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Abstract: 

We propose a method for microscope point spread function computation in which both 

design and actual acquisition parameters are explicitly introduced in the integrals 

describing the electromagnetic field in the focal region. This model therefore combines 

the ease of use of the Gibson and Lanni scalar approach with the accuracy of the Török 

and Varga method. We also compare some theoretical predictions of this model with 

those of a scalar model. In particular, the scalar model underestimates the point spread 

function size. This has practical application, for example when deconvolving 

microscope images or analyzing point spread functions. The method may also be used 

for confocal microscopy.  

PACS numbers:  07.60.Pb, 42.25.Fx, 42.30.Va 
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1. Introduction 

The description of waves in focal regions has lead to numerous efforts by many authors 

(Reference 1 and references therein). The computation of the point spread function of the 

optical microscope has generated intensive work to establish theoretical models of image 

formation [2-10], mainly because of applications in biological and material sciences. 

A commonly used diffraction model for microscope objective is that of Gibson and Lanni [2]. 

It is based on scalar diffraction theory. One advantageous feature of this model is that it 

specifically introduces as parameters to compute the PSF the design conditions of use of the 

objective, as recommended by the manufacturer, and the actual acquisition conditions, when 

known by the user. It is also implemented in the XCOSM package [11]. This software from 

the Biomedical Computer Laboratory (Washington University, St Louis, Missouri, USA) 

provides the implementation of several algorithms for deconvolving 3-D images, as well as 

for computing point spread functions from optical and confocal microscopes. It runs on Unix 

workstations and PCs.  

For high numerical aperture objectives, the extremal incident rays are impinging at large 

angles of incidence on the various interfaces separating the microscope objective from the 

specimen and as a consequence, vectorial theories of diffraction seem mandatory. Such 

electromagnetic models are indeed available [3-10]. They however are less directly usable by 

non-specialists, as practical acquisition conditions do not directly appear as computational 

parameters.  

We propose a diffraction model for point spread function computation, which combines the 

advantage of the Gibson and Lanni model [l2], namely the clear introduction of design and 

actual conditions, with the rigor of the integral representation of Török and Varga [10]. 
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2. Gibson and Lanni model 

Gibson and Lanni [2] modeled the point spread function (PSF) of an optical microscope 

objective using the scalar diffraction theory of light. Throughout this article, we will only 

consider the intensity PSF as it corresponds to what one can easily measure with an optical 

microscope. The intensity PSF is then given by: 

PSF(x, y,z ) = J0 (kaρ
x2 + y2

z
)exp(iW(ρ ))ρdρ

0

1

∫

2

  (1) 

When the microscope objective is used under design conditions as recommended by the 

manufacturer, the phase term W(ρ) reduces to a defocus term, and Eq. (1) simply represents 

the classical 3-D Airy distribution [12]. When differences exist between the design conditions 

and the actual conditions, this distribution is deformed, which materializes the presence of 

aberrations. 

To calculate W(ρ), one considers the path difference between one optical ray entering the 

objective under design conditions and one entering the objective under the actual conditions. 

Figure 1 describes the considered setup. The optical path difference is then given by: 

OPD = [ABCD] - [PQRS]  (2) 

One has to compute OPD with respect to the following quantities: 

 

θ  : angle of propagation of both rays entering the frontal lens of the objective 

s
t  : depth of the specimen under the cover glass 

s
n  : index of refraction of the specimen 

g
t  : thickness of the cover glass 

g
n  : index of refraction of the cover glass 

t
i
 : thickness of the immersion medium layer 

n
i
 : index of refraction of the immersion medium 

n  : index of refraction of the objective front lens 
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The parameters with an asterisk * are values for the design conditions of use of the objective, 

those without an asterisk are the actual ones. Taking into account the Snell-Descarte law of 

refraction and the fact that the microscope obeys the Abbe sine condition, Gibson and Lanni 

propose for the computation of the OPD: 

OPD = OPDg + OPDi + OPDs  (3) 

The term OPDg represents the aberration term due to the use of an improper cover glass 

(index of refraction or thickness differing from the design values): 

OPDg = ngtg 1−
nsinθ

ng

# 

$ 
% 

& 

' 
( 

2

− ng
*
tg
*
1 −

nsinθ

ngi
*

# 

$ 
% 

& 

' 
( 

2

  (5) 

The aberrations possibly induced by an incorrect immersion medium are given by: 
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  (6) 

The specimen lying at depth ts, under the coverslip, one has the supplemental term: 

OPD
s

= n
s
t
s
1−

nsinθ

n
s

# 

$ 
% & 

' 
( 
2

  (7) 

The computation of the intensity PSF described by Eq. (1) is then performed by computing 

the various terms (Eqs. (3)-(7)) with: 

W(ρ) = kOPD   and   ρ = n sinθ / NA   (8) 

This model is very convenient for computing PSFs in the sense that design and actual 

conditions of acquisition directly appear as input parameters (see Appendix A). It however 

suffers from several limitations. 
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First the apodizing function a(θ) = (cos θ)
1/2

 for an aberration free aplanetic system obeying 

the sine condition is not included in Eq. (1). 

Secondly, for a high numerical aperture objective, the extremal incident rays are impinging at 

large angles of incidence on the two interfaces (immersion medium to cover glass, and cover 

glass to specimen) separating the microscope objective from the specimen. Even if one 

considers randomly or circularly polarized light, which would have for effect of averaging 

the various polarization contributions, these extremal rays are considered to be transmitted 

without reflections, namely with constant intensity, an assumption which may be 

questionable for high incidence rays or when large differences exist in the refraction indices. 

As a consequence, one can question the accuracy of the predictions by this model. Even if 

"Gibson and Lanni demonstrated good agreements between their numerical results and 

experimental measurements of the aberrated point spread function. This and some other 

theories confirm that, while it is essential to construct mathematically rigorous theories, it is 

sometimes possible to obtain accurate predictions using approximate physical models based 

on wave optics" (from Reference 13), the recent progress in instrumentation (compared to the 

experiments described in References 2) should permit to better compare experimental data 

with computations from this scalar model and from a vectorial model. 

 

3. Török and Varga model 

An elegant description of high numerical aperture focusing of electromagnetic waves is that 

of Wolf [3,4], who proposed a formalism based on the angular spectrum of plane waves, 

from which integral formulas are obtained. This formulation was later on subsequently 

generalized by Török et al. [6-8] who considered the focusing of an electromagnetic wave 

through a planar interface separating materials with mismatched indices of refraction. Finally, 

a further extension of this method describes electromagnetic waves focused through a 
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stratified medium [10]. We recall here briefly the main results, using the same notation as in 

Reference 10.  

One considers a linearly polarized (along the x-axis) monochromatic wave focused through a 

three-layer medium (see Fig. 2). The origin of the (x,y,z) coordinate system is at the Gaussian 

focus point. The intensity illumination PSF at point P(x,y,z) can then be computed as: 

PSF(x, y,z ) = E
2
= E

3x + E3y + E3z

2

  (9) 

the components being given by (with φ in spherical polar coordinates): 

E3x = −i(I0ill + I2ill cos2φ) ,  E3y = −i(I2ill sin2φ) ,  E3z = −2I1ill cosφ   (10) 

I0ill = cosθ1

0

α

∫ sinθ1J0 (k1(x
2 + y2 )1/ 2 sinθ1)

 × (T2s + T2 p cosθ3)exp(ik0Ψi) exp(ik3z cosθ3)dθ1

I1ill = cosθ1 sinθ1

0

α

∫ J1(k1(x
2 + y2 )1 / 2 sinθ1)

 × T2p sinθ3 exp(ik0Ψi)exp(ik3zcosθ3 )dθ1

I2ill = cosθ1

0

α

∫ sinθ1J2 (k1(x
2 + y2 )1/ 2 sinθ1)

 × (T2s − T2p cosθ3 )exp(ik0Ψi)exp(ik3z cosθ3)dθ1

  (11) 

The so-called initial aberration function [10] is given by: 

Ψ
i
= h

2
n
3
cosθ

3
− h

1
n
1
cosθ

1
  (12) 

The transmission coefficient for a three-layer medium is given by: 

T2s, p =
t12s ,pt23s, p exp(iβ)

1 + r12s, pr23 s, p exp(2iβ)
  (13) 
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with β = k
2
h
2
− h

1
cosθ

2
 [14] and the Fresnel coefficients for transmission and reflection 

being given by: 

tnn+1, s =
2nn cosθn

nn cosθn + nn +1 cosθn +1

tnn+1, p =
2nn cosθn

nn +1 cosθn + nn cosθn+1

rnn+1,s =
nn cosθn − nn+1 cosθn +1

nn cosθn + nn+1 cosθn +1

rnn+1,p =
nn+1 cosθn − nn cosθn+1
nn+1 cosθn + nn cosθn+1

  (14) 

This vectorial model has been shown to be compatible with the Huygens-Fresnel approach 

[9] of diffraction in the case of a two-layer medium (when n2=n3 for example). It has been 

successfully used to compute the PSF of an optical microscope and to show how adapting the 

cover glass thickness permits to compensate the spherical aberration introduced by 

immersion medium and specimen refractive indices mismatch [10]. It has also permitted to 

study aberration correction using a Zernike expansion of the aberration function [15]. 

We will now show how one can combine the above approach with the ease of use of the 

Gibson and Lanni model. 

 

4. Discussion 

In biological microscopy, three cases are commonly to be considered: dry objectives, oil 

immersion objectives and water immersion objectives. As pointed out by Török and Varga 

[10], for such layers the Fresnel reflection coefficients rs,p given by Eq. (14) are much smaller 

than unity. The denominator of T2s,p can therefore be considered as unity. As a consequence, 

the overall aberration function for a three-layer medium can be written as: 
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Ψ = hj (n j+1 cosθ j+1 − n j cosθ j )
j=1

3

∑   (15) 

If the numerical aperture of the illuminating objective is limited such that there is no 

nonordinary refraction at both interfaces, Eq. (15) may be rewritten with Gibson and Lanni 

notations (ρ=n1sinθ1/NA, n1sinα=NA, n3=ns, n2=ng, h2=ts and h1=ts+tg) as: 

Ψ = −(ts + tg )ni 1 −
NAρ

ni
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% 
& ' 

( 
) 
2

+ ns ts 1 −
NAρ

ns
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& ' 

( 
) 
2

+ ngtg 1 −
NAρ

ng

$ 

% 
& 
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( 
) 

2

  (16) 

Comparing Eq. (16) with Eq. (4)-(7) highlights the parallel, which exists between both 

methods. The second term of the above equation represents the aberration introduced by the 

focalization of the wave at depth (h2=ts) under the second interface, namely under the cover 

glass. It is identical to the term given by Eq. (4). The third term represents the aberration 

introduced by the cover glass. It is identical to the first term of Eq. (5), the second term of 

Eq.(5) being introduced has a compensation from the objective to express that when a design 

(thickness and refraction index) cover glass is used, its aberration cancels with that 

introduced by the objective. 

The first term is to be split in two: 

Ψi = Ψi1 +Ψi 2 = −tgni 1 −
NAρ

ni

$ 

% 
& ' 

( 
) 
2

− tsni 1 −
NAρ

ni

$ 

% 
& ' 

( 
) 
2

  (17) 

Equation (17) represents the so-called initial aberration function [10]. The first term of Eq. 

(17) only depends on ρ and not on the specimen depth. So to correct this initial spherical 

aberration, one has also to compensate for that term. This is done by saying that the objective 

will introduce an aberration given by: 
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Ψobj = +t g*ni* 1 −
NAρ

ni *

$ 

% 
& ' 

( 
) 
2

  (18) 

so that when a design thickness cover glass is used in conjunction with a design immersion 

medium refractive index, these phase factors compensate. 

Török and Varga [10] consider the focusing of a wave into the medium at a certain depth 

under the cover glass, which explains the presence of the term Ψ
i2

in Eq. (17), which does not 

appear in Eq. (3)-(7). In the Gibson and Lanni model [2], one considers on the contrary a 

scan of a point like source to acquire a 3-D PSF. As a consequence, the immersion medium 

layer thickness changes during the scan. If one expresses this change as a function of the 

defocus, one obtains: 

ti = ni
z
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Inserting Eq. (19) into Eq. (6), one obtains for the optical path difference the final expression: 

OPD = niz 1−
NAρ
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  (20) 
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We recognize in the first term of Eq. (20) the term Ψ
i2

of Eq. (17), which proves that in fact 

the Gibson and Lanni approach of calculating the optical path difference, including terms 

relative to the thickness and index of refraction of the immersion layer is indeed equivalent to 

the Török and Varga approach. As a consequence, we propose to combine the integral 

equations of Török and Varga with the Gibson and Lanni method for computing the phase 

difference, so that Eqs. (9) and (10) are to be calculated with Eqs. (5)-(7) and with: 

I0ill = cosθ1

0

α

∫ sinθ1J0 (k1(x
2 + y2 )1/ 2 sinθ1)

 × (t12 st23s + t12pt23p cosθ3 )exp(ik0OPD)dθ1

I1ill = cosθ1 sinθ1

0

α

∫ J1(k1(x
2 + y2 )1 / 2 sinθ1)

 × t12pt23p sinθ3 exp(ik0OPD)dθ1

I2ill = cosθ1

0

α

∫ sinθ1J2 (k1(x
2 + y2 )1/ 2 sinθ1)

 × (t12 st23s − t12pt23p cosθ3 )exp(ik0OPD)dθ1

  (21) 

 

5. Numerical results 

Figure 3 shows point spread functions computed at λ=488 nm and using Eq. (21) for an air 

immersion (n
i*

=1) objective of numerical aperture 0.9, designed to be used with a cover glass 

of index ng*=1.54 and thickness tg*=170 µm and at a depth of 50 µm below the cover glass in 

a watery medium n
s
=1.33. The actual cover glass thickness is (a): 120 µm , (b) 170 µm and 

(c) 220 µm with all other actual parameters having their design values. (Appendix A shows 

the various parameters used in the Gibson and Lanni approach). 

These curves are identical to those published in Reference 10 (Figure 4(b)), which have been 

computed with Eq. (11) and introducing the correction for a 170 µm cover glass. The sole 
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difference is that when using Eq. (21) with the Gibson and Lanni parameters, one computes 

the PSF in an absolute reference frame centered at the geometrical position of the focal point, 

while curves presented in Reference 10 are displayed with the distance of the last interface 

from the unaberrated Gaussian focus as horizontal axis. We also computed these curves using 

Eq. (13) without approximation on the Fresnel reflection coefficients rs,p given by Eq. (14). 

The difference is below 1%, which justifies the approximation made by Török and Varga to 

obtain Eq. (15), and as a consequence also validates the equivalence with the Gibson and 

Lanni approach we highlighted. 

In Figure 4, we show the lateral PSF profile for a water immersion objective (ni=1.33) with 

NA=1.3 imaging in a watery medium (ns=1.33) and for an oil immersion objective (ni=1.515) 

with NA=1.4 imaging in a watery medium (ns=1.33) at a depth of 15 µm. The dashed curves 

are computed with the Gibson and Lanni model and the solid curves with our method. In both 

case, all actual parameters satisfy the design conditions. A random emission of light at 

λ=488 nm is considered so that the φ dependence in Eq. (10) disappears [5,6]. Figure 4 shows 

that the resolution (measured at FWHM of the distribution) is in fact overestimated (by 14%) 

when using a scalar model for the water immersion objective. This has consequence when 

deconvolving data from a fluorescence microscope: as the scalar model underestimates the 

actual PSF size, measurement on objects with extension similar to the objective resolution 

will result in an overestimation of the actual object size. Also, when analyzing an 

experimental PSF [16], the use of a scalar model may lead to an underestimation of the actual 

numerical aperture. 

For a NA=1.4 oil immersion objective, the lateral size difference is 15% when the specimen 

is placed just below the cover glass. One could argue that when using the same NA=1.4 

objective to image a specimen at a depth of 15 µm, the error on the lateral resolution is only 

4% (Fig. 4). However the loss in resolution is such that using a water immersion objective 
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would give a better resolution despite the lower NA. These results confirm the statement by 

Sheppard and Török suggesting that “use of high aperture scalar theory is not particularly 

useful as an approximation to the vectorial case” [17], at least when there is no aberration, 

and show that it is indeed necessary to use a vectorial model when precise quantitative 

measurements are to be done after a deconvolution if using a high NA objective. Note that a 

scalar model may give results with the desired accuracy for lower NA objectives: the error on 

the lateral resolution is below 3% for NA=0.8. 

Finally, the similarity between Eq. (1) and Eq. (21) shows that only little modifications of the 

XCOSM code may permit to merge the ease of use of this software with the more accurate 

model of Török and Varga, therefore facilitating its adoption by non-specialists in optics. 

 

6. Application to confocal and multiphoton microscopy 

Confocal [18] and multiphoton [19] microscopy are widely used for three-dimensional 

investigations of biological structures because of their inherent optical sectioning capabilities 

and deeper penetration depth. Theoretical treatments of confocal fluorescence microscopy 

have been presented by several authors [20-22]. These models are based on the high-angle 

vectorial diffraction integrals proposed by Richards and Wolf [3,4]. Assuming that the 

fluorescent particle acts as a perfectly isotropic radiator, one shows that the confocal 

microscope PSF is obtained by multiplying the illumination PSF by the detection PSF. For 

multiphoton microscopy, the probability of excitation of the dipole is proportional to the 

intensity of the illumination to the power of the order of the multiphoton process. 

Fluorescence is however known to be generally polarized, and dipole emission models better 

the fluorescence process than isotropic radiation. However, models used to describe the 

image formation process in confocal and multiphoton microscopy and considering dipole 

emission assume that the dipole is located in a homogeneous medium [23-26]. This 
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assumption may be fulfilled for example when using a water immersion objective working 

without cover glass. A rigorous treatment of dipole imaging through dielectric interfaces 

remains to be proposed. Reference [27] set up the basis of such a theory. 

However, when the fluorescent molecule can freely rotate between excitation and emission, 

for unpolarized or circularly-polarized illumination and detection, and as long exposure time 

(compared to fluorescence life-time) is required, the image is obtained by averaging over all 

dipole orientations. In that case, one finds that the PSF of a confocal microscope observing 

dipoles is the same as if an isotropic radiator is considered [23]: 

PSFconf (x, y, z) = I
0ill

2

+ 2 I
1ill

2

+ I
2ill

2( ) I0det
2

+ 2 I
1det

2

+ I
2det

2( )  (22) 

The diffraction integrals are computed at the illumination and detection wavelengths and for 

finite size pinhole, a convolution with the pinhole aperture is necessary (note that in the 

XCOSM implementation of this model, illumination and detection PSFs are computed at the 

same observation wavelength, which constitutes another approximation). 

Under this assumption of freely rotating fluorescent molecules, our model given by Eq. (21) 

may also be used to compute confocal and multiphoton PSFs. We would like to emphasize 

one obvious limitation of this approach. Fresnel coefficients differ when for example 

propagation occurs from oil to glass or from glass to oil. So, for focusing through a layered 

medium, the illumination and detection PSFs should be slightly different even if computed at 

the same wavelength. We believe the difference is very small for water or oil immersion 

objectives, and we will assume the detection PSF may be computed as the illumination PSF 

using Eq. (21). This approximation may however fail for air immersion objectives, because 

of the large difference in the refractive indexes. 
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7. Conclusion 

We have shown how the approach of Gibson and Lanni to calculate the phase difference 

between optical rays in actual and design conditions of use of a microscope objective can be 

combined with the vectorial model of Török and Varga. One then obtains a convenient model 

to precisely compute the point spread function of a microscope objective, which explicitly 

introduces experimental and design acquisition parameters. Comparing simulations of the 

scalar model with ours shows that for high NA objectives, noticeable differences appear. For 

precise deconvolution results and quantitative measurements, use of a vectorial model is 

therefore mandatory. Our approach may also be used to compute point spread functions for 

confocal microscopy, under some assumptions relative to the fluorescent dye.  
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Appendix A 

List of the parameters of the XCOSM package to compute the PSF of an optical microscope: 

Nxy: 128   size of the image in x and y 

deltaxy: 0.068  pixel size in image space in µm 

Nz: 128  size of the image in z (optical axis) 

deltaz: 0.1  pixel size in z in µm 

mag: 100  lateral magnification 

NA: 0.9  numerical aperture of the objective 

workdist: 0.16  working distance of the objective in mm 

lamda: 0.000488 fluorescence wavelength in mm 

slipdesri: 1.525 cover glass design refractive index 

slipactri: 1.525  cover glass actual refractive index 

slipdesth: 0.170 cover glass design thickness in mm 

slipactth: 0.120 cover glass actual thickness in mm 

medesri: 1  immersion medium design refractive index 

medactri: 1  immersion medium actual refractive index 

specri: 1.33  specimen refractive index 

specthick: 0.050 specimen depth in mm 

desot: 160  design tube length in mm 

actot: 160  actual tube length in mm 

(Note that in a modern, infinity-corrected microscope, the two last parameters are 

meaningless) 
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Figure Captions 

Figure 1: Optical rays entering the frontal lens of a microscope objective in the Gibson and 

Lanni model in design conditions (dashed line) and actual conditions (solid line). The optical 

path difference to be computed is given by OPD = [ABCD] - [PQRS]. 

 

Figure 2: Diagram showing an electromagnetic wave focused by a lens through a three-layer 

stratified medium in the Török and Varga approach. The origin O of the (x,y,z) reference 

frame is at the unaberrated Gaussian focus point. 

 

Figure 3: Optical axis profile of the point spread function for an air immersion (ni=ni*=1) 

objective of numerical aperture NA=0.9 imaging at λ=488 nm a specimen at a depth of 

50 µm in a watery medium (ns=1.33) through a cover glass (ng=ng*=1.54, tg*=170 µm) of 

thickness 120 µm (curve (a)), 170 µm (curve (b)) and 220 µm (curve (c)). 

 

Figure 4: Lateral profile of the point spread function at λ=488 nm for a water immersion 

objective with NA=1.3 (all parameters satisfying the design conditions) and an oil immersion 

objective with NA=1.4 and with a specimen depth of 15 µm. Dashed curves: scalar model. 

Solid curves: vectorial model with unpolarized radiation 
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O. Haeberlé “Focusing of light….” Fig. 1 
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O. Haeberlé “Focusing of light…” Fig. 3 

 



 22 

 

 

 

 

 

1.0

0.5

0.0

N
o
rm

a
liz

e
d
 I
n
te

n
s
it

y

-0.4 -0.2 0.0 0.2 0.4

Scan Position (µm)

water immersion
NA=1.3
 vectorial
 scalar

 

oil immersion
NA=1.4

depth=15 µm

 vectorial
 scalar

 

 

 

 

 

 

 

 

O. Haeberlé “Focusing of light…” Fig. 4 


