroA200 gen1 m4 132 4 3671 gen1 81 80.4 560.285
kroB200 gen1 m2 199 2 7359.5 gen1 111 110.4 2344.534
kroB200 gen2 m2 199 2 7359.5 gen2 6185 6182.2 3467.258
kroB200 gen2 m4 128 4 3679.75 gen2 4944 4942.2 640.664
kroB200 gen3 m2 199 2 7359.5 gen3 4765 4757.8 6306.618
kroB200 gen3 m3 157 3 4906.33 gen3 3028 3016 1713.877
lin318 gen1 m2 317 2 10522.5 gen1 180 170.1 20667.243
lin318 gen1 m3 256 3 7015 gen1 149 148.6 9014.643
lin318 gen2 m2 317 2 10522.5 gen2 9544 9533.8 23804.82
lin318 gen2 m3 256 3 7015 gen2 7786 7782.1 9773.63
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Table 11 – continued

Instance n m L gen
PSOiA

Zmax Zavg CPUavg

lin318 gen3 m2 317 2 10522.5 gen3 7936 7905.6 44029
lin318 gen3 m4 154 4 5261.25 gen3 3797 3796.4 1446.258
pr136 gen1 m2 131 2 24193 gen1 63 62.7 451.134
pr136 gen2 m2 131 2 24193 gen2 3641 3631.8 601.312
pr264 gen1 m4 118 4 6142 gen1 107 106.6 503.071
pr264 gen2 m2 131 2 12284 gen2 6635 6634.2 2048.2
pr264 gen2 m3 131 3 8189.33 gen2 6420 6410.7 938.394
pr264 gen2 m4 118 4 6142 gen2 5584 5564.5 590.787
pr264 gen3 m3 131 3 8189.33 gen3 2772 2770 1037.505
pr299 gen1 m2 251 2 12048 gen1 139 138.5 4775.928
pr299 gen1 m3 162 3 8032 gen1 111 110.1 1303.726
pr299 gen1 m4 112 4 6024 gen1 84 83.6 383.479
pr299 gen2 m3 162 3 8032 gen2 6018 5966.7 1446.047
pr299 gen2 m4 112 4 6024 gen2 4457 4453 593.41
pr299 gen3 m2 251 2 12048 gen3 5729 5728.6 11872.546
pr299 gen3 m3 162 3 8032 gen3 3655 3611 2705.815
pr299 gen3 m4 112 4 6024 gen3 2268 2258 455.639
rat195 gen2 m2 190 2 581 gen2 5148 5145.6 2156.983
rat195 gen3 m3 122 3 387.333 gen3 2574 2571.2 721.818
ts225 gen2 m2 217 2 31661 gen2 5859 5858.5 2998.427
rd400 gen2 m2 399 2 3820.5 gen2 12993 12787.5 77049.22
rd400 gen2 m3 399 3 2547 gen2 12645 12372.1 53707.14
rd400 gen2 m4 399 4 1910.25 gen2 12032 11953.5 42001.58
rd400 gen1 m2 399 2 3820.5 gen1 230 227.8 56767.29
rd400 gen1 m3 399 3 2547 gen1 222 221.7 62476.08
rd400 gen1 m4 399 4 1910.25 gen1 213 210.6 34744.8
rd400 gen3 m2 399 2 3820.5 gen3 12428 12274.1 96178.7
rd400 gen3 m3 399 3 2547 gen3 11639 11629.5 68074.77
rd400 gen3 m4 399 4 1910.25 gen3 10417 10383.1 48462.77

ARPE/CPUavg 0.46 11031.04
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[6] J.-F. Bérubé, M. Gendreau, and J.-Y. Potvin. An exact epsilon-constraint method for bi-objective combinatorial optimiza-

tion problems: Application to the traveling salesman problem with profits. European Journal of Operational Research,
194(1):39–50, 2009.

[7] L. Bonnefoy. L’optimisation par essaims particulaires appliquée au team orienteering problem. Preprint available at:
http://ludovicbonnefoy.files.wordpress.com/2010/10/majecstic2010.pdf, 2010.

[8] H. Bouly, A. Moukrim, D. Chanteur, and L. Simon. Un algorithme de destruction/construction itératif pour la résolution
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