On simultaneous diophantine approximations to $\zeta(2)$ and $\zeta(3)$

Abstract : The authors present a hypergeometric construction of rational approximations to $\zeta(2)$ and $\zeta(3)$ which allows one to demonstrate simultaneously the irrationality of each of the zeta values, as well as to estimate from below certain linear forms in 1, $\zeta(2)$ and $\zeta(3)$ with rational coefficients. A new notion of (simultaneous) diophantine exponent is introduced to formalise the arithmetic structure of these specific linear forms. Finally, the properties of this newer concept are studied and linked to the classical irrationality exponent and its generalisations given recently by S.Fischler.
Type de document :
Pré-publication, Document de travail
2013
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00933967
Contributeur : Simon Dauguet <>
Soumis le : mardi 21 janvier 2014 - 13:50:14
Dernière modification le : mercredi 4 janvier 2017 - 16:22:10

Fichiers

SimultDioApp.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00933967, version 1
  • ARXIV : 1401.5322

Collections

Citation

Simon Dauguet, Wadim Zudilin. On simultaneous diophantine approximations to $\zeta(2)$ and $\zeta(3)$. 2013. 〈hal-00933967〉

Partager

Métriques

Consultations de
la notice

118

Téléchargements du document

88