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Abstract

We look at different prognostic approaches andaayg of quantifying confidence in equipment Remagnin
Useful Life (RUL) prediction. More specifically, wednsider: 1) a particle filtering scheme, based on
physics-based model of the degradation processh2ptstrapped ensemble of empirical models traomed
a set of degradation observations measured onrmeguig similar to the one of interest; 3) a boojpgieal
ensemble of empirical models trained on a sequehpast degradation observations from the equiproent
interest only.

The ability of these three approaches in providimaasures of confidence for the RUL predictions is
evaluated in the context of a simulated case stfidlyterest in the nuclear power generation ingusird
concerning turbine blades affected by developiegos.

The main contribution of the work is the criticalestigation of the capabilities of different progtic

approaches to deal with various sources of uncgytai the RUL prediction.

Keywords: Prognostics, uncertainty, particle filtering, batp ensemble, turbine blade, creep.

1 Introduction

In prognostics the current system condition isgutgd in time by a predictive model [1-2]. Since th

prediction of the Remaining Useful Life (RUL) ofgtading equipment is performed in the absencetafdéu

measurements concerning equipment degradation@erdtemnal conditions, the prognostic task is
necessarily affected by large uncertainty. In wndsk, the sources of uncertainty affecting the RUL
prediction are classified in three categories:

A. Randomness in the future degradation of the equipridis intrinsic uncertainty in the degradation
process has several causes such as the unknowm lfosid profile, and operation and environmental
conditions.

B. Modeling error, i.e., inaccuracy of the prognosticdel used to perform the prediction. In model-dase
prognostic approaches, this source of uncertaittgg into account the assumptions and simplifinatio
made on the form and structure of the model, aadititertainty on the model parameters. In data-

driven approaches, it relates to the incomplete@me of the data set used to train the empiricalein

! p. Baraldi is with the Politecnico di Milano, Diianento di Energia, via Ponzio 34/3, 20133 Milatialy (phone:+39 02 23996355; fax: +39 02

23996309; e-mail: piero.baraldi@polimi.it).



Tablel: nomenclature

nce

nce

Symbol  Description Symbol Description
t; i-th time instant h reference index of the ensemble models
d equipment degradation at tirhe H number of empirical models
Z; physical observations relateddo r® prediction residual obtained in corresponde
RUL random variable (rv) representing system RUL of the inputz?
at timet; x empirical model for the prediction of the
5 difference betweeRUL and its expected value residuals variance
E[RUL] ai prediction ofd; at timet;
rul; realization ofRUL, n(t) empirical model for the prediction df
f(z) prognostic model for the prediction rafi; dij vector of the degradation stateg; andt;
ral; prediction ofrul; At rv representing the time interval to evolve
agi. prediction error variance fromd; tod;
o3 prediction error variance due to randomness |n;7(d; ;.) | empirical model for the prediction at;;
the future degradation of the equipment Afj’j- estimate offt;;
o3 prediction error variance due to modeling errgr o, difference betweent;; and its mean value
od prediction error variance due to uncertainty in r;; prediction residual obtained in corresponde
equipment degradation data of the inputd;;
index of the equipment & creep strain at timg
S number of equipments Q creep activation energy
L failure time of thes-th equipment o) turbine rotational speed
din failure thresholds K constant relating the load tg
Pr(x) probability distribution function of the v R ideal gas constant
Prxly) conditional probability distribution function of | T; blade operating temperature at titne
the rvx giveny P stress fluctuations
M mean value of the ¢ v creep strain measurement noise
Oy standard deviation of the rv Eth creep strain failure threshold
g transition function of the degradation state ag’ll ,6’81 coefficients of thér-th empirical model of
¥, process noise vector approach 2/3
g2 estimate ofo 2 Yo12!A | coefficients of the empirical model of the
p index of the Monte Carlo sampled particle residual variancg of approach 2/3
P number of particles Asjj degradation increment frotnto t;
Wip weight of thep-th particle at time Az; ;. observed degradation increment frgrio t;
D dataset made by the observatians a significance level of the confidence interval
Dio dataset of the input/output pairs$(, rul ) C,""sUP(ar)| inferior/superior bound of the (@)-
trn/val | apex/subscript indicating training/ validation confidence interval for the RUL prediction
sets of data Co s (1-a/2) percentile of a Studenttsdistribution
N & number of training/validation patterns with H degrees of freedom

C. Uncertainty in current and past equipment degradatata, which are used by the prognostic model to

elaborate the RUL prediction. These data are ysaatjuired by sensors with some measurement noise

or derived from diagnostic systems assessing tapegnt health state with some degree of unceytaint

Other possible sources of uncertainty, which atecansidered in this work, are the imperfect knalgke of

the value of degradation beyond which the equiproantno longer perform its functions (failure tlneisl),



or the time at which the degradation process sfdetgradation initiation). Furthermore, in this waeve
assume that the equipment degradation is causadingle degradation mechanism, not considering the
uncertainty on the degradation caused by the afisgher, possibly competing, mechanisms [3].

The challenge of managing uncertainties assocuitidprognostics has been recently addressed H41-
5]. Uncertainty management in prognostics entaiigiéntify, classify and analyze uncertainty soanséh
the aim of associating to the RUL predictions pded by a prognostic model an estimate of its uaoest
[4-7], i.e., a measure of the expected degree sinaich between the real and predicted equipmdutdai
time. This information, provided in the form of eopability distribution of the equipment RUL, caa bsed
by the decision maker to confidently plan mainter@aactions, according to the desired risk tolergfe

In this context, the objective of the present papéo contribute to the way of investigating tlapabilities
of different prognostic approaches to deal withuheertainty in the RUL prediction. To this aimeth
analysis is performed with respect to three preslipdeveloped approaches [8].

A first approach, hereafter named “approach 1based on a mathematical model of the degradation
process for the RUL prediction [9], embedded iiitarfng method capable of accounting for the
stochasticity of the process (source of uncertai)tgnd the noise affecting the measurements (saafrc
uncertainty C). Most filtering approaches rely aayBsian methods and provide the probability distiiin
of the RUL [10-11]. The exact Kalman filter has bdgrgely used in case of linear state space maeahels
independent, additive Gaussian measurements anelimpdoises, whereas analytical or numerical
approximations of the exact solution (such as tkteritled Kalman filter, the Gaussian-sum filtersher
approximate grid-based filters [12]) have beeniaplgh cases where the dynamics of degradatioans n
linear and/or the associated noises are non-Gawudsa Numerical approximations based on the Monte
Carlo sampling technigusave gained popularity for their flexibility andseaof design [14-17]. Among
them, Particle Filtering (PF) is often considerestate-of-the-art technology in the prognosticdfi@hd used
as a term of comparison for newer approaches. Tduehkbased particle filter approach here considesasi
firstly applied to state estimation for diagnos{it8-19] and then applied to prognostics [20-21dcérding
to the particle filtering scheme proposed in [206¢ RUL distribution prediction is performed by safering
the stochastic model of the degradation processhaendn-line observations of the equipment degranat
In [22], this particle filtering-based prognostigpaioach is discussed with respect to the design of
predictive maintenance strategy, whose advantageben compared with those of other maintenance
strategies.

We consider also two data-driven approaches [28et on statistical models that ‘learn’ trends from
historical dataln particular, we consider bootstrap ensemble agires [24-25], which are based on the
aggregation of multiple model outcomes and haveeaghinterest due to their ability of estimating the
uncertainty in the predictions. These approacHew/astimating the model uncertainty (source of
uncertainty B) by considering the variability iretpredictions of the diverse models of the enseifi@dle
On the other hand, the estimate of the uncertaingyto the stochasticity of the degradation pro¢essrce

A) and the input noise (source C), requires tostigate the relation between the input and the efrthe



prognostic model based on its performance on datidin dataset. In what we will refer to as “apgtod”,

a bootstrap ensemble model is built to estimatethgpment RUL based on sequences of observatfons o
evolution to failure of a set of similar equipmentgerating under similar conditions; in what welwefer to
as “approach 3", a bootstrap ensemble model i$ baded on a sequence of degradation observatiys o
of the equipment whose RUL we want to predict. althh approaches 2 and 3 are both based on the
development of an ensemble of bootstrap modelg, dtfier for the type of model used. Whereas in
approach 2 we can directly model the RUL as a fanaif the observed parameters, in approach 3 we ha
to model the degradation evolution as a functiotineg, since direct RUL observations are not atéala
The three approaches are investigated with referemthe creep growth process in the turbine blaflas
Gas Turbine Modular Helium nuclear Reactor (GT-MHEH-27]. The data used in this case study have
been numerically simulated using a traditional ni@fi¢he creep growth. Artificial data have beeediin
order to allow testing the three approaches onge laumber of different blade degradation trajeéetoand
thus evaluate their capability of correctly estimgthe uncertainty on the provided RUL prediction.

The remainder of the paper is organized as foll@&estion 2 presents the terminology used in thepapd
the problem setting; in Section 3, the decompasitibthe prediction error variance into three terms
corresponding to the randomness in the future degian of the equipment, the modeling error, amd th
uncertainty in current and past equipment degradatieasures is reported; in Section 4, the three
considered prognostic approaches are describ&kdtion 5, the problem of blade creeping in high
temperature turbines is illustrated and the cajpploif uncertainty management of the three prognost
approaches are discussed; finally, in Section éesoonclusions are drawn and potential future work

suggested.

2 Terminology and problem setting

In this work, we assume that the equipment is stilbjea single degradation mechanism described as a
random process; we do not consider the effectsothat competing degradation mechanisms can have on
the equipment degradation. Also, we assume thaadagion cannot exceed a maximum acceptable level,
hereafter referred to as “failure thresholdi, which is fixed and identical among similar equenh Notice
that in prognostics the failure threshold doesnamiessarily indicate complete failure of the systeuwm, for
safety margins, it is often set at a conservatalaer of the degradation limit beyond which the ok
complete failure exceeds tolerance limits or thigomance of the system does not fulfill the regments
[28]. Since the failure threshold is usually dedyeom expert knowledge or from experimental
measurements of the equipment degradation atdailsrestimate is typically affected by uncertaivhich
contributes to increase the RUL prediction erraiarece. Methods to deal with the uncertainty onftileire
threshold have been proposed in [29-30], and hisrreason, this aspect is not considered in tbsemt

work.

We indicate byd; the equipment degradation level at titnend we assume that its direct measure is not
available, but some physical observatign®lated to it are obtained. We indicatezby=(z;, z,, ..., z) the

past and present observations taken at tipes.. t; for the equipment whose RUL we want to predict. In



some cases, also the sequences of observationslofien to failure of a set @& similar equipments
operating under similar conditions are available ae will indicate byzfNS ,$=1,....S the observations
taken at timeg,...ty_ for thesth equipment whose failure time i, whereLs 2ty _.

The objective of prognostics is the estimationhef ¢quipment RUL, i.e., the time left from the emtrtime
t; before the equipment degradation, currently ofiedl, crosses the failure threshalg. As degradation

evolves randomly in time, the equipment RUL at time a random variable which will be referred to as

RUL. Thus, the objective of applying prognostics teegaipment of current degradation ledgis to
estimate the probability density function (pdj(RUL |d;) . The uncertainty described by such distribution
regards the future stochastic evolution of the gapeint degradation and, thus, it is irreducible.
A realizationrul; of the random variabl®UL; can be written as:

rul = trup, 6 1)
where tigyy, i, is the RUL expected value of the equipment withredationd; at timet;, andd; is a random

variable with zero mean and variang& which represents the uncertainty on the futurdutiom of

degradation (source of uncertainty A).
Furthermore, in practice, the ‘exact’ modglpf the equipment degradation process is not avail(source
of uncertainty B) and the degradatidrat timet; is not exactly known (source of uncertainty C)tHis

setting, the complete distribution &UL, cannot be derived and prognostics is limited toreging:

» the expected value &UL
» the variance of the prediction error as a measitteecaccuracy with which the estimated expected
value predicts the actual RUL value.
With respect to the estimate of the expected valllL;, it will be indicated bydl; and considered as our

RUL prediction. The prognostic model which genesatttimet; the estimatedl; of RUL on the basis of the

observationg; will be referred to af i.e.rlli=f(z). Finally, we indicate bwfml the estimate of the

prediction error variance, defined lwfm_ = E[(rdl; - RUL)?2].

3 Prediction error variance

According to [24], the prediction error variancx;?ljli can be decomposed into two terreg;, the variance
related to the uncertainty on the future degradatifcthe equipment whose degradation at tinsed;
(source of uncertainty A), and§+c, the variance related to the imprecision of thelehd (z;) (source of
uncertainty B) and the noise on the datasource of uncertainty C):

0-2

& =El(RUL —ril)2] =03 + 0§, =

= E[(RULi ~ Hruyld, )2]"' E[(/JRULildi - f(z; ))2] @



In some applications, it can be useful to distisguhe uncertainty due to the modeling error (se&cfrom

that due to the noise on the input data (sourc& €}his aim, we introduce the quantitygy,,, which
represents thRUL expected value of a degrading equipment for whidime t; we have the observations

Z;, and we assume thdt(z;) is an unbiased estimator pf |, - Thus we obtain:

O3ic = E[(f (i) = Mruy g, )2] = E[(f (zi) = Hruyz, * MRuLlz, ~ MRuL g, ))2]
= E[(f (zi) = Hruy )2]+ E[(IURULAZi ~ Hrul(d, )2] ()
= 0’% + JCZZ
Combining egs. (2) and (3), one obtains:
ol = El(rdl; - RUL;)2] =
= E[(,URULildi - RUL )2]+ E[(f (i) = Hruy )2]+ E[(/IRULilzi ~ Hruy i, )2] (4)
=g% +03 +08
Notice that these results have been obtained hymasg that the different components of the predicti

error are independent and thus the expected val&RUL - gy g )(URruLg — F(2))] and

E[(f(zi) = Hruyz, J(HRULZ, — Hruyg )] N €gs. (2) and (3), respectively, are zero.

4 Modeling approachesfor RUL prediction

This Section illustrates briefly the three modelapproaches considered for RUL prediction.

4.1 Approach 1. ParticleFiltering
In approach 1, a Monte Carlo-based filtering teghaj called particle filtering [10,12], is usedd@dict the

pdf Pr(RUL |z,;) of the equipment RUL at tinte The prediction is based on the following inforioat a

sequence of observatioas; related to the equipment degradation at titpds, ..., t;, the (observation)
equation describing the relation betweeand the degradation levélat timet;, the failure thresholdi,, ,
and the (stochastic) model of the equipment degiaddynamics, e.g., described by a first-order hdar
process:

d, =9(d,4,7,4); do~Pr(dy), j=12.. (5)

where Pr(d,) is the initial distribution of the degradationtiate to, g is the possibly non-linear state
transition function and ; is the noise vector.

The estimation of the probability distributid?r(d; |z1i) of the degradationl; at timet, given the set of
observationsz;; is obtained by a recursive computational procedivigled into successive prediction and
update stages [12]. In the prediction stage, supgdbat the probability distribution function (pdf

Pr(di-1 | z1i-1) attimeti is available, the transition probability distritmrt Pr(d; |d,;) derived from the
model in eq. (5) is used to obtain the prior pdfnef degradation stater(d; |z1i—1) at time steg; via the

Chapman—Kolmogorov equation [12]. In the updatgestthe posterior distributioRr(d; |z1i) is obtained



using the incoming measurementto update the prior distribution via the Baye®ridased on the
likelihood functionPr(z; |d;) defined by the observation equation [12]. The tgd@osterior probability
distribution Pr(RUL | z1i) can then be computed as the probability

Pr(RUL; |z1i) =Pr[d(tj + RUL;) >d | z1i] that the degradation level at tirhet RUL exceeds the failure

thresholdd,, [20-21,31].
The recursive computation of the posterin(d; | z1i) involves an integral which in practical cases dugts

have a closed-form solution. For this reason, apprated solutions have been proposed, like theritiae
Kalman Filter, the Gaussian sum filter, and griddzhmethods [32-33]. Also, Monte Carlo sampling
techniques have become of increasing interest. Anioese, particle filtering provides a solution by
approximating the integrals in the Bayesian reserprocedure with weighted summations over a high

number of samples called particles [10,12].

The application of the particle filtering procedtioethe estimation oPr(RUL |z3;) is detailed in the
pseudo-code given in Figure 1. TRgarticlesp = 1...,P are future degradation trajectories built by
recursively sampling the particle degradation stq'feat timet; from the transition probability distribution
Prd jp |djp_1) derived from the degradation model, until theufilthresholdd,,, is exceeded and the length
of life Lp of the particle is recorded. The valud,” of the particle RUL at time stetp can then be
computed fromrulip =LP —t;. When an observatior, is collected, each particle is assigned a weight
proportional to the likelihoodPr(z; | d”) of observingz, given the degradation level® reached by the
particle at the time; [20]. The distributionPr(RUL |zzi) is then approximated by an histogram of the
weighted valuesulip of the particle RULs at timg ; the weighted average and the weighted standard
deviation of the valueeulip, p =1...,P represent the predictionil; of the expected valugrru, of RUL

. > - : ) .
and the estlmatemIi of the prediction error varianae;;, , respectively.



[ FOR p=1:P
1. Sanple dy~Pr(dg)
2. j=0; tj=tp
WHI LE d; <dy,
3. jEj+l ot =tja+At

4. sanple df~Pr@df|df))

END WHI LE

5. Register the particle failure tinme t?=tj
\ END FOR
(FO?i=1:N

6. Collect the observation z;

FOR p=1: P

7. Conpute the RUL of the particle rul?=tP-t
8. Conpute the weights:
IF rulP<0 set wP=0
ELSE w’ =w, [Pr@z |dP)
END FOR
P
9. Normalize the weights wnp=wip/2w,k

k=1
10. Build the probability density function of the equipnent RUL at

time t as the histogramof the P weighted particle RULs rul.

11. Conpute rdl; = Mean¢ul;)

\ 12. Conpute &rzm- = Var(rul")
1
END FOR

Figure 1: Particlefiltering operative procedurefor RUL estimation [8].

The sampling importance resampling (SIR) algorithmsed to avoid the degeneracy problem of théghart
filtering algorithm, which consists in having allifone of the importance weights close to zera aftgeral
weight updates [12]. This algorithm requires sangpliafter one or more updates of the particle wsighn
new set of particles from the old one with prokigpfior a particle to be sampled proportional ®wteight

(see pseudo-code in Figure 2). New degradatioadi@jies have to be sampled starting from the diagjien
stated,” of each particle resampled at the observation tjnead new values of the particles duration of life

Lr are recorded. For more details the interesteceraady refer to the specialized literature (e10,12]).



At time
1. Conpute rul? and wnP as in Figure 1
(FCR p=1:P
2. Sample a particle k with probability equal to its weight
wri
3. set dP=dk,j=i and tj=t
WHILE d; <dy,
4. jEj+L; =t +At
5. sanple df~Prdf|df,)
END WHI LE
6. Register the new particle failure tinme tf=tj
\ END FOR
7. Assign equal weights to each particle wntP =3P
8. Build the RUL probability density function and conmpute its
monents rdl; and &rzm as in Figure 1.

Figure 2: Procedurefor performing resampling at time t; [8].

Notice that by this approach the distributiBn(RUL | z3;) is estimated, which is different from the
distribution Pr(RUL; |d;) of the equipment RUL at tintg given that the equipment has degradaticat
that time. However, in the Bayesian framework, thithe maximum information we can haveRdL,.

As for the uncertainty in the RUL prediction, ingtapproach the randomness of the degradation gsoce
(source of uncertainty A) is described by the mpadlereas the observation equation accounts for the
observation noise (source of uncertainty C). Thsse two causes of uncertainty are accountea fibrei
RUL prediction through the procedure of particlenpling and weights updating, respectively. On the
contrary, the contribution of model uncertaintythe RUL prediction uncertainty is not directly caiesed
(source of uncertainty B), since it is assumed tiraidegradation dynamics model and the observation
equation are exactly known. The effects of thisantainty on the RUL prediction will be further dissed
in Section 4.3.1. Notice, however, that if the utaiaty on the model parameters can be quantifietea
probability distribution assigned to the valuelué uncertain model parameter, the PF approachean b

adjusted to handle also this source of uncertdB#y,

4.2  Approach 2: bootstrapped ensemble of empirical modelstrained on sequences of degradation
observations and life time data

Approach 2 is based on the development of an ecapimodelf representing the relationship between the

degradation observatiors available at time;; and the corresponding equiprRéHt. The empirical
model is built considering the observations oftaosﬁé;trajectoriesszs ,$=1,....S, of similar equipments
which have each reached failure in a timeliscretized irl\; steps. The empirical model receives in input

the observationg; and produces as output the RUL predictiaf,. In order to develop the model, a dataset

of input/output paird;,, ={(z?;rul?); s=1,...,Si =1: Ng} is extracted from the set of observati(zrii;;‘Ts

by associating to the observation$ at timet; along thes-th trajectory to failure the corresponding
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realization ofRUL;, i.e., rul® =Ls —t;. The dataseDij,o can then be used to train an empirical model based
on one among the many data-driven modeling metbridgting today (e.g., polynomial regression, non-
parametric regression, neural networks, etc.)hdir basic form, these methods provide in outpuiat
predictionril; of the RUL without any information on the uncenmtgiof the estimate [35]. To overcome this
limitation, the bootstrap method for estimating #tteuracy in the prediction of a stochastic outpplubse

mean value and variance are unknown functionseofrtput is used in this work. Under the hypothési

the model f (z;) =rdl; is as an unbiased estimatog/gty,,, . i-e., E[ f(zi)] = 4ruifz , the model error

varianceaé can be rewritten as follows [24,36]:

02(z) = E|[f (@) ~ Heu J ]
= e[(f 2)) - BT @) )+ El(ET f 21 = s, )] ©
=elfr@)-erf @]
An estimate of the model error varianegg, is then obtained from an ensemble of model§z; |DY,,),

h=1,... H trained using bootstrapped replicaib%0 of a training datased!? , drawn fromD,,, . Given a

ilo?

generic inputz; , the models of the ensemble genetawdifferent predictiong il = f h(z; |DY,,); their

variance is assumed as the estimagdz;) of the model error variancg3 (zi) [24,37], whereas their

average is taken as the best estimétg of the equipment RUL.

With respect to the estimate of the remaining pathe RUL prediction variance, which is causedtsy

randomness of the degradation process and thevalisernoise (sources of uncertainty A and C), i.e

0%, =05 +0¢, anindependent validation datagef! is used. In particular, the ensemble of empirical

models f h(z; |D! ) is applied to the observations in the validatiotadatD 2 . The obtained RUL

ilo ilo*

val,s
i

predictionsrul 8, , s=Si+1,... Sare used to calculate, for each validation obsenva

INg ’ , the prediction

residualsr;®:
1S = (ral® - rul#)2 - 6 (z°) @)
The set of input/output pairs obtained by assaggtid the observations'™*®, s=1...S4, i=1,...Ns, in

D val

vl the corresponding residuals is used for training an empirical modglz,) = 64,.(z,) of the
residual variance approximating the unknown reteietween the input; and the variance of the residuals
[24,38].

When a new observation is collected, the following procedure is appliacbrder to obtain the estimate

rdl, of the equipment RUL and of the correspondingaraed ?

rdl; *

« Compute the outputlil" of each models h(z; |DI,) of the ensemble;

* Compute the point estimate of the RUL:
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- 14
rul; =sz—;th(Zi IDN.) (8)

e Compute the RUL prediction uncertainty as follows:

0% =0§(z2i)+ Fh.c(zi) =varlfh(z; ID} )] + x(z)) (9)

Then, 2 accounts for all three sources of uncertaintgdish Section 1.

However, the degradation measurements depend @mtine past trajectory of degradation, which means
that training and validation data taken from thesarajectory are not independent, causing an

underestimation of the variance. For this readmnyalidation datased¥? is made by input/output pairs

ilo

(z8;rul®), s=1,... S, i=1,... N,, taken from trajectories different from those usettaining. Furthermore,
to ensure enough diversity of the models in thewrtse, the bootstrapped training dataie?;sb, h=1,...H,

are sampled fronD'" as follows: first,S;, training trajectories are randomly sampled witblaeement

ilo
from theS,, different trajectories oD!T, ; then, Ntn input/output pairgz$;rul?) are sampled with
replacement from the total amount of input/outpitgin DI

ilo”

4.3 Approach 3: Bootstrapped ensemble of empirical modelstrained on a sequence of past

degradation observations from the equipment of interest only
Approach 3 is based on the development of an ecapmodel of the degradation process based onrtige t
series of its past observationg and used for identifying the time at which the rdeigtion will exceed the
failure threshold. For simplicity of illustratiohé observationgs; are assumed to be direct measures of the
degradatiord,;, eventually affected by noise.
The approach differs from approach 1 in that tbelsdstic model describing the dynamics of the

degradation process is not available and actuadybint is to develop it empirically. Coherentlye
estimate of the prediction error varianm?ﬁli (zi) should account also for the error of approximatibthe
empirical model.

The approach differs from approach 2 in that tleeeeno available pair§;;rul;) for which rul; is known
for training and validating the prognostic modg(z; | Di/o) -

Empirical modeling of the degradation process @adhieved by fitting the most suited degradatioaeh,

e.g., linear and non-linear regression models, ig¢degradation path models, etc. [39] to the atdd data
Let us call&j =n(t;) ageneric model of the equipment degradationyedrirom the sequence of deta .
The predictionrdl; of the equipment RUL at timg can be simply obtained from the relation

n(t +rdl;) =dy, . Once again an estimate of the prediction erraexae Jrzali (z;) is needed, but cannot be

obtained by means of the method proposed for apprdaince there are no available pgzsrul;) for
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which rul; is known, and thus eq. (7) cannot be used to lz&the value of the prediction residualn

correspondence of the observatipn

Let us, instead, consider a modkﬂj’j- :ﬁ(dj,j-) receiving in input a vector of two degradationues

dj,j=[d;,d;j] and returning in output the estimaléj,j- of the time interval needed to reach degradation
d; starting fromd; . Notice that modeﬁ(dj,j-) can be derived, in general, from modt; ) :

Atj,j'=’7(dj,j')=’7_l(dj')‘ﬂ_l(dj) (10)
The predictionrdl; is then obtained from this model by settidg =Zz; anddj =di, which means that the
RUL prediction at timet; corresponds to the estimate of the time inteMal;, needed to increase the
degradation frond; to the failure threshold.
The relation between the inpd{ ;- =[d;,dj- ahd the outputdt; ;- of the model in eq. (10) is:

Atj,j = Hag o+ Onsy (11)

where 6m“.. =Atj - Has; ;. iS a zero mean random variable with varialfjcggaj . representing the

uncertainty in the evolution of the degradationgess fromd; to dj- and iy ;. is the mean value of the
random variableht; j-. Both agtj . and Uy ;- are, in general, functions of the inpif, j- .

The observationgy; are used to build input/output paii; ;- =[zj,z]; Atj; =t —tj), j=1...,i -1
j'=j+1...i and the bootstrapping of approach 2 can be apgiedtimate the variance of the prediction

error of the model in eq. (10) by building trainiagd validation datasets of input/output pairsuAderlined
in Section 3.2, to avoid underestimating the praaticerror, the validation datasets should not aiont
measurements belonging to degradation trajectased for training. Since only a single traject@aynow

available, the solution proposed is to partition dataseD into two sequences of consecutive
measurementdn ={zyy,,} andDval ={zy, +1i} and to useD™ for building the modeH =n(t) and

Dval for building the dataset of input/output palb$,ac'J ={(dj,j; At =t —t;)}, j=Nyn + 1.0 -1;
j'=j+1.. tobe used for estimating the prediction error.

An ensemble of modelgh (t|Dh), h=1,... H, is trained using bootstrap replicai@of the training dataset

D", and the ensemble of modeJ$ (d;,;- |DM) is derived from eq. (10). The average and variafitke
ensemble model prediction are retained as the am'smfj,j- and g3 (d j.j ) of, respectively, the time
interval At; ;- and the error variance of mod’é(dj’j. | D). The ensemble of models is applied to the
validation dataseD?

Y2, in order to obtain a set of prediction residuglg: :

ryp = (0t ) -4t )2 =63 ;) (12)
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Finally, an empirical modek(d; ;:) = 6%, (d; ;:), estimating the part of the error variarmgtj'jl due to

the stochasticity of the degradation process aahliservation noise (sources of uncertainty A apdsC
trained using the input/output paifd; j;rj,j . The sum of the RUL and noise variance equipments,
&,zmc (z;), is then obtained from this model by settihg; =d;wn =[zi,dwn].

Notice that the training dat@l ; j:;rj,; Used to build the models cover a range of valaeghe inputd;

in general different from that of the inpd{, =[z;,d] to which the model is applied to obtain the
estimated3, (z;) . This can represents a limit to the quality of éistimated 2, (z;), since in general the

performance of empirical models are good when agpb input regions well described by training datad
decrease moving away from these regions.

When a new observation of the degradatiom; is collected at time; , the multiple RUL predictions
rdl =7h[d,, |DM] and the RUL variance estimafes,  (z;) = x(d;,) are used to obtain the prediction

rdl; and the relative estimat®?2

rdl

of the prediction error variance:

ralh (13)

M=z

N 1
ral, =—
H

=y
1,

1
5r20|i =03(z)) + 0%.c(zi) =varfFh(d; s, | DM]+ x(di 1) (14)
As for approach 2, all three sources of uncertdistgd in Section 1 are taken into account ingsegmate

52
ardli )

5 Numerical application

The three different approaches presented in Sedtame verified with respect to the RUL predictafra
simulated turbine blade undergoing degradation.apmication focuses on the turbine of a generdtibn
high temperature gas reactor, which is characttigerather extreme turbine operational conditisunsh as
working temperatures exceeding 900°C. The predamhidamage mechanisms affecting turbines operating
at such elevated temperatures include creep defiemaorrosion and fatigue [40]. The interactidriteese
and other mechanisms generates a degradation prihegdeads to crack initiation which rapidly lead
failure due to the quick accumulation of stresdeycaused by the high rotational speed. Noticeaha
turbine undergoing this degradation process caeréxqce the loss of its blades, one of the mosetea
failure modes of turbomachinery since it is acconig@ by abrupt changes in the power conversion
equipment and in the reactor flow conditions [#Figure 3 shows an example of high-pressure turbine
deblading occurred in a German power plant [42$0Afracture in rotary machines can result in nebi
missiles, i.e., irregularly shaped projectiles &llimg at high velocities which can impact on barsiin
nuclear power plants causing severe damages fadtiges, and threatening public safety [43]. §lind
the high cost of turbine blade replacement arengtreasons for performing prognostics on creepingjie

blades.
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Figure 3: Deblading in a high pressureturbine [42].

Indeed, lealth monitoring and prognostics may allow schedpinaintenance actions before the bl
degradation evolves into cracks. In this contthe dimensionless quantitydefined a the percentage of
elongation of the turbine blade in the longitudidakction with respect to its original len,, can be used as
an indicator of the blade degradation st44]. The blade is discarded when the accumulelongation
reaches a prdetermined value, name¢the failure thresholdvhich assures that the risk of blade failur
below the desired safety limit. 14%] various sensing technologies for measuring bladeraations are
outlined and theipossible application to turbineade and disk healtmonitoring ar discussed. In
particular, methods measuribtade tip clearan« (BTP), which defines the gap between the tip of ble
and the casing [458ppear to be promising for measuring blade plattiogation. In this respect, the mi
technologiesvailable today are based on capacitive measurspetdy current or microwave sens
Capacitive-based technologies [4B} are already on the market [48-48]d provide clearance and vibrat
monitoring sensors to gas turbines used in the pgesmeation and aerospace industriln [50], a magnetic
sensor relying on higfrequency eddy currents actively induced in pasbiade, is tested on field trial
with jet engines and is demonstrated tl capability of generating onlinrdearance measurent for each
blade. Similar results are obtained 51] using amicrowave sensing system, which is claimed to Ipabke
of performing blade monitoring in the harsh enviramt of the first turbine stag

In [45] it is observed that longrm trends i BTP can be measured aitslfuture application to monitorir
creep-related bladgeformation is anticipatt. In [44],the possibility of using BTP in blade failure ri
analysis and diagnosis is analyzed a blade prognostic approach based on Bii@ar regression i
proposed. In [50& general frameworfor PHM of turbine blades is proposemnsidering blade ti
clearance andther damage indicators such as vibrations, bladular position etc

Notice that, given thadvancements blade tip clearance sensing technolaggufficient amount of da
for training and validation of prognostic moc can be expected to be availablehiafuture. Furthermore,
notice that the amount of real data necessarylidata theprognostic approacheveloped can be largely

reduced by resorting to the leaveeeout cross-validation procedure [52].
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5.1 Degradation model

Modeling the degradation of a turbine blade is @ hask, especially if one needs to take into actall
mechanisms involved and their interactions. Fompimgose of this work, we limit ourselves to coesidg
the accumulation of creep damage. Creep is areirséhle deformation process affecting materialsosgp
to a load below their elastic limit for a protratiength of time and at high temperatures. In tigé h
pressure turbine first stage, blades creep is ampapblem due to the high operational temperafued is
often the life-limiting process [53]. Blade elonigat, ¢, is taken as a measure of the blade creep strain.
In this work, the creep evolution is modeled udimg Norton Law discretized with a stéy =5 days,

assuming that the dependence from the temperaillogv§ the Arrhenius law [27,54]:
o _Q 2 " _
Ejx =€) + Alex e Kw® +op;| (At, &£, =0 (15)
i

where¢j is the creep strain at tintg, Q is the activation energyA andn are material inherent

characteristics varying from one blade to anotlieris a constant relating the load to the rotaticpeed
wj, R isthe ideal gas constari; is the blade operating temperature &gg is a random variable
modeling the fluctuations in the stress applied specific blade, which are due to fabrication disfeaging
and corrosion of the blade, vibrations of the emépt or turbulences of the gas flow. Oscillatiohthe

rotational speedv; , and of the blade operating temperatlije are represented by considering their
deviations from the mean valugs, and x4 as noises. In practicée; =a; — t, and ol =T; — yr are
Gaussian random variables with mean values zerassigned standard deviations. Thus, the noisewect
vj ineq. (5) can be setequaltq =[du ;;dT;;¢;].

The values of the parametéfg, w; and K have been set with reference to the helium gdgneiof a Gas

Turbine Modular Helium Reactor (GT-MHR) developgdan international consortium, with a targeted
286MWe generation per module [26]; the materiakieimt characteristios andn are taken assuming that
the blade is made of Ni-base cast Superalloy 71[26C The distributions used for the parameters are

reported in Table II.

Tablell: type of distribution, mean value and standar d deviation used for the creep growth model parameters

Parameters of the

Variable Symbol Distribution  Units distribution

Activation energy Q Deterministic  kJ/mol Q=290

Norton Law parameters A Normal (N/nf)"/day ux=7.210% 6,=5%
n Normal - 1n=6; 6,=0.2%

Operating temperature T, Normal K #1=1100;07=1%

Rotational speed ; Normal rpm 1,=3000;0,=1%

Load parameter K Deterministic Kg/m 0 =1068

Stress fluctuations op Gamma MPa 0=2; k=10

Eq. (15) represents a stochastic process whoseultite future evolution (cause A, Section 1) preduan
irreducible uncertainty in the RUL prediction. RastersA andn instead represent an uncertainty in the

model (source B, Section 1). In fact, to a spedifade correspond fixed parametérandn but their exact
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values are not known in practice; to include tligrse of uncertainty in the model, we assume tokwith
a certain precision the range of values of thesampeters and associate to them a probability Higion
(Table II).
For simplicity, it is assumed that it is possildedirectly measure at inspection titaéhe value of the creep
straing. Thus, the observation equation is:

Zj=¢&j+Uj (16)

wherevj is a white Gaussian measurement noise with stdritanations,=0.02. Then, the likelihood

Prz; |djp) used in the particle filtering approach is Gaussiith meand J-p and variances?2. This noise

represents a source of uncertainty (source C,@etjiin the final RUL prediction.

The failure threshold for creep stragy, is set equal to the value of 1.5%.

Given the unavailability of real experimental dataequence of creep strain measuremegiten the blade
of interest, hereafter called ‘test trajectory’simulated using eq. (15). The variation in timelaf rotational

speedy, the gas temperatuieand the stress fluctuatiotig are simulated by sampling their valugsT;

andog; from the relative distributions (Table Il) at eaahe instant;. Every 30 days a measurement,

corresponding to the creep stran, is simulated by using eq. (16). A total numbe8ofcreep strain

measurements have been simulated for a turbine it parametera=3- 10" andn=6.

In order to verify the performance of the prognosipproaches, the simulation of the test trajedtais/been
conducted until the timke at which the creep strain reaches the failurestiotel. The difference betweén
and the time; at which the prognosis is performed is the RUlthef turbine blade; it will be referred to as
“true RUL", and represented by the notatian; .

Also, a numbef=13 of historical creep growth trajectories of danblades have been simulated using eq.
(15). To induce variability in the behavior of thienilar blades the values of the characteristiapetersA
and n from one blade to another have been sampled famal distributions (Table II) at the beginning of
each new simulated degradation trajectory. Sommpbes of simulated creep growth trajectory are show
in Figure 4.

For each trajectory, a sequenceéNgfiirect creep strain measuremeny,_, one every 30 days, are simulated

according to eq. (16).
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Figure 4: Examples of creep growth trajectories.

52 Results

During the life of the turbine blade, at every titpe the set of observatiorg; is assumed to be available;
the objective of the analysis is to predict at titngi=1,...,87, the RUL distribution for the test trajagto
Three situations have been artificially construdtedhe turbine blade case study described irptegious
Section 4.1, corresponding to the three prognegtimoaches of Section 3.

In the PF approach 1, the model of eq. (15) is tsaimulate a numbelP =1000 of particles starting from
&, = 0. Particle resampling is performed once every Ssmeaments. Note that the particle filter has been

preferred to the Kalman filter since the distribuatiof the process noise is not Gaussian as a coeseg of
the combination of speed, temperature and strestfitions in the creep growth process describesiby
(15).

In the bootstrapped ensemble approach 2, whichrmeliple sequences of degradation observations,

Sin=10 trajectories among tt&= 13 totally available are used for building aisemble oH=25linear least

square modelsil " (z; DI ) =all + af [z;, whereas the remainir®y,=3 trajectories are used to validate

the ensemble and build the training dataset fotethist squares model(z;) =y, + y1 [Z; + Vo &iz
estimating the RUL variance3, . .

In the bootstrapped ensemble approach 3, whichthedfime series of degradation observations, the
prognostic model has been developed only after tymén order to have available a dataget{z;;} of at
leasti=30 direct creep strain measurements. This datasebden partitioned into a training datd3¥t
containing the first 75% of the available measuneimand a validation datasefzontaining the remaining
25%. An ensemble df=25 linear least square modejs(t; |D") = ! + B [1; is built and the models
ﬁh[Azj Jr |[Dh] = Az; ;. /,Blh are derived from it. Notice that in a linear pregethe time needed to increase
the degradation level from; to ¢;. is proportional to the degradation incremésat; - = £j- — £; and does
not depend on the initial and final degradatiorueal The ensemble of models is tested on the vialda
dataset made of input/output paBy?! ={Azj,j- =z —zj,;0t 5 =tj —t,—},j:Ntm+1,...,i—1,j'=j+1,...,i

and the prediction residuals, ;- obtained are used to train the linear mog@dz; ;) = AAz; ;- for the
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variance ofAt. After time tzg, each timetj , i=31,...,87, a new measurement becomes availablaya ne
ensemble of modelgh and a new mode} for the prediction error variance are built. Tmedictionsrl ih
and the estimatéri+C are obtained respectively from the modefs of the ensemble and from modgl in
correspondence of the inpAZi = &h —Z; . Since the data used for training mogelconcern creep strain
increments which for the first two thirds of thejectory are smaller than the increméa i, = &mn —
considered for obtaining the prognostic results,a@mpirical modely(Az; ;) is used in an input region not

described by the training data.

In all three approaches, in correspondence of peatictionril, we estimate the prediction interval

[CIMf (@); C™P(a)], i.e., the interval expected to contain the trud Ralue rul; with a probability of 1.
This interval is obtained as follows:
inf

+ Inapproach 1C" (a) andC’*"(a) are thea /2 and1-a /2 percentiles, respectively, of the RUL

distribution estimated by Particle Filtering.

« In approaches 2 and 3, assuming that the predietimm has a Gaussian distribution, the value of

CInf (a) andC®P @ ) can be computed according to the theory of thest@p method [24] as:
Cinf (@) =rdlj —c4 G, andCPP(a) =rdl; +c¢2 . Gy, (17)
wherecZ, ; is thel—-a /2 percentile of a Studenttdistribution with number of degrees of freedom

equal to the numbet of bootstrap models.
Figure 5 shows the evolution of the true valule of the blade RUL (continuous thick line), its ewtited
value ril; (dots) and the corresponding prediction intereald = 032 (continuous thin line) obtained
during the turbine blade life at timés i=]1,...,87, by the three prognostic approaches.
The prediction intervals provided by approach 3duraracterized by large oscillations and low accyra
especially at the beginning of the trajectory, enhen few training data are available. Furthermtite RUL

prediction itself is noisy. This effect can be reéd by properly filtering the predictions. To tpisrpose,

since the time evolution of the RUL is a lineargess (ul(t) =rul(t —1) — 1}, and assuming a Gaussian

noise of the prediction, Kalman filtering can belégd [27].
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Figure5: truerul; (continuous thick line) of a turbine blade, predicted value rdl; (dots) and prediction interval

[Cinf (032);C P (032)] (continuousthin line) for thethree prognostic approaches.

5.3 RUL distribution and prediction interval
The objective of this Section is to determine wkethe estimates of the prediction intervals predithy the

three approaches properly describe the uncertairttye RUL predictions. In practice, we want to Wno

whether the estimated?

; are satisfactory approximations of the reﬁhi . According to eq. (4)g2 can

rul;

be decomposed into the sum of three terms, dugectsely, to the process randomneaﬁ,, the model

~ 2 - - . - . — 2 2
error, 63, and the noise on the observatioo,. It is also of interest to consider the teoq, . =03 + 02

, since all three approaches proposed do not dstithh@se two terms separately. The computatioheofrue

value of g2

@ would ideally require the availability of an infie numberP of equipment degradation

trajectories which at timg are in the degradation stateSince in the case study here considered we can

artificially generate degradation trajectories hagh numbeiP=1000 of degradation trajectories has been

used to numerically approximate the varialzucfgi . For thep-th simulatedrajectory, we have computed: 1)

its true RUL, rul” = L” —t,, with L” being the equipment life duration along thth trajectory, 2) the

equipment RUL prediction;ul.”, provided by the prognostic model in correspondesfahe observations

2
rdl;

zP =& +uP with P a random Gaussian noise with variamgg Then,o;, has been approximated by:
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. 2
o = E[(rmi - RUL )2] 0y M (18)

p=1 P

Similarly, the computation of the true value@§, = E[((URUME_p - RULiH is approximated by:

1 P
0% 0= D [Hruy, —TulP]? (19)
P =1

P 1P _t
where the RUL expected valyésy, |, is approximated b)Z L” -t .

p=1

The real value obrz, . = El_(:uRUL-,lzi - RUL )2] has been approximated by consideringRk&000
equipment degradation trajectories which at tinaee in the degradation stateind for which the

observationg have been collected, and computing:

1 P
0-,26\+C DE Z[’URUHZip _rulip]Z (20)
k=1
where Hrut, 29 has been approximated by simulatiig1000 new degradation trajectories, each one

starting from a different degradation sta‘g%' =zP —uip'. This procedure allows to propagate the
uncertainty on the true degradation state giverobi®ervationz® =& +v,° to the RUL mean value and to

approximate,uRUL_rlz_p by:
1 P p'
Heuypp = 5 221U (21)
p=1

Notice that the termgr2 and o4, do not depend on the approach. In Figure 6 (lgfe) true RUL
A A+C

distribution Pr(RUL; | &), approximated by the distribution of the 1000 dated rul,” , is shown at the

timest, =t,; =515 days,tss = 1355days and73 = 2138lays, whereas in Figure 6 (right) the true values

of the standard deviations, (continuous line) an@ 5, (dots) are reported as a function of the blade

creep strain leveg; .
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Figure6: pdf Pr(RUL | &) of the RUL of aturbine blade at three different instances of the degradation trajectory (left)
and evolution of the RUL standard deviations 0 5 (continuousling) and O p,c (dots) asafunction of the creep strain &; at

time ;.

Differently from the variance terms% and g2, the model error variance terag depends on the

modeling approach used to estimate the RUL. Coreaidas onaé will be done in the following Sections

5.3.1,5.3.2 and 5.3.3.

5.3.1 Prediction interval provided by the PF approach 1

The specific blade undergoing the creep degradatiocess is characterized by fixed values of the
parameter#\ andn in eq. (15), which in general are not known. lis tBection, in order to evaluate the PF
performance in the estimate of the prediction uiadety, the approach is firstly applied assumingriow

the exact value of these parameters. In FigureerdistributionPr(RUL; |z,;) predicted by the particle
filtering method (left, dashed line) and the estinaf the prediction error standard deviatiop, (right,
dots), are compared to the true RUL distributPirfRUL; | &) (left, continuous line) and standard deviation
O ac (right, continuous line) of Figure 6. In can beioed that the method supplies an accurate predicti

of the RUL distribution, and correctly estimates firediction uncertainty for all values of the gretraing;.
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Figure 7: comparison of the pdf Pr(RUL | &;) (left, continuousline) and the standard deviation O p,c (right, continuous

line) with, respectively, the pdf Pr(RUL | z;;) (lft, dashed line) and the estimated standard deviation 5ﬂj|i (right, dots),
obtained with the PF approach 1, assuming exact knowledge of the parameters A and n.

The more realistic case where the exact valueaminpeterg\ andn are not known has then been

considered. In this case, uncertainty in the pretioanodel (source of uncertainty B) is introducéhe

particle filtering approach 1 handles it by genieaparticles characterized by different valuesfofind n

randomly sampled from the distributions of TabldnlFigure 8, the true RUL distributioRr(RUL; | &;)

(left, continuous line) and standard deviatioR, (right, continuous line) of Figure 6 are compat@the

distribution Pr(RUL | z1;) provided by the method (left, dashed line) andetbtémate of the standard

deviation g, (right, dots).
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Figure 8: comparison of the pdf Pr(RUL | &;) (left, continuousline) and the standard deviation O p,c (right, continuous
line) with, respectively, the pdf Pr(RUL | z;;) (lft, dashed line) and the estimated standard deviation 5rlj|i (right, dots),
obtained with the PF approach 1, assuming to know only the distribution of the parameters A and n.
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It can be noticed that the estimated predictioarestandard deviatiod g, is larger than the actual RUL
standard deviatiow A, , especially for low values of, , due to the model error varianceg . There are

two main reasons for which the difference betwéepn, and 0 ,,. decreases as the current creep strain gets

closer to the failure thresholij:the effect of the variability of the parameteksand n on the RUL
distribution is lower if the gap between the degtauh levelg; and the failure threshold,, is smaller;i)

the SIR particle filtering method selects amonglénge set of particles initially created with ranavalues
of A andn those having the values of these parameters dioskose of the specific blade undergoing the
creep degradation process.

Figure 9 compares the estimated prediction ereordgtrd deviatiord g, with the true prediction error

standard deviatiow g, for the PF approach 1. The results confirm thegxpected, the PF approach 1

supplies accurate estimates of the prediction evadancearzali , combining properly the contribution of the

process stochasticity,i, the noisea% and the model errorfé, described respectively by the degradation

model (eq. (15)), the observation equation (eq.46) theA andn parameters distributions (Table II).

300

o Particle filtering estimate 3r0|

250

True arOIi

0 L L
0 0.5 1 15

creep strain &

Figure 9: comparison of the estimated prediction error standard deviation &ra“ (dots), with the true prediction error

standard deviation Oy, (continuousline).

5.3.2 Prediction interval provided by approach 2

In order to estimate the real uncertainty affectimgyRUL prediction of an ensemble of models, it is

necessary to add the real model uncertaﬂﬁyto the noise and process randomness represente@}gy

(Figure 6, right). The real model uncertairaty = El,(tuRUL,|Zi - rul, )2] can be approximated by following
the procedure reported in Appendix A. Basicadlliydifferent ensemble models are trained using difier

sets of creep growth trajectories; then,R6rtest trajectories, the observation® = ¢, +u , p'=1,... P"

are simulated and the RUL predictiorffli'c’"'m collected for each ensemble modell,... M; finally, the
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corresponding error;szRUhlzp-- - rljlip"'m are computed, and the square values of theseatiffes are
i

averaged over th” trajectories and thiel models to supply the numerical approximatiom@‘:
1 1 PP M _ Al p"’m 2
78 Dy 2, Zlmuyger =107 @2)
The continuous line in Figure 10 shows the realeslofo 5, (left), og (middle) andamIi (right) during

the life of a turbine blade as a function of iteep strain; . It can be observed that the tetm, ¢ (&;)

dominates the ternog (&) , except in the very proximity of the failure thine¢d whereo o, goes to zero,

whereas the model error remains larger due torbkertainty related to the unknown value of theufal
threshold.
The dotted lines in Figure 9 represent the estisnateéhese quantities provided by the bootstraprmaibde.
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Figure 10: comparison of the bootstrap estimates (dashed line) and true values (continuousline) of Og (Ei ) (Ieft),
O pec (&) (middie) and Oy, (€i) (right) during thelife of a turbine blade for different values of itscreep strain & .

The standard deviatiodr o, estimated by the bootstrap ensemble is signifigdatger than its real value.
As in approach 1, this is due to the fact thattthming trajectories have different values of paeters A

and n and, thus, the empirical model learns the variariGepopulation of different blades instead oft thia
the specific blade with fixed values &f andn.

In Figure 10, the estimate of the model error \nm'zeﬂé appears to be not very accurate. Figure 11 shows
that the inaccuracy can be even more remarkablbér test trajectories are considered, charaeiiy
values of A and n far away from the mean value of their respectiggritdutions (ua = 3[104 and

Mn =6). Notice that the real model uncertainty depemdthe test trajectory: the model trained on the

historical trajectories tends to learn the ‘avetrdgdavior of the general creep growth trajectong

consequence is that the model makes larger erfoea e test trajectory is different from the ‘aags’
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trajectory. On the contrary, the estimaf% , of the model uncertainty provided by the bootseasemble

depends only on the value ef, being independent from the specific valueshoind n of the test

trajectory.
A:2,85-10'4, n=5.99 A=3.00-10'4, n=6.00 A:3.15-10'4, n=6.01
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Figure 11: comparison of the bootstrap estimates (dashed line) and true (continuousline) valuesof 0 g during thelife of

three turbine blades with different values of parameters A and N.

Differently from approach 1, the ensemble appradaehnot able to learn the true valuesfdfand n of the
current test trajectory. Furthermore, this limipatiof the model is not properly described by thedjmtion

interval provided by the ensemble.

The reason for which the proposed bootstrap appr@as not able to correctly model the evolutiorited

error made by the model for a specific test trajgcis that the assumption that the predictive rhoide; )
is an unbiased estimator of the RUL expected vaiRg,. , is not fully verified. In fact, if we build sevalr

ensemble models trained with different randomlyseimodatasets and perform the RUL prediction withea

one of them, we notice that the average RUL prigiiatil, over the different ensemble models is different

from the RUL mean value computed over a set oficgeewth trajectories with fixed values éf andn.

This is shown in Figure 12 where the distribut®r(rdl; |z;) of the predictionril; obtained ats; = 04 by
several ensemble models is compared to the true déftibution Pr(RUL; | &;) for 3 different values of

parametersA andn: 1) A=2.85104, n=5.99; 2) A=3.000104, n=6.00; 3) A=3.15104; n=6.01



26

0.035
BN -
--6-- Pr(RUL, |A=3.15-10%, n=6.01)
0.03 i -
—— Pr(RUL, |A=3.00-10"%, n=6.00)
«-E}- Pr(RUL, |A=2.85-10"%, n=5.99)
0.025 i -
__0.02f
-
2
S
& 0.015}
0.01}F
0.005 -
O - ¥ wnsl
1250 2000

RUL

Figure 12: comparison of the distributions of the prediction I’L]li with the distribution of the actual RUL of threeturbine
blades with different values of parameters A and N at & = 04.

On the other side, the models trained on the ligstitrajectories are unbiased estimators of thé Rfthe
generic turbine blade with random valuesffindn as it can be seen by comparing the distributiothef

RUL predictionrdl; with the distribution of the actual RUL of a poatibn of turbine blades with randomly

sampled values oA and n (Figure 13).
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Figure 13: comparison of the distributions of the prediction I‘l]li with the distribution of the RUL of a population of turbine
blades with normally distributed valuesof A and N at & = 04.
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Figure 14 compares the bootstrap estimates (db@)Qc (£;) (left), og(&;) (middle) ando g, (&i)

(right) with their true values obtained for a pagtidn of different turbine blades with parametérand n
normally distributed.
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Figure 14: comparison of the bootstrap estimates (dashed line) of O a.c (£;) (left), Og(&;) (middle) and Ty, (&)

(right) with their true values (continuous line) for a population of turbine bladeswith normally distributed valuesof A and
n.

These results confirm that the bootstrap approazdmZactually provide a satisfactory estimates of
O pc (&), og(&) ando, (€i) for a population of different turbine blades, d@hds the proposed

approach correctly quantifies the uncertainty ef pnediction produced by the prognostic model for a
generic creeping blade.

5.3.3 Prediction interval provided by approach 3

Figure 15 shows the analogous results of Figu @gproach 3. Notice that good estimates gf (&;)

are achieved only for large values&f, i.e., when a large validation dataset is avadairid the model

X(Ag; ) is used in the same range of input values whérasitboeen trained. We also notice that the value of

O asc (&) is largely underestimated.
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Figure 15: comparison of the bootstrap estimates (dots) and true (continuousline) valuesof Og(&;) (I€ft), T arc (&)
(middle) and O (Si) (right) during thelife of aturbine blade for different values of itscreep strain &; .

To understand the reason for which the proposetktvap approach 3 tends to underestimate the model
error variance in this case, it must be pointectioat, from a probabilistic point of view, the siegvailable
trajectory used for training the models is only ofi@an infinite number of possible trajectories,jethmay
be drawn from the creep growth process we wishddah Thus, bootstrap sampling of creep strain
measurements from a single degradation trajectoeg dot account for the variability of all possible
degradation trajectories.

In the case of a linear process, it is possiblevercome this limitation, by considering, insteddhe

sequence of creep strain measuremeytsthe set of independent creep strain incrememnt$ne unit

Azj =(zj41 = 2j) (tja —t;), J=2.00 -1 In this way, the variability of the training dagincreased, and a
better representation of the intrinsic variabibifithe process is provided. An accurate model efatocess
can still be achieved by estimating the parameets=1,... H, of the models of the ensemble

ﬁh(Ae’j,j-) =Ag; -/ " as the average value of the creep strain increnwéthe bootstrap replica@f,,

of the new training dataseti, ={Az;_4} . Figure 16 shows that a more accurate estimatg;o0dnd g is

achieved using this new ensemble of models.
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Figure 16: comparison of the bootstrap estimates (dots) and true values (continuousline) of O py ¢ (I€ft), O g (middle) and

O (right) during thelife of aturbine blade for different values of itscreep strain £; obtained using astraining data for
the ensemble of modelsthe creep strain increments between consecutive observations.

6 Conclusions

Three prognostic approaches have been investigadetiularly with respect to the treatment of the
uncertainty in the predicted equipment RUL. Quatitie considerations have been made with regards to
simulated case study concerning the creep growvategs in a high temperature turbine blade. Thdtsesu
show that the particle filtering approach providegood approximation of the exact distributionled t
equipment RUL in the case in which an accurate in@eoducing the equipment degradation process is
available. A limit of particle filtering is partielimpoverishment, which relates to the failure afimmaining
the diversity of particles and is caused by thamgding approach adopted to avoid particle degeyera
Particle impoverishment implies the impossibilifytloe particles to correctly represent all possible
evolutions of the degradation process, which ineJddr example, changes in time due to the vanatio
operating conditions. In this context, differergampling methods, such as the one proposed inyi¢h
samples particle considering not only the partiedgght but also their spatial distribution (stagdues), can
be considered.

When using model-based approaches, imprecisiomeafiiodel in the reproduction of the degradation
process due to simplifications, incorrect modelaire or assumptions on the equipment specific
geometries or material properties, etc. can beifiggbver time, causing unreliable estimates ef RUL
distribution. Using patrticle filtering, it is po&dé to include model parameters in the state veatdr thus,
perform model adaptation in conjunction with staseking. In any case, it is very difficult for aysics-
based model to account for all aspects of a detjcadarocess; for example, it is common to negseche
of the interactions between different degradati@thanisms or the possible existence of self-healing
mechanisms which can reverse the degradation mecebare likely to increase the uncertainty offtiiere

degradation evolution. All these non-modeled phesmancan be accounted for by adding further noise to
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the process model which will result in a largerfabence interval associated to the RUL estimatethen
research is needed to quantify the impact of modedirors on the final prediction of model-based
approaches.

In the bootstrap approaches 2 and 3 considerkdsibeen shown that a reliable prediction of thepegent
RUL with a correct quantification of its uncertairdan be obtained. With respect to the ensemble of
bootstrapped models trained with historical seqeemd observations in approach 2, the main linutais
that it is not able to learn the peculiar charasties of the equipment of interest but it tendsgproduce an
‘average’ behavior. To overtake this problem, #edént modeling approach could be used, such &s tha
based on the idea of fuzzy similarity [56], or agedure for updating the ensemble with the infoiomat
conveyed by new observations [27].

The application of the bootstrap ensemble in time tseries scheme of approach 3, in which only tlirec
measurements of the degradation experienced kgqthipment of interest are available, has shown the
importance of injecting diversity into the bootgpad models by using independent training datarder to
correctly quantify the modeling error. The casealgtconsidered is characterized by a linear degi@uat
process, so that independent training data camtaéned by considering the creep strain increments
between consecutive measurements; on the conthigywyould not be feasible for non-linear degramfati
processes. Furthermore, in this case of very litfiermation available, the bootstrap method resgiir
building an empirical model for the RUL variancéimate which is then used outside the region calbse
the training data. Although good extrapolationsehbgen obtained in the linear creep growth casky sthe
feasibility of the approach on more complex modéisuld be verified.

Contrarily to physics-based models, we expect das-driven methods can automatically learn frona da
the effects on the equipment RUL of phenomena émiting the degradation process, such as self-lgealin
and interactions between different degradation m@meidms. The capability of data-driven methods of
providing correct estimates of the RUL and its utaia distribution depends on the availability imet
training set of examples of the phenomena that wet v represent.

In this work, the problem of detecting the inittatiof a degradation process, which is usually aetidy
using properly developed diagnostic systems, habe®n addressed. Although none of the approaches
presented in this work requires knowing the exiae¢ tat which degradation has initiated, late detaabf

an ongoing degradation process will reduce the murmabdegradation measures available for progngstic
this is expected to reduce the RUL prediction a@cyiand increase its uncertainty especially in eggies

1 and 3 which, contrarily to approach 2, generagé tRUL prediction on the basis of past degradatio
measurements. .

Since only artificial data have been used in tteecudy considered in this work, conclusions aboait
successful application of these approaches ini¢hedannot be directly drawn. The analyses peréatrm
have shown the potential of these methods in paifay RUL prediction with adequate management of its
uncertainty; in this sense, they hold promisedudture research aimed at confirming this poteritiahe

application to real data.
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Appendix A: approximation of the model error and prediction error variances

In the empirical ensemble-based approaches 2 ahe &ue value of the model error variarccé has been
approximated for different values of the creepiste, as the mean square value of the model error
Hruy |z, ~ Ul (z;) made by different ensembles on 200 creep growjediories sampled for a turbine blade

with parameteré=3-10* andn=6. The details of the procedure are sketcheddmp#eudo-code of Figure

1A for approaches 2 and 3.
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3. Sample 1000 creep growth trajectories with
FOR p’=1:1000
4. Sample Eip' = Zip —U,p' ;

5. Compute ru|ip'(£ip');

1. Sample 200 creep growth trajectories with A= 300%and n =6 and simulate a measurement
every 30 days according to eq. (16)
FOR p=1:200
( 2. Sample the current measured value Zip =& +1_i|p according to eq. (16);

A=300%and n=6;

10 training trajectories
9. Predict rdlP™=1(zP)
\ END FOR

10. Compute the mean square model error

1 N
og p(&) = %Z(’URUM 2P ral;P™)2
m

END FOR
6. Compute K I
. ompute =— i
PU FruyleP 1000%: !
Case 2 Case 3
( FOR m=1:50
7. Sample 10 training degradation
trajectories with different values of ) ) A
parameters A and n and simulate a 7-8.BU|IQaprognostlc model n(8e)
measurement every 30 days according to using the measurements of the p-
eg. (16); th trajectory up to &
8. Train the prognostic model f (&) using the

9. Predict ralP=r7(zy-2")

10. Compute the square model error

) = —rdl.P
08 p(&) = (,uRULi 2P rdli?)2

\

END FOR

1
11. Compute the model error variance od(e)=—) 03 (&
p 16) 200% 3p(&)

Figure 1A: procedure for approximating o(s;) in approaches2 and 3.
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