Bifurcations of Phase Portraits of a Singular Nonlinear Equation of the Second Class

Abstract : The soliton dynamics is studied using the Frenkel Kontorova (FK) model with non- convex interparticle interactions immersed in a parameter ized on-site substrate po- tential. The case of a deformable substrate potential allow s theoretical adaptation of the model to various physical situations. Non-convex inter actions in lattice systems lead to a number of interesting phenomena that cannot be prod uced with linear coupling alone. In the continuum limit for such a model, the p articles are governed by a Singular Nonlinear Equation of the Second Class. The dyn amical behavior of traveling wave solutions is studied by using the theory of bi furcations of dynamical systems. Under different parametric situations, we give vari ous sufficient conditions leading to the existence of propagating wave solutions or di slocation threshold, high- lighting namely that the deformability of the substrate pot ential plays only a minor role.
Type de document :
Article dans une revue
Communications in Nonlinear Science and Numerical Simulation, Elsevier, 2014, http://dx.doi.org/10.1016/j.cnsns.2013.12.022
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00934971
Contributeur : Jean-Marie Bilbault <>
Soumis le : mercredi 22 janvier 2014 - 20:16:11
Dernière modification le : jeudi 30 janvier 2014 - 08:36:06
Document(s) archivé(s) le : jeudi 24 avril 2014 - 11:30:47

Fichier

Nguetcho_Article_CNSNS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00934971, version 1

Collections

Citation

Aurélien Serge Tchakoutio Nguetcho, Jibin Li, Jean-Marie Bilbault. Bifurcations of Phase Portraits of a Singular Nonlinear Equation of the Second Class. Communications in Nonlinear Science and Numerical Simulation, Elsevier, 2014, http://dx.doi.org/10.1016/j.cnsns.2013.12.022. <hal-00934971>

Partager

Métriques

Consultations de
la notice

317

Téléchargements du document

234