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In this paper, we propose a new generalization of the well-known Cahn-Hilliard two-phase

model for the modelling of n-phase mixtures. The model is derived using the consistency
principle: we require that our n-phase model exactly coincide with the classical two-phase
model when only two phases are present in the system. We give conditions for the model
to be well-posed. We also present numerical results (including simulations obtained when
coupling the Cahn-Hilliard system with the Navier-Stokes so as to obtain a phase-field
model for multiphase flows) to illustre the capability of such modelling.
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1. Introduction

1.1. General framework and main objectives

The Cahn-Hilliard model (CH) was originally proposed (see Refs. 7, 8) to describe

spontaneous phase separation in a binary alloy below the critical temperature θc.

The starting point of the derivation of the Cahn-Hilliard equation consists in intro-

ducing a free energy F , called Ginzburg-Landau free energy, of the form

F(c) =

∫

Ω

A

2
|∇c(x)|2 +Bf(c(x)) dx, A,B > 0, (1.1)

where Ω ⊂ R
d, d = 1, 2, 3 is a smooth bounded connected domain, c stands for the

order parameter (that is the atoms density of one of the (two) phases constituting

the mixture) and f : R → R is a “coarse-grain” free energy: it is a double-well po-

tential whose two wells characterize the pure phases of the mixture. More precisely,

in this paper, we assume that

0 1





f is of class C1(R)

f is symmetric: f(c) = f(1− c) for any c ∈ R,

f(0) = f(1) = 0 and f > 0 elsewhere.

(1.2)
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Those assumptions imply in particular that f ′(0) = f ′(1) = f ′(1/2) = 0 and that

0 and 1 are the unique minimisers of f representing each of the two phases in

the binary mixture. A thermodynamically consistent potential has the following

expression

f(c) = 2 θc c(1− c) + θ
(
c ln(c) + (1− c) ln(1− c)

)
, 0 < θ < θc,

but this singular potential do not satisfy the assumptions above and is very of-

ten replaced by a quartic polynomial approximation (after normalisation), of the

following form

f(c) = c2(1− c)2. (1.3)

The coefficients A and B defining the free energy F can be connected with the

two physically and numerically relevant quantities: the surface tension σ between

the two phases and the thickness ε of the diffuse interface, through the following

relations whose derivation is recalled in Appendix A

A = σεa, B =
σ

ε
b, (1.4)

where a and b are constants (depending only on the shape of the potential f)

a =
max[0,1]

√
f

∫ 1

0

√
f

, b =
1

2
(
max[0,1]

√
f
) ∫ 1

0

√
f
.

In the case of the fourth-order polynomial potential (1.3), we find a = 3
2 , b = 12.

Thus, once the potential shape f is fixed, the free energy that we classically

consider for a two-phase system with surface tension σ and interface thickness ε, is

given by

Fσ
ε (c) =

∫

Ω

σεa

2
|∇c|2 + σ

ε
bf(c) dx. (1.5)

The evolution equation is then obtained by writting the mass balance

∂tc+ div (J) = 0,

where J is the mass flux related to the chemical potential µ by the constitutive

equation

J = −M∇µ, M > 0,

which is postulated so as to fulfill the main principles of thermodynamics. The

chemical potential is usually defined as the functional derivative of the free energy

with respect to the extensive parameter c

µ = −A∆c+Bf ′(c).

We eventually obtain the Cahn-Hilliard equation
{
∂tc = div (M∇µ),

µ = −A∆c+Bf ′(c).
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A different and somehow more rigorous derivation (based on additional microspic

balance law) of this system is available in Ref. 19 (see also Ref. 29).

The Cahn-Hilliard system, with the quartic potential term (and, more gener-

ally, with a regular (nonsingular) potential f) is now well understood, at least from

a mathematical point of view. In particular, one has a rather complete picture of

existence, uniqueness and regularity results. Many authors have also analyzed the

asymptotic properties of this dynamical system: existence of finite-dimensional at-

tractors, convergence of single trajectories to steady states, for instance. Overviews

of these theoretical results can be found in Refs. 10, 11, 31.

In this article, we deal with the generalization of the CH equation to multi-

component systems. Such extensions goes back to Refs. 9, 20, 30.

In order to properly derive the model we shall consider that the n-tuple c =

(c1, . . . , cn) of order parameters belongs to a space C (Ω) of smooth enough functions

defined from Ω into R
n, that we do not want to specify yet since the derivation of

the model is made at the formal level. In practice, the mathematical analysis of the

system will be performed in suitable Sobolev spaces, typically in C (Ω) = (H1(Ω))n,

see Section 2.5.3.

As in the two-phase situation, the starting point of the derivation consists in

considering a free energy F depending on the concentrations c of the n phases in

the system and on their gradients as follows

F(c) =

∫

Ω

F(c(x),∇c(x)) dx,

where F : Rn × (Rd)n 7→ R is the free energy density.

The gradient system naturally associated with this free energy is of the following

form

∂tci + div (J i) = 0, i = 1, ..., n,

where J i stands for the total diffusion flux of the phase i. Classically, we assume

that this total diffusion flux can be decomposed as follows

J i =
∑

j 6=i

J i→j (1.6)

where the diffusion fluxes J i→j are assumed to be conservative and proportional to

the differences between the gradients of generalized chemical potentials, that is

J i→j = −J j→i, and J i→j = αij∇(µj − µi). (1.7)

This particular form accounts for the Onsager reciprocity relations (see Refs. 26,

32, 33). Note that the two constitutive assumptions (1.7) above imply that

αij = αji, ∀i 6= j. (1.8)

The chemical potential µi is defined as the functional derivatives of the total energy

with respect to the order parameter ci

µi =
δF
δci

.
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Finally, the system reads




∂ci
∂t

= −div




n∑

j=1

αij∇µj


 , ∀i = 1, ..., n,

µi =
∂F
∂ci

, ∀i = 1, ..., n.

(
CH[F ,α]

)

where we have set for simplicity αii = −
∑

j 6=i αij , so that we have

n∑

j=1

αij = 0, for any i ∈ {1, . . . , n}. (1.9)

We will also assume that

∀i ∈ {1, ..., n}, ∃j ∈ {1, ..., n}, αij 6= 0. (1.10)

This assumption is natural since, if it does not hold for some i, we can deduce that

the equation satisfied by ci in
(
CH[F ,α]

)
reduces to ∂ci

∂t = 0, which means that the

phase number i does not vary along time and thus can be simply removed from the

system under study.

A derivation of such multi-component model based on microscopic balance law

was proposed in Ref. 29. Several theoretical studies of such models are given in,

e.g., Refs. 12, 13, 14, 15, 16, 17, 18, 28.

In this article, the goal is to provide an explicit expression of the parameters of

the n-phase system (that is the density free energy F and the coefficients αij) from

the two-phase “coarse grain” potential f , the interface width ε and the surface

tensions σij between each couple of distinct phases (i, j) among the n available

phases.

Our approach is based on the consistency property: the n-phase model has to

exactly coincide with the underlying two-phase models when only two phases are

present (see Section 2.1 for a precise definition). Hence, we ensure by construction

that a single set of PDEs is able to account for n(n−1)/2 different two-phase situa-

tions in the system; we say that the model is consistent with the two-phase models.

The importance of this last property when using such models in real multiphase

modelling was mentionned in the numerical tests in Refs. 18, 24, where the au-

thors observe that the third phase may appear during two-phase simulations using

a three-phase model. However, the consistency property was first introduced and

formalized in Ref. 3 and used to derive a suitable three-phase model. The model

derived in Ref. 3 was based on the introduction of the (opposite of the) so-called

spreading coefficients Σi defined by

1

2
(Σi +Σj) = σij , ∀i, j.

These relations uniquely define the coefficients Σi (1 6 i 6 n) when n = 3, but

unfortunately, as noted in Refs. 3, 23, 25, this phase specific decomposition generates
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an over-determined system when n > 4 and can not be used. That is one of the

reasons why the derivation of consistent models has to be revisited when n > 4.

Furthermore, when n > 4, we can require stronger consistency properties (see

Section 2.1): the consistency with the three-phase models (that is the n-phase

model may exactly coincide with the underlying three-phase models when only

three phases are present), and so on. The ultimate purpose is to build a hierarchy

of models such that the n-phase model is consistent with the (n− 1)-phase models.

More precisely, our results are the following ones:

• we completely solve the problem for any choice of a symmetric double well-

shaped smooth function f (see assumption (1.2)) in the case where all the

surface tensions (between each pair of phases) are the same.

• In the general situation of different surface tension coefficients, we provide

n-phase models consistent with two-phase ones for any choice of f . To go

further, we then restrict the study to the case of the usual quartic two-phase

potential (1.3) (even though a similar analysis can be performed for higher

order polynomial potentials), and provide n-phase models consistent with

three-phase ones. Solving completely the problem still remains an open

issue (see Section 3.2).

1.2. Outline

The article is organized as follows. In the end of the introduction, we recall some

important properties of multi-component diffuse interface models which are already

ensured thanks to the chosen general form of the model presented above. In Sec-

tion 2, we then present the first steps of the derivation of the model by defining

precisely the consistency properties we want to ensure and by providing the general

form of the hierarchy of models. In Section 3, we detail the construction of the

n-phase “coarse-grain” part of the energy in the different cases mentionned above.

Finally, in Section 4, we provide some (preliminary) numerical experiments to illus-

trate the capabilities of such modelling in particular for phase-field simulations of

multiphase flows.

1.3. Notation and elementary properties

Assuming that no mass transfer occurs at the boundary of the domain, that is

J i→j ·n = 0 on ∂Ω for any i and j, or equivalently ∇µi ·n = 0 for any i, the formal

energy estimate for this system reads

d

dt
F(c) =

n∑

i=1

∫

Ω

∂ci
∂t

δF
δci

dx =
∑

16i,j6n

∫

Ω

αij∇µi · ∇µj dx. (1.11)

Moreover, the total volume conservation of each constituent holds

d

dt

∫

Ω

ci(t, x) dx = 0.
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Since the order parameters (ci)i are supposed to represent the concentrations of

each phase in the mixture, the physically relevant solutions for the model should

satisfy
n∑

i=1

ci(t, x) = 1, for any x ∈ Ω, for any t > 0.

Hence, it is natural to introduce the following functional space

CS(Ω) =
{
c ∈ C (Ω), c(x) ∈ S, ∀x ∈ Ω

}
, with S =

{
c ∈ R

n,
n∑

i=1

ci = 1
}
,

and to only consider the following class of solutions, called perfect mixture solutions.

Definition 1.1. Any solution of System (
(
CH[F ,α]

)
) whose initial data satisfies

c(0, .) ∈ CS(Ω) is called a perfect mixture solution.

Note that the symmetry of coefficient αij (see (1.8)) imply that

∂t

(
n∑

i=1

ci

)
= 0.

Thus, a perfect mixture solution satisfies c(t, .) ∈ CS(Ω) for any t > 0.

Remark 1.1. Considering only perfect mixtures solutions, it is possible to remove

one of the unknowns (and the associated evolution equation) from the system, for

instance cn, by simply setting cn = 1 −∑n−1
i=1 ci. In the case n = 2, we recover

the fact that the system can be expressed using a single unknown, for instance

c = c1 = 1 − c2 (by symmetry the other choice gives exactly the same system).

However, it is preferable to keep all the unknowns in the derivation and analysis of

the models to avoid breaking the symmetry of the problem, which is one the key

feature we want to preserve. Of course, from a numerical point of view one may

only solve n− 1 equations a posteriori, once it is proved that the numerical scheme

which is used is coherent with perfect mixture solutions, that is to say that the

relation
∑n

i=1 ci = 1 is preserved by the numerical method, see Refs. 3, 6.

Remark 1.2. The perfect mixture solutions of System
(
CH[F ,α]

)
only depend on

the values of the total free energy F on the hyperplane CS(Ω).

In the sequel, we will also often make use of the following subspace

H =
{
(ξ1, . . . , ξn) ∈

(
R

d
)n

,

n∑

i=1

ξi = 0
}
.

since, if we set, for any c ∈ C (Ω),

∇c(x) = (∇c1(x), . . . ,∇cn(x)), ∀x ∈ Ω,

we observe that

c ∈ CS(Ω) =⇒ ∇c(x) ∈ H, ∀x ∈ Ω.
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2. First step towards consistent n-phase Cahn-Hilliard systems

2.1. The consistency issue

We consider now mixtures of n constituents, n > 2. We suppose given the interface

width ε > 0 (which is assumed to be the same for each pair of phases in the

mixture) and all the surface tensions σij = σji > 0 between all the possible pairs of

phases in the system, that we collect into a symmetric matrix σ = (σij)i,j , with the

convention that σii = 0 for any i ∈ {1, ..., n}. For a two-phase system, the matrix

σ simply reads

σ =

(
0 σ

σ 0

)
. (2.1)

Our goal is to investigate the behavior of n-phase Cahn-Hilliard systems(
CH[F ,α]

)
in the case where some of the phases are absent in the initial state

of the mixture. That’s the reason why we introduce the following notation.

Definition 2.1.

• For any set of indices I ⊂ {1, ..., n} with |I| = k 6 n−2, we define σ̃I to be

the (n− k)× (n− k) surface tension matrix obtained from σ by removing

the rows and columns whose index belongs to I.

For I = {l}, l ∈ {1, ..., n}, we simply write σ̃
l instead of σ̃{l}.

• For any set of indices I ⊂ {1, ..., n}, with |I| = k 6 n − 2, and for any

c ∈ R
n we define by c̃I the vector in R

n−k obtained from c by removing

the entries whose index belongs to I.

For I = {l}, l ∈ {1, ..., n}, we simply write c̃l instead of c̃{l}.

For any n > 2 and any choice of the surface tension matrix σ, we would like to

build a total free energy functional F [σ]
ε and diffusion coefficients α[σ] = (α

[σ]
ij )ij so

that the associated systems
(
CH[F [σ]

ε ,α[σ]]
)
satisfy the following properties, refered

to as consistency properties

(C1) In the case n = 2, with σ defined by (2.1), we require that

F [σ]
ε (c, 1− c) = Fσ

ε (c), ∀c ∈ C (Ω),

where the two-phase energy Fσ
ε is defined in (1.5).

(C2) For any I ⊂ {1, ..., n} with |I| = k 6 n− 2, we have
(
c ∈ CS(Ω) and cl ≡ 0, ∀l ∈ I

)
=⇒ F [σ]

ε (c) = F [σ̃I ]
ε (c̃I).

(C3) For any I ⊂ {1, ..., n} with |I| = k 6 n−2, for any perfect mixture solution

c of
(
CH[F [σ]

ε ,α[σ]]
)
we have

(
cl(0, .) ≡ 0, ∀l ∈ I

)
=⇒

(
cl(t, .) ≡ 0, ∀t > 0, ∀l ∈ I

)
.

Let us comment on those properties.
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• Property (C1) means that the n-phase energy with n = 2 exactly coincides

with the reference two-phase Cahn-Hilliard energy (1.5).

• Property (C2) means that the n-phase free energy is equal to the corre-

sponding (n−k)-phase free energy when the phases whose label belongs to

I are absent in the system.

• Property (C3) means that, if some phases are absent in the initial data they

remain absent all along the time evolution of the solution.

Remark 2.1. Observe that, by induction, it is enough to check those properties in

the case where |I| = k = 1, that is when only one of the phases is supposed to be

absent in the system.

One of the main goal of the rest of this paper is to show that, in many situations,

it is possible to explicitly build Cahn-Hilliard systems that fulfill these properties.

Moreover, we will show from those consistency assumptions that the systems ob-

tained this way form a hierarchy in the sense that: for any I ⊂ {1, ..., n} with

|I| = k 6 n− 2, the PDE system
(
CH[F [σ̃I ]

ε ,α[σ̃I ]]
)
can be seen as a subsystem of(

CH[F [σ]
ε ,α[σ]]

)
. A precise statement is given in Section 2.5.2.

We will also illustrate the importance of such consistency properties when such

systems, coupled with the Navier-Stokes equations, are used in the phase-field mod-

elling of multiphase flows (see Section 4.3.1).

2.2. General form of the system

Mimicking the structure of the two-phase energy (1.5), we introduce now the fol-

lowing ansatz for the n-phase free energy

F [σ]
ε (c) =

∫

Ω

εaQ[σ]
(
∇c(x)

)
+

b

ε
F [σ]

(
c(x)

)
dx,

where Q[σ] is a quadratic form in
(
R

d
)n

accounting for capillary effects and F [σ]

is a nonlinear potential term corresponding to the bulk free energy away from

interfaces. Observe that those yet unknowns quantities both depend on the various

surface tensions stored in the matrix σ but not on the interface thickness. This

ansatz is reasonnable since we require the consistency property (C1) to hold.

Let us first analyse the consequences of the consistency conditions (C1) and (C2)
on the possible choices for Q[σ] and F [σ]. For any c ∈ C (Ω), and 1 6 i, j 6 n, with

i 6= j, we introduce cij ∈ CS(Ω) defined as follows

(
cij
)
k
=





c for k = i,

1− c for k = j,

0 for k 6∈ {i, j}.

Proposition 2.1. Conditions (C1) and (C2) imply that
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(1) The quadratic terms satisfy

Q[σ](ξ) = −1

2

∑

i 6=j

σijξi · ξj , ∀ξ ∈ H. (2.2)

(2) For any i 6= j and any c ∈ C (Ω),

F [σ](cij) = σijf(c). (2.3)

(3) For any 1 6 l 6 n, for all c ∈ S,

cl = 0 =⇒ F [σ](c) = F [σ̃l](c̃l). (2.4)

Proof. We look for the quadratic term Q[σ] under the following general form

Q[σ](ξ) =
∑

i,j

(qijξi) · ξj ,

where, for any 1 6 i, j 6 n, qij is a symmetric d × d matrix (we recall that d is

the space dimension) and qij = qji, for any i 6= j. A straightforward computation

shows that this definition leads to

Q[σ](ξ) =
1

2

∑

i 6=j

((
2qij − qii − qjj

)
ξi
)
· ξj +

(
n∑

i=1

ξi

)
·
(

n∑

i=1

qiiξi

)
, (2.5)

in such a way that the second term vanishes for ξ ∈ H. Applying Condition (C2)
with I = {1, ..., n} \ {i, j} and Condition (C1) we find that, for any c ∈ C (Ω),

F [σ]
ε (cij) =

∫

Ω

−εa
((
2qij − qii − qjj

)
∇c
)
· ∇c+

b

ε
F [σ](cij) dx

=

∫

Ω

σijεa|∇c|2 + b

ε
σijf(c) dx = Fσij

ε (c).

Such an equality can hold for any c ∈ C (Ω) if and only if both gradient terms

coincide as well as potential terms. This proves (2.3) and the relations

qii + qjj − 2qij = σijId, ∀i 6= j.

From (2.5) it follows that

Q[σ](ξ) = −1

2

n∑

i,j=1
i 6=j

σijξi · ξj +
(

n∑

i=1

ξi

)
·
(

n∑

i=1

qiiξi

)
,

and since the second term vanishes on H, (2.2) is proved. From (2.2), we deduce

that

Q[σ](∇c) = Q[σ̃l](∇c̃l), ∀c ∈ CS(Ω), s.t. cl = 0.

Therefore, applying condition (C2) with I = {l} leads to
∫

Ω

F [σ](c) dx =

∫

Ω

F [σ̃l](c̃l) dx, ∀c ∈ CS(Ω), s.t. cl = 0.
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This implies the pointwise equality (2.4) of the potentials.

Remark 2.2. Thanks to Remark 1.2 the values of Q[σ] outside H have no influence

on the perfect mixture solutions of the system that we are interested in. Therefore,

without loss of generality, we shall define in the sequel

Q[σ](ξ) = −1

2

n∑

i,j=1
i 6=j

σijξi · ξj , ∀ξ ∈ (Rd)n.

2.3. Admissibility conditions for capillary terms

Given the surface tensions σ, we determined in Proposition 2.1 the general form

that the quadratic terms in the free energy has to take.

It is now clear that for such a free energy to be admissible from a physical point

of view, as well a mathematical point of view, it is required that the contribution

of those quadratic terms in the energy is positive in the interfaces. If not, the free

energy will not be bounded from below and the system will be mathematically

ill-posed. This coercivity assumption means that the property

Q[σ]
(
ξ
)
> Cσ

n∑

i=1

|ξi|2, ∀ξ ∈ H,

has to be satisfied for some Cσ > 0. From (2.2), this is equivalent to the following

admissibility condition for the surface tensions

txσx 6 −Cσ|x|2, ∀x ∈ R
n, s. t. x · 1 = 0, with 1 = t(1, ..., 1) ∈ R

n. (2.6)

We shall see below that this assumption is central in the construction and the

analysis of the Cahn-Hilliard models that we propose in this paper. Without this

structural assumption on the surface tensions, we do not know how to deal with such

Cahn-Hilliard type models. This issue was already pointed out for three-component

systems in Ref. 3 and is not specific to the number of components we consider.

Let us have a closer look at Condition (2.6) in some simple cases. For n = 2, σ

is given by (2.1), and we easily see that assumption (2.6) reduces to the condition

σ > 0 which is physically relevant since surface tensions are positive quantities. For

n = 3, one can check that Condition (2.6) is equivalent to

σ12 > 0, σ13 > 0, σ23 > 0, and Σ1Σ2 +Σ1Σ3 +Σ2Σ3 > 0,

where Σi
def
=σij + σik − σkj , {i, j, k} = {1, 2, 3} is the opposite of the so-called

spreading coefficient of phase i in the system. We recover here the conditions ob-

tained in Ref. 3. For n = 4, the situation is a bit more complex and Condition (2.6)

is equivalent to the three properties

σij > 0, ∀1 6 i < j 6 4,

∆l
def
= Σ̃i

l
Σ̃j

l
+ Σ̃i

l
Σ̃k

l
+ Σ̃j

l
Σ̃k

l
> 0, for any {i, j, k, l} = {1, 2, 3, 4},
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∆i∆j >
(
2σklΣ̃k

l
− Σ̃k

i
Σ̃k

j
)2

, for any {i, j, k, l} = {1, 2, 3, 4}.

In those formulas we defined Σl
i as in the case n = 3 by assuming that the phase l

is absent, that is Σ̃i

l def
= σij + σik − σkj , {i, j, k, l} = {1, 2, 3, 4}.

Finally, observe that for arbitrary n > 2 and if all the surface tensions are equal,

e.g. σij = σ > 0, ∀i 6= j, then a straightforward computation shows that (2.6) is

automatically satisfied with Cσ = σ.

2.4. Diffusion coefficients. Mobility

We are now going to discuss the possible choices of the diffusion coefficients α
[σ]
ij

appearing in the system
(
CH[F [σ]

ε ,α[σ]]
)
in order to satisfy the consistency as-

sumptions. We recall that these diffusion coefficients have to fulfill the constitutive

relations (1.8),(1.9) and (1.10). Let us first state the following technical lemma,

whose proof is given in Appendix B.

Lemma 2.1. Assume that σ is such that (2.6) holds. Then, there exists a unique

n× n matrix α[σ] and a unique vector γ[σ] ∈ R
n, such that

{
α[σ]σ = Id + γ[σ] ⊗ 1,

α[σ]1 = 0.
(2.7)

with 1 = t(1, ..., 1) ∈ R
n. Moreover, α[σ] is symmetric and satisfies the following

properties

α[σ]σα[σ] = α[σ], (2.8)

Ker α[σ] = Span{1}.

We are now going to prove that, in this framework, there exists one single suitable

choice for the diffusion coefficients up to a multiplicative constant.

Proposition 2.2. Assume that we are given a surface tension matrix σ satisfying

the coercivity assumption (2.6). Then, a necessary condition for the consistency

condition (C3) to hold true is that there exists Mσ ∈ R
∗ such that

α[σ] = Mσα
[σ].

This diffusion coefficient Mσ is called the mobility.

Proof. Observe that Condition (C3) is equivalent to the following property

c ∈ CS(Ω),with ci ≡ 0 =⇒
n∑

j=1

α
[σ]
ij µj = Cte, (2.9)

that is required to hold for any i ∈ {1, ..., n} (see Remark 2.1).
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Let us fix some i ∈ {1, ..., n} and we compute

n∑

j=1

α
[σ]
ij µj =

a

ε

n∑

j=1

α
[σ]
ij ∂jF

[σ](c) +
b

2
ε

n∑

j=1

(
α[σ]σ

)
ij
∆cj .

Property (2.9) says that this term is required to be independent of x for any choice

of c ∈ CS(Ω) satisfying ci ≡ 0. It is clear that the nonlinear potential term should

be constant and that the second order differential term should vanish identically.

Therefore, it is in particular needed that

n∑

j=1

(
α[σ]σ

)
ij
∆cj ≡ 0, ∀c ∈ CS(Ω), s.t. ci ≡ 0. (2.10)

Let us choose some k ∈ {1, ..., n} different from i. Since
∑n

j=1 cj ≡ 1 and ci = 0,

we have

∆ck = −
n∑

j=1
j 6=k,j 6=i

∆cj ,

so that the left-hand side term in (2.10) can be written as follows

n∑

j=1

(
α[σ]σ

)
ij
∆cj =

n∑

j=1
j 6=i,j 6=k

((
α[σ]σ

)
ij
−
(
α[σ]σ

)
ik

)
∆cj .

Therefore, condition (2.10) amounts to ask that this quantity vanishes for any choice

of the functions cj ∈ C (Ω), j 6∈ {i, k} (ci is supposed to be 0, and ck is determined

by using that c(x) ∈ S, that is ck(x) = 1−
∑

j 6=k cj(x)).

It follows that the following algebraic condition has to be satisfied
(
α[σ]σ

)
ij
=
(
α[σ]σ

)
ik
, ∀j, k ∈ {1, ..., n} \ {i}.

Hence, it is needed that for some γi, di ∈ R depending only on i, we have
{(

α[σ]σ
)
ij
= γi, ∀j 6= i

(
α[σ]σ

)
ii
= di + γi,

Introducing the diagonal matrix D = diag(d1, ..., dn) and the vector γ = (γi)16i6n,

we finally arrive to the matrix equation

α[σ]σ = D + γ ⊗ 1, (2.11)

that should be satisfied by α[σ]. Moreover α[σ] has to be symmetric (see (1.8)), to

satisfy that α[σ]1 = 0 (see (1.9)) and should not have any row (or column) which

is identically zero (see (1.10)).

Right-multiplying the matrix equation (2.11) by α[σ], and using that α[σ]1 = 0,

we obtain

α[σ]σα[σ] = Dα[σ].
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Let us show that di 6= 0 for any i. Indeed, if for some i we have di = 0, then we

arrive to

teiα
[σ]σα[σ]ei = 0,

where (ei)i is the canonical basis of Rn. Since (α[σ]ei) · 1 = ei · (α[σ]1) = 0, the

coercivity assumption (2.6) implies that α[σ]ei = 0, that is the ith row of α[σ] is

zero, which is not possible.

We can now left-multiply the equation (2.11) by the inverse of the matrix D

and use the uniqueness property stated in Lemma 2.1 to conclude that

α[σ] = Dα[σ].

The three matrices involved in this inequality are symmetric and the transpose of

this equation leads to

α[σ] = α[σ]D.

Right-multiplying this equality by 1 proves that the vector D1 belongs to Ker α[σ].

Owing to Lemma 2.1, this proves that

D1 ∈ Span{1}.

This exactly means that there existsMσ ∈ R such thatD = MσId, and consequently

that

α[σ] = Mσα
[σ].

We can now prove that Mσ needs to be positive.

Proposition 2.3. Assume that we are given a surface tension matrix σ satisfying

the coercivity assumption (2.6). The n-phase Cahn-Hilliard system
(
CH[F [σ]

ε ,α[σ]]
)
,

with α[σ] = Mσα
[σ] is thermodynamically consistent (that is to say dissipative) if

and only if Mσ > 0.

Proof. We use (2.8) to deduce that the right-hand side in the formal energy in-

equality (1.11), refered to as D, can be written

Ddef
=

∑

16i,j6n

∫

Ω

α
[σ]
ij ∇µi · ∇µj dx

=
∑

16i,j6n

∫

Ω

Mσα
[σ]
ij ∇µi · ∇µj dx

=
∑

16k,l6n

σkl

∫

Ω

Mσ

(
n∑

i=1

α
[σ]
ki ∇µi

)
·




n∑

j=1

α
[σ]
lj ∇µj


 dx

=
∑

16k,l6n

σkl

∫

Ω

1

Mσ

Jk · J l dx,
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where Jk stands for the total diffusion flux of the phase k defined by (1.6). Since∑n
k=1 Jk = 0, by using assumption (2.6), we finally find that this term is non-

negative if and only if Mσ is positive. Moreover, we have the estimate

D 6 −Cσ

(
n∑

k=1

∫

Ω

1

Mσ

|Jk|2 dx
)
,

which proves that the total dissipation vanishes if and only if all the total mass

fluxes Jk, k = 1, ..., n are zero, that is at the thermodynamical equilibrium.

2.5. Intermediate conclusions

2.5.1. The n-phase Cahn-Hilliard model

From now on, we have proved that

• The surface tensions should satisfy (2.6).

• The diffusion coefficients in the system should be of the form

α[σ] = Mσα
[σ],

with Mσ > 0 and α[σ] uniquely defined from σ by Lemma 2.1. Observe

that, in general, simple explicit formulas for α[σ] are not available, but in

practice these coefficients can be easily computed by solving numerically the

linear system (2.7). Notice that, if necessary, we may allow Mσ to depend

on c: it does not change the formal derivation of the model but may imply

new mathematical and numerical issues that we do not want to describe

extensively here (see the introduction of Section 4).

• The potential F [σ] should satisfy at least Properties (2.3) and (2.4).

In particular, the n-phase free energy we obtain reads

F [σ]
ε (c) =

∫

Ω

b

ε
F [σ]

(
c(x)

)
− ε

a

2

∑

i 6=j

σij∇ci · ∇cj dx.

The associated Cahn-Hilliard system
(
CH[F [σ]

ε ,α[σ]]
)
can be written in the follow-

ing form




∂tci = −div


Mσ∇

(∑

j

α
[σ]
ij µj

)

 ,

µi =
δF [σ]

ε

δci
=

b

ε
∂iF

[σ] +
a

2
ε
∑

16j6n

σij∆cj .

Equivalently, if we want to get rid of the variables (µi)i, we can write

∂tci = div

(
Mσ∇

(
b

ε
L
[σ]
i (F [σ])(c)− a

2
ε∆ci

))
, (2.12)
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where we have introduced the following differential operators (acting on Cahn-

Hilliard bulk phase potentials F : Rn → R)

L
[σ]
i (F ) = −

n∑

j=1

α
[σ]
ij ∂jF, ∀i = 1, . . . , n. (2.13)

It remains to make explicit the expression of the potential F [σ]. Note that, whatever

the expression of F [σ] is, Properties (2.3) and (2.4) are sufficient to ensure the

consistency properties (C1) and (C2). To guarantee the property (C3) we impose the

additional following sufficient condition on the potential F [σ]

∀1 6 l 6 n, ∀c ∈ S, cl = 0 =⇒ L
[σ]
l (F [σ])(c) = 0. (2.14)

Section 3 will be entirely dedicated to the problem of finding suitable expressions

of the potentials F [σ] in order to fulfill all the requirements we have listed so far.

Remark 2.3. In the case n = 3, the model (2.12) is exactly the one proposed

in Ref. 3. Indeed, in that case, the coefficients α
[σ]
ij can be expressed thanks to

the (opposites of the) three spreading coefficients Σ1 = σ12 + σ13 − σ23, Σ2 =

σ12 + σ23 − σ13 and Σ3 = σ13 + σ23 − σ12 as follows

α
[σ]
ij =

ΣT

3

1

ΣiΣj
, ∀1 6 i 6= j 6 3,

with ΣT defined by
3

ΣT
=

1

Σ1
+

1

Σ2
+

1

Σ3
.

2.5.2. Hierarchic structure of the models

Assuming for the moment that we have at our disposal Cahn-Hilliard potentials

F [σ] satisfying Properties (2.3), (2.4) and (2.14), we can prove that the familly of

models defined by (2.12) is a hierarchy in the following sense: if c is a particular

solution such that, for some 1 6 l 6 n, cl ≡ 0 (recall that the consistency conditions

we have introduced exactly ensure that this is equivalent to cl(t = 0) = 0) then it

is also a solution of the suitable underlying (n−1)-phase Cahn-Hilliard model. The

precise result we prove is the following.

Proposition 2.4. Let n > 3 and I ⊂ {1, . . . , n} with |I| 6 n − 2. Assume that

the potential F [σ] satisfies Properties (2.3), (2.4) and (2.14). Consider a particular

solution c of the n-phase Cahn-Hilliard model associated with σ satisfying cl ≡
0, ∀l ∈ I. Then, c̃I is a solution of the (n−|I|)-phase Cahn-Hilliard model associated

with σ̃
I .

We will use the following lemma, whose proof is postponed to Appendix B.

Lemma 2.2. The diagonal entries of the matrix α[σ] are not zero. Moreover, the

following formula holds

α
[σ̃l]

ĩl j̃l
= α

[σ]
ij −

α
[σ]
il α

[σ]
jl

α
[σ]
ll

, ∀1 6 i, j, l 6 n, i 6= l, j 6= l, (2.15)
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where we have introduced the following notation for any k 6= l

k̃l = k, if k < l and k̃l = k − 1, if k > l. (2.16)

Proof (of Proposition 2.4). By induction, it is sufficient to prove the result for

|I| = 1. Let k and l two distinct integers such that 1 6 l 6= k 6 n. We prove that,

if cl ≡ 0, the k-th equation of the n-phase Cahn-Hilliard model associated with σ

is exactly the same as the k̃l-th equation of the (n-1)-phase Cahn-Hilliard model

associated with σ̃
l, where k̃l is defined in (2.16).

Owing to the formulation (2.12) of the system, it is sufficient to prove that

L
[σ]
k (F [σ])(c) = L

[σ̃l]

k̃l
(F [σ̃l])(c̃l), ∀c ∈ S s.t. cl = 0. (2.17)

To this end and keeping in mind the definition of L
[σ]
k , we first evaluate each partial

derivative of the potential F [σ] at a point c ∈ S such that cl = 0. The s-th partial

derivatives of F [σ] with s 6= l can be directly obtained by differentiating the equality

(2.4) with respect to cs. We find

∂sF
[σ](c) = ∂s̃lF

[σ̃l](c̃l), ∀1 6 s 6= l 6 n, ∀c ∈ S s.t. cl = 0. (2.18)

To evaluate the l-th partial derivatives of F [σ], we first make use of (2.18) to deduce

that, for all c ∈ S such that cl = 0,

L
[σ]
l (F [σ])(c) = −α

[σ]
ll ∂lF

[σ](c)−
∑

16s6n
s 6=l

α
[σ]
ls ∂sF

[σ](c)

= −α
[σ]
ll ∂lF

[σ](c)−
∑

16s6n
s 6=l

α
[σ]
ls ∂s̃lF

[σ̃l](c̃l).

However, from Property (2.14), we know that L
[σ]
l (F [σ])(c) = 0, so that we obtain

∑

16s6n
s 6=l

α
[σ]
ls ∂s̃lF

[σ̃l](c̃l) = −α
[σ]
ll ∂lF

[σ](c), ∀c ∈ S s.t. cl = 0. (2.19)

From (2.18) and (2.19), it is now easy to deduce that

L
[σ]
k (F [σ])(c) =

∑

16s6n
s 6=l

[
α
[σ]
ks − α

[σ]
kl α

[σ]
ls

α
[σ]
ll

]
∂s̃lF

[σ̃l](c̃l), ∀c ∈ S s.t. cl = 0.

The equality (2.17) is then deduced from Lemma 2.2.

2.5.3. Well-posedness result

We supplement the system (2.12) with Neumann boundary conditions for each order

parameter ci and for each chemical potential µi. That is, for 1 6 i 6 n,

∇ci · n = Mσ∇µi · n = 0. (2.20)
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We choose the functional energy espace C (Ω) = (H1(Ω))n and we assume that at

the initial time, we have

ci(t = 0) = c0i , (2.21)

where c0 ∈ CS(Ω) is given.

The existence and uniqueness of weak solutions of the problem (2.12) satisfy-

ing (2.20) and (2.21) can be proved in 2D and 3D, under the following general

assumptions




F [σ] ∈ C2(Rn), and inf
Rn

F [σ] > −∞,
∣∣∣∂αF [σ](c)

∣∣∣ 6 C
(
1 + |c|p−|α|

)
, ∀c ∈ S, ∀|α| 6 2,

(2.22)

where p ∈ [2,∞[ in 2D, and p ∈ [2, 6] in 3D.

Theorem 2.1. Assume that conditions (2.6) and (2.22) hold. Consider the problem

(2.12) together with the initial condition (2.21) and the Neumann boundary condi-

tions (2.20) for each unknowns (ci, µi). Then, there exists a unique weak solution

(c,µ) on [0,+∞[ such that

c ∈ L∞(0,+∞; (H1(Ω))n) ∩ C0([0,+∞[; (L2(Ω))n),

c(t, x) ∈ S, for a.e. (t, x) ∈ [0,+∞[×Ω,

µ ∈ L2(0,+∞; (H1(Ω))n).

The proof of this result, based on a Galerkin approximation, suitable energy

estimates and compactness results can be obtained by following exactly the same

lines as in Ref. 3 where a similar result is proved in detail for n = 3. The important

point is that, in the present n-phase model, the energy estimate is guaranteed by

(1.11), by the boundedness from below of F [σ], by the coercivity assumption (2.6),

and by the dissipativity property stated in Proposition 2.3.

3. Construction of consistent n-phase Cahn-Hilliard potentials

In this section, we give the details of the construction of n-phase Cahn-Hilliard

potentials satisfying Properties (2.3), (2.4) and (2.14).

In a first subsection, we completely solve the problem in the easiest case where

all the surface tensions are the same, and for any choice of a symmetric double-

well-shaped function f satisfying (1.2).

In the second subsection, we address the general situation of different surface

tension coefficients. This appears to be much more intricate and we are only able to

conclude in some particular cases, for instance when n 6 4, or by imposing slightly

weaker consistency assumptions that appears to be sufficient in many cases, in

particular from a numerical point of view.
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3.1. Homogeneous surface tensions case

We assume here that, for some σ > 0, we have σij = σ, ∀i, j. For the sake of

simplicity, we replace everywhere it is possible the superscript [σ] by the superscript

[n] in this section. Indeed, it is only the number of components which is relevant

here, and not the precise value of σ.

In this particular case, a straightforward computation shows that the coefficients

α[σ] = α[n] defined in Lemma 2.1 are explicitly given by





α
[n]
ij =

1

nσ
, ∀1 6 i 6= j 6 n,

α
[n]
ii = −(n− 1)

1

nσ
, ∀1 6 i 6 n.

(3.1)

3.1.1. Ansatz

In order to find an expression for consistent potentials, we define a kind of basis of

the space of all possible potentials, built upon the reference shape f and chosen in

such a way that its elements naturally satisfy some consistency properties.

More precisely, for all 1 6 k 6 n we define the functions Ψ
[n]
k [f ] as follows

Ψ
[n]
k [f ](c)

def
=
∑

i∈I
[n]
k

∑

16s6k

∑

j∈I
[k]
s (i)

(−1)k−sf(cj1 + · · ·+ cjs), ∀c ∈ R
n,

where the subsets I
[n]
k (i) are defined for all 1 6 k 6 n and for all i = (i1, i2, . . . , in) ∈

N
n such that i1 < i2 < · · · < in as the subsets of all k-uplets of i





I
[n]
k (i) =

{
(ij1 , ij2 , . . . , ijk), 1 6 j1 < j2 < · · · < jk 6 n

}
,

I
[n]
k = I

[n]
k (1, 2, . . . , n).

In particular, it is worth noticing that using the assumptions (1.2), we have

Ψ[n]
n [f ](c) = f(c1 + · · ·+ cn) = f(1) = 0, ∀c ∈ S,

Ψ
[n]
1 [f ](c) = f(c1) + · · ·+ f(cn), ∀c ∈ S.

It is convenient to express Ψ
[n]
k [f ] by means of the symmetric functions S

[n]
k [f ]

defined as follows

S
[n]
k [f ](c)

def
=
∑

i∈I
[n]
k

f(ci1 + ci2 + · · ·+ cik), ∀c ∈ R
n, ∀1 6 k 6 n.

By convention, we set S
[n]
0 [f ](c)

def
=0 and we check that

Ψ
[n]
k [f ] =

∑

16s6k

(−1)k−s

(
n− s

k − s

)
S[n]
s [f ], ∀1 6 k 6 n. (3.2)
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We now look for F [n] as a linear combination of the functions
(
Ψ

[n]
k [f ]

)
16k6n

F [n] =
∑

16k6n

λkΨ
[n]
k [f ]. (3.3)

The coefficients (λk)k∈N∗ are real numbers that we need to determine. We do not add

the superscript n in this notation since we will see that eventually those coefficients

will not depend on n. Observe that F [n] depends linearly on the reference two-phase

potential f .

3.1.2. Consistency Properties (2.3) and (2.4)

As we said before, these functions Ψ
[n]
k [f ] are introduced because of their natural

consistency properties that we state in the following proposition (proved in Ap-

pendix C)

Proposition 3.1. We have the following properties

(i) Ψ
[n]
k [f ](c1, . . . , cn−1, 0) = Ψ

[n−1]
k [f ](c1, . . . , cn−1), ∀1 6 k < n,

(ii) Ψ[n]
n [f ](c1, . . . , cn−1, 0) = 0.

This proposition states that the functions
(
Ψ

[n]
k [f ]

)
16k6n

satisfy the Prop-

erty (2.4) we want to impose to the potential F [σ] = F [n]. Thus, by linearity, a

potential F [n] defined by (3.3) automatically satisfies Property (2.4).

Moreover, a straightforward computation shows that Property (2.3) is equivalent

to the condition

2(λ1 − λ2) = σ.

In the sequel, it remains to show that we can choose the coefficients λk in order to

ensure Property (2.14).

3.1.3. Consistency Property (2.14)

We recall that, in this section, we have assumed that all the surface tensions are the

same. In this case, using (2.13) and (3.1), we see that the expression of the operators

L
[σ]
k = L

[n]
k , for 1 6 k 6 n and for any smooth enough potential F : Rn → R, reduces

to

L
[n]
k (F ) =

1

nσ

∑

16s6n

(∂kF − ∂sF ) .

By symmetry, we thus see that all the problem reduces to find values for the

coefficients λk, 1 6 k 6 n, such that the potential F [n] defined in (3.3) satisfies

L[n]
n (F [n])(c) = 0, for any c ∈ S such that cn = 0. (3.4)

The expression of L
[n]
n (F [n])(c) is given in the following proposition (proved in

Appendix D).
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Proposition 3.2. We have the following equality

L[n]
n (F [n])(c1, . . . , cn−1, 0)

= − 1

nσ

∑

16k6n−2

[
kλk +

∑

k+16s6n

λsβ
[n]
s,k

]
S
[n−1]
k [f ′](c1, . . . , cn−1)

+
n− 1

nσ
(λn − λn−1)S

[n−1]
n−1 [f ′](c1, . . . , cn−1),

where the coefficients β
[n]
k,s are defined as follows, for all 1 6 s < n−1 and s < k 6 n

β
[n]
k,s = (−1)k−s

[(
n− s− 1

k − s− 1

)
(n− s− 1) +

(
n− s

k − s

)
s

]
.

Since, by (1.2), we have S
[n−1]
n−1 [f ′](c1, . . . , cn−1) = f ′(c1+· · ·+cn−1) = f ′(1) = 0

for any c ∈ S such that cn = 0, (3.4) is equivalent to the following set of equations

kλk +
∑

k+16s6n

λsβ
[n]
s,k = 0, ∀1 6 k 6 n− 2. (3.5)

This is a maximal rank upper triangular linear system with n− 2 equations and n

unknowns λ1, ..., λn.

One can easily check that we have the following algebraic identities

(i) β
[n]
s,k+1 + β

[n]
s,k = β

[n−1]
s,k , ∀1 6 k < n− 2, ∀k < s 6 n− 1,

(ii) β
[n]
n,k + β

[n]
n,k+1 = 0, ∀1 6 k < n− 2,

(iii) β
[n]
k+1,k + k + 1 = β

[n−1]
k+1,k, ∀1 6 k < n− 2.

With those formulas at hand, the linear system (3.5) can be shown to be equivalent

to the following maximal rank lower triangular system

λ1 +
∑

26s6k+1

λsβ
[k+1]
s,1 = 0, ∀2 6 k 6 n− 1.

Adding the constraint 2(λ1 − λ2) = σ that we obtained in Section 3.1.2, one can

easily check the following expression for the solutions of this system (λ1 being a

free parameter)

λk = λ1 −
σ

2

k−1∑

s=1

1

s
. (3.6)

It is remarkable that such a simple explicit formula for the (λk)k can be obtained

and, additionally, that this expression is independent of n (and of f).

Remark 3.1. The value of λ1 can be arbitrarily fixed. It has no influence on the

potential F [n] since a straightforward computation and (1.2) shows that
∑

16k6n

Ψ
[n]
k [f ] = f(c1 + · · ·+ cn) = 0, ∀c ∈ S.
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In summary, we have proved that the potentials F [n] defined by (3.3) and (3.6)

satisfy the three Properties (2.3), (2.4) and (2.14) (cf Section 3.1.3). Owing to the

result stated in Section 2.5.2, we conclude that the family of models (2.12) associated

with F [n] is a consistent hierarchy of Cahn-Hilliard systems (in the case where all

the surface tension are the same).

3.1.4. Example of the quartic potential f(c) = c2(1− c)2

In practice, the Cahn-Hilliard equation is often considered with a reference polyno-

mial potential of the following form

f(c) = c2(1− c)2. (3.7)

In this case, the functions Ψ
[n]
k [f ] have a very simple structure. This is stated in the

following result.

Proposition 3.3. Assume that f is given by (3.7). For any c ∈ S, we have

Ψ
[n]
1 [f ](c) + Ψ

[n]
2 [f ](c) =

{
0 for n = 2 or n = 3,

24
∑

i∈I
[n]
4

ci1ci2ci3ci4 for n > 4,

Ψ
[n]
3 [f ](c) =

{
0 for n = 3,

−48
∑

i∈I
[n]
4

ci1ci2ci3ci4 for n > 4,

Ψ
[n]
4 [f ](c) = 24

∑

i∈I
[n]
4

ci1ci2ci3ci4 , ∀ n > 4,

Ψ
[n]
k [f ] = 0, ∀ k > 5, ∀ n > k.

This leads to the following expression of the potential F [n]

F [2](c) =
σ

2
Ψ

[2]
1 [f ](c) =

σ

2
(f(c1) + f(c2)) = σf(c1) = σf(c2), ∀c ∈ S,

F [3](c) =
σ

2
Ψ

[3]
1 [f ](c) =

σ

2
(f(c1) + f(c2) + f(c3)) , ∀c ∈ S,

F [n](c) =
σ

2
Ψ

[n]
1 [f ](c) + 2σ

∑

i∈I
[n]
4

ci1ci2ci3ci4 ,

=
σ

2

(
n∑

k=1

f(ck)

)
+ 2σ

∑

i∈I
[n]
4

ci1ci2ci3ci4 , ∀c ∈ S, ∀ n > 4.

(3.8)

In the case n = 3, we recover the potential proposed in Ref. 3, in the particular

case of constant surface tensions which is considered here.



22 F. Boyer, S. Minjeaud

To conclude this section, we are able to prove that in the case considered in this

section, the n-phase potential that we propose is non-negative. This property (or

at least a bound from below) is essential to ensure the well-posedness of the model

(see Theorem 2.1).

Proposition 3.4. For all c ∈ S, for all n > 2, we have

F [n](c) > 0.

Proof. Since f is non-negative, the cases n = 2 and n = 3 are straightforward by

using the explicit formulas obtained above.

Assume now that n > 4. We introduce the Newton sums Sk =
∑

16i6n c
k
i .

Thanks to the Newton identities, we find

∑

i∈I
[n]
4

ci1ci2ci3ci4 =
1

24

(
1− 6S2 + 3S2

2 + 8S3 − 6S4

)
, ∀c ∈ S,

and since f(x) = x4 − 2x3 + x2,

Ψ
[n]
1 [f ](c) = S4 − 2S3 +S2.

Thus, we have

F [n] =
1

24

((
12S4 − 24S3 + 12S2

)
+
(
2− 12S2 + 6S2

2 + 16S3 − 12S4

))

=
1

12

(
1 + 3S2

2 − 4S3

)
=

1

12

((
1 +S

2
2

)
− 4S3 + 2S2

2

)

>
1

12

(
2S2 − 4S3 + 2S4

)
>

1

6
Ψ

[n]
1 [f ] > 0, ∀c ∈ S.

It is worth noting that, in the particular case of homogeneous surface tensions,

the potential F [n] satisfy the assumptions (2.22), and consequently that the well-

posedness result stated in Theorem 2.1 holds.

3.2. Arbitrary surface tensions case

In the general case, it is not obvious to find explicit expressions of consistent n-

phase Cahn-Hilliard potentials F [σ]. This is still an open problem and we will only

give here some partial (yet useful) results in this direction.

3.2.1. Consistency with 2-phase systems

Mimicking the structure of the function Ψ
[n]
2 [f ] introduced in the previous section,

we define the following potential F
[σ]
0

F
[σ]
0 (c) =

∑

i<j

σij

2

[
f(ci) + f(cj)− f(ci + cj)

]
. (3.9)
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This potential satisfies Properties (2.3) and (2.4). Hence, we are now interested in

checking Property (2.14). A straightforward computation shows that (for 1 6 i 6 n)

L
[σ]
i (F

[σ]
0 )(c) =

∑

16j,k6n

α
[σ]
ij σjk

2

[
f ′(cj)− f ′(cj + ck)

]
.

In particular, for any two-phase state c ∈ S, that is such that c̃{j0,k0} = 0 for some

j0 6= k0, we have

L
[σ]
i (F

[σ]
0 )(c) = 0, ∀i 6∈ {j0, k0}.

Observe that this property holds for any choice of the double-well potential f .

This proves that the Cahn-Hilliard model associated with F
[σ]
0 is consistent with

all the underlying two-phase models for any two-phase potential f . It means that

(C2) and (C3) are at least satisfied for |I| = n−2. This is clearly a weaker consistency

requirement than the one expected. However, this is already an important property

of the proposed models as mentionned for instance in Section 4 of Ref. 18. It ensures

that any two-phase interface in the n-phase system will be properly captured.

3.2.2. Consistency with 3-phase systems. The quartic polynomial case

We restrict here the study to the case of the usual quartic two-phase potential

f(c) = c2(1− c)2 (even though a similar analysis can be performed for higher order

polynomial potentials). We are going to build, in that case, some n-phase Cahn-

Hilliard potentials which are consistent with the underlying 3-phase systems. This

means that (C2) and (C3) will be satisfied for |I| = n−2 but also for |I| = n−3. This

new consistency property is thus stronger than the one discussed in the previous

subsection and, from a modelling point of view, ensures that any triple point in the

n-phase system will be properly captured.

The reason why we consider here the quartic potential is that it allows some

simplifications in the sequel thanks to the following two identities available in that

case

f ′(c+ d)− f ′(c)− f ′(d) = −12cd(1− c− d), ∀c, d ∈ R, (3.10)

∑

16i6n

f ′(ci) = 12
∑

16j<k<l6n

cjckcl, ∀c ∈ S. (3.11)

In particular with (3.10) we obtain, for all c ∈ S,

L
[σ]
i (F

[σ]
0 )(c) = −

∑

16j,k6n

α
[σ]
ij σjk

2

[
f ′(ck)− 12cjck(1− cj − ck)

]

= −
∑

16k6n

(α[σ]σ)ik
2

f ′(ck) + 6
∑

16j,k6n

α
[σ]
ij σjkcjck

∑

16l6n
l 6=j,l 6=k

cl.
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Owing to (2.7), we get

L
[σ]
i (F

[σ]
0 )(c) = −1

2
f ′(ci)−

γi
2

∑

16k6n

f ′(ck) + 6
∑

16j,k,l6n
j 6=k,j 6=l,k 6=l

α
[σ]
ij σjkcjckcl.

Finally, using (3.11), we arrive at the following identity

L
[σ]
i (F

[σ]
0 )(c) = −1

2
f ′(ci) −

∑

16j<k<l6n

Γ
[σ]
i;{i,j,k,l} cjckcl, ∀c ∈ S,

with

Γ
[σ]
i;{i,j,k,l}

def
= − 6

[
α
[σ]
ij

(
σjk + σjl

)
+ α

[σ]
ik

(
σjk + σkl

)
+ α

[σ]
il

(
σjl + σkl

)
− γi

]
.

Let c ∈ S such that c̃{j0,k0,l0} = 0 for some 1 6 j0 < k0 < l0 6 n, then we have

L
[σ]
i (F

[σ]
0 )(c) = −Γ

[σ]
i;{i,j0,k0,l0}

cj0ck0
cl0 , ∀i 6∈ {j0, k0, l0}. (3.12)

The Cahn-Hilliard model defined from F
[σ]
0 is thus not consistent with the un-

derlying three-phase models. To compensate the term appearing in the right hand

side of (3.12), we introduce a correction G[σ] to the potential of the following form

G[σ](c)
def
=
∑

i∈I
[n]
4

∑

s∈i

Λ
[σ]
s;iH


cs,

∏

j∈i

cj


 . (3.13)

where (Λ
[σ]
s;i )s,i are coefficients to be determined and H is the continuous function

defined by

H(u, v)
def
=

|v|v
|v|+ u2

, ∀(u, v) 6= (0, 0), and H(0, 0)
def
= 0.

Observe that H is C1 on R
2 \ {(0, 0)} and its partial derivatives are given by

∂1H(u, v) =
−2u|v|v

(|v|+ u2)2
, and ∂2H(u, v) =

2|v|u2 + v2

(|v|+ u2)2
, ∀(u, v) 6= (0, 0).

Notice that H is not differentiable at (0, 0) but its partial derivatives are given by

∂1H(0, 0) = 0, ∂2H(0, 0) = 1.

With those properties, it is easy to check that the function (α, β) 7→ φ(α, β) =

H(α, αβ) is C1 on R
2 and that we have

∂1φ(α, β) = ∂1H(α, αβ) + β∂2H(α, αβ), and ∂2φ(α, β) = α∂2H(α, αβ),

even if the partial derivatives of H are not continuous. Consequently, the function

G[σ] is itself of class C1 and its partial derivatives are given by

∂iG
[σ](c) =

∑

i∈I
[n]
4

i∈i

(
Λ
[σ]
i;i ∂1H

(
ci,
∏

j∈i

cj

)
+
∑

s∈i

Λ
[σ]
s;i∂2H

(
cs,
∏

j∈i

cj

)∏

j∈i
j 6=i

cj

)
.
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Let now c ∈ S be a three-phase state, that is such that c̃{j0,k0,l0} = 0 for some

1 6 j0 < k0 < l0 6 n. Since at most 3 components of c are non zero, we know that

all the products of four different components of c are zero. Using the properties of

the partial derivatives of H, it remains that for such a c, we have

∂iG
[σ](c) =

∑

i∈I
[n]
4

i∈i

((∑

s∈i

Λ
[σ]
s;i∂2H (cs, 0)

)∏

j∈i
j 6=i

cj

)
.

• In the case where i ∈ {i0, j0, k0}, we see that the three-term products∏
j∈i
j 6=i

cj contains at least one term which is zero and therefore we have

∂iG
[σ](c) = 0, ∀i ∈ {i0, j0, k0}.

• If now i 6∈ {i0, j0, k0}, the only three-term product which is possibly not

zero, is the one where i = {i, i0, j0, k0}, and then

∂iG
[σ](c) =

(
∑

s∈{i,i0,j0,k0}

Λ
[σ]
s;i∂2H (cs, 0)

)
ci0cj0ck0 .

For s = i, we have cs = ci = 0 and thus ∂2H(cs, 0) = ∂2H(0, 0) = 1. For

s ∈ {i0, j0, k0}, the only case where ∂2H(cs, 0) can be non zero is the one

where cs = 0, but in that case, the product cj0ck0cl0 is zero. Finally, we

have obtained

∂iG
[σ](c) = Λ

[σ]
i;{i,i0,j0,k0}

ci0cj0ck0
, ∀i 6∈ {i0, j0, k0}.

This eventually leads to the formula

L
[σ]
i (G[σ])(c) =




∑

16j6n
j 6=j0,k0,l0

α
[σ]
ij Λ

[σ]
j;{j,j0,k0,l0}


 cj0ck0

cl0

Consequently, the correction potential G[σ] will compensate (3.12), if and only if

we can find coefficients Λ
[σ]
j;{j,j0,k0,l0}

that satisfy the following linear system

∑

16j6n
j 6=j0,k0,l0

α
[σ]
ij Λ

[σ]
j;{j,j0,k0,l0}

= Γ
[σ]
i;{i,j0,k0,l0}

, ∀i ∈ {1, . . . , n}\{j0, k0, l0}. (3.14)

It appears that the existence and uniqueness of such coefficients Λ
[σ]
•;• is ensured

by the following lemma (whose proof is postponed to the Appendix B).

Lemma 3.1. The submatrix obtained from α[σ] by removing the same (non empty)

set of rows and columns is invertible.

To summarize, we proved that the n-phase Cahn-Hilliard model defined from

the potential F
[σ]
0 + G[σ] is consistent with all the three-phase underlying models,

if we define G[σ] by (3.13), where the coefficients Λ
[σ]
•;• are the solutions of (3.14).
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3.2.3. Stabilization of the potential

At this point, we are not able to prove that the total consistent potential F
[σ]
0 +G[σ]

is a non-negative function (or even bounded from below). Actually, we know from

Ref. 3 that, even for n = 3, this might not be true and thus additional high order

(polynomial) terms in the potential are needed to ensure the non-negativity of the

three phase potential and thus the well-posedness of the system. We give here an

extension of these terms to the n-phase case which allows to recover exactly the gen-

eral form of the three-phase potential presented in Ref. 3. We refer to Section 4.3.2

for numerical results for which using such a stabilization procedure is mandatory.

To achieve this goal, we define

P [σ](c)
def
=

∑

16i<j<k6n

c2i c
2
jc

2
k −

∑

16i<j6n

c2i c
2
j

∑

16k<l6n
k 6=i,j
l 6=i,j

(
Θij;k;lH(ck, ckcl)+Θij;l;kH(cl, ckcl)

)
,

(3.15)

and the potential that we will eventually use, for some Λ > 0, is

F [σ] = F
[σ]
0 +G[σ] + ΛP [σ].

The role of the term ΛP [σ] being only to enforce non-negativity of the total potential

for Λ > 0 large enough, we only need to check now that the coefficients Θ•;•;• can

be chosen so as not to break the consistency properties of F
[σ]
0 +G[σ].

By similar computations as in Section 3.2.2, we can obtain that

L
[σ]
i (P [σ])(c) =

(
2α

[σ]
il0

−
∑

16j6n
j 6=j0,k0,l0

α
[σ]
ij Θj0k0;j;l0

)
c2j0c

2
k0
cl0

+
(
2α

[σ]
ik0

−
∑

16j6n
j 6=j0,k0,l0

α
[σ]
ij Θj0l0;j;k0

)
c2j0ck0

c2l0

+
(
2α

[σ]
ij0

−
∑

16j6n
j 6=j0,k0,l0

α
[σ]
ij Θk0l0;j;j0

)
cj0c

2
k0
c2l0 .

We are thus led to impose, for any 1 6 j0 < k0 < l0 6 n, the conditions

∑

16j6n
α 6=j0,k0,l0

α
[σ]
ij Θj0k0;j;l0 = 2α

[σ]
il0

, ∀i 6∈ {j0, k0, l0}.

Those linear systems admit unique solutions thanks to Lemma 3.1. Observe that,

in the case where n = 4, we explicitely obtain

Θij;k;l =
2α

[σ]
kl

α
[σ]
kk

.
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4. Numerical examples

Providing numerical simulations based on the n-phase Cahn-Hilliard model above

is a challenging task and requires the development of specific numerical schemes

(see Ref. 6 for the three phase model). This issue will be adressed in future work.

Nevertheless, in this section, we propose several 2D numerical simulations based

on the 3-phase and 4-phase Cahn-Hilliard models presented above. The aim is to

illustrate the capabilities of such modelling.

The litterature about numerical simulations for Cahn-Hilliard equation is rather

huge; the reader can refer to Ref. 23 (and reference therein) for a recent review.

In some numerical examples, the mobility Mσ is taken as a function (possibly

degenerate) of the order parameters c

Mσ(c) = Mcst +Mdeg

n∏

i=1

(1− ci)
2, (4.1)

where Mcst, Mdeg are two non negative constants whose values will be given for

each test case. It is easy to see that the consistency properties of the models are

still valid in this case. Existence (in 2D and 3D) and uniqueness (in 2D) of weak

solutions (see Theorem 2.1) also hold with a non-degenerate varying mobility, see

Ref. 3.

4.1. Coupling with Navier-Stokes equations

The n-phase Cahn-Hilliard model can be coupled with the Navier-Stokes model (see

Refs 1, 2, 5, 21, 27, 22) as follows

• a transport term u · ∇ci is added in the equation which describes the time

evolution of the order parameter ci,

• the density ̺ and the viscosity η are defined as positive, bounded and

smooth function of the order parameters c whose values on single-phase

states are given respectively by the physical values ̺i and ηi (for an explicit

expression see e.g. Ref. 5).

• a capillary force term
∑

16i6n

µi∇ci is added in the right hand side of the

momentum balance.

Since the density is defined as a function of order parameters, the mass balance is

not satisfied in the interface between two phases. The conservative or non conser-

vative forms of the Navier-Stokes equations do not allow to deduce a kinetic energy

balance. This is the reason why we adopt the particular form of the Navier-Stokes

equations below (the reader can find more details about this issue in Ref. 5). The
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n-phase Cahn-Hilliard/Navier-Stokes model we proposed reads as follows




∂tci + u · ∇ci = −div


Mσ(c)∇

( n∑

j=1

α
[σ]
ij µj

)

 , 1 6 i 6 n,

µi =
b

ε
∂iF

[σ] +
a

2
ε
∑

16j6n

σij∆cj , 1 6 i 6 n,





√
̺(c)

∂

∂t

(√
̺(c)u

)
+ (̺(c)u · ∇)u+

u

2
div (̺(c)u)

− div (2η(c)D(u)) +∇p =
∑

16i6n

µi∇ci + ̺(c)g,

divu = 0,

where u and p stands for the velocity and the pressure of the mixture, g =

(0, 0,−9.8) stands for the gravity.

We supplement the system with Neumann boundary conditions for the order

parameters ci and for the chemical potentials µi (that is ∇ci ·n = 0 and ∇µi ·n = 0);

and slip boundary conditions for the Navier-Stokes system (that is u · n = 0 and

[2ηDu.n− pn] · τ = 0).

4.2. Numerical schemes

The space discretization is performed using a Galerkin formulation of the problem

and the finite element method. We use a conformal P1 approximation for the order

parameters ci and for the chemical potentials µi. The velocity and the pressure

are approximated using the P2/P1 inf-sup stable finite element. Moreover, we use

an adaptive local refinement procedure (see Ref. 4) to refine the resolution of the

discretization near the interfaces (so as to reach about 3 or 4 cells in the interfaces).

The time discretization consists in a splitting of Cahn-Hilliard and Navier-Stokes

systems: we first solve the Cahn-Hilliard equations using the velocity computed at

the previous time step in the transport term and then, we solve the Navier-Stokes

equations using the updated order parameters and chemical potentials to build the

capillary force term. For the Cahn-Hilliard step, we use a first order fully implicit

Euler scheme. The resulting nonlinear discrete system is solved thanks to the New-

ton algorithm. For the Navier-Stokes equation, we use a semi-implicit scheme to

linearize the discrete equation while preserving the discrete energy balance (the de-

tails of the discretization can be found in Ref. 5). The linear system is solved using

an Uzawa method.

4.3. Numerical simulations

In complement of illustrations given in Ref. 3, we first compare, in Section 4.3.1,

the results obtained with consistent and non-consistent three-phase potentials for

the coupled Cahn-Hilliard/Navier-Stokes model.
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We then illustrate the behaviour of the 4-phase model in two different basic

configurations:

• in Section 4.3.2, we solve the 4-phase Cahn-Hilliard system (without cou-

pling with the Navier-Stokes equations), with different surface tensions but

in a configuration such that no quadruple point appears. This illustrates

the fact that the 4-phase model enables to simulate correctly two different

three-phase systems by solving a single set of equations.

• in Section 4.3.3, we solve the coupled 4-phases Cahn-Hilliard/Navier-Stokes

system with homogeneous surface tensions.

4.3.1. Consistent model vs non-consistent model

We present in this section the simulation of a rising bubble in a liquid under the

effect of gravity. Only two phases are present but the simulation is performed using

the 3-phase model. In this academic framework, we aim at illustrating the fact that

the use of a model which is consistent or not can have an important influence on

the velocity of the rising bubble since the representation of capillary forces may

become incorrect due to the spurious appearance of the absent phase when using

a non-consistent model. More precisely, we compare two simulations: the first one

is performed using the potential F
[σ]
0 (defined by (3.9)) which leads to a consistent

model and the second one with the following potential (taken from Refs. 18, 24, 25)

which leads to a non consistent model

F nc
0 (c1, c2, c3) = σ12c

2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3.

The 3D simulations are performed in cylindrical coordinates (r, θ, z) with an ax-

isymmetry assumption for all the unknown of the problem. From a computational

point of view, the simulation reduces to a 2D simulation in the (r, z) plane. The

computational domain is [0, 0.016] × [0, 0.12]. The phase 1 represents the bubble,

the phase 2 represents the liquid phase and the phase 3 is initially absent. At the

initial time (see the left picture in Figure 1), the bubble is at rest and the order

parameters are initialized by using the theoretical profile (A.2) for the variations in

the transverse direction in the interfaces. The physical properties of the phases are

given by the following parameters of the simulation

σ12 = 0.07, σ13 = 0.07, σ23 = 0.05,

̺1 = 1, ̺2 = 1000, ̺3 = 10000,

η1 = 10−4, η2 = 0.1, η3 = 0.5.

The mobility is defined by (4.1) with Mcst = 0 and Mdeg = 5e-6. The interface

width is ε = 0.008. The time step is equal to 10−3.

The position of the bubble during the time evolution using a consistent or a non

consistent potential can be compared in Figure 1. The colors (in grayscale) represent

the area where the order parameter c1 is greater than 0.5 and the solid black lines
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t=0 t=0.25 t=0.5

Fig. 1: Rising of a single bubble: consistent (left) vs non consistent potential

(right).

represent three contour lines of the order parameter c1. We observe that the rising

velocity of the bubble is more important when using the consistent potential. Figure

2 shows a vertical cutline ({r = 0}) at time t = 0.5 of order parameters c1 and c3.

When using the non consistent model, the phase 3 appears in the interface between

the phases 1 and 2, this is not the case when using the consistent model.

4.3.2. Spreading of lens

In this section, we present two test cases using the 4-phase Cahn-Hilliard model that

we developped in this paper (and without coupling with Navier-Stokes equations

here). The initial configuration (see Figure 3) is the same for both tests: two different

lenses are placed between two other stratified phases.

The computational domain is [−0.2, 2.6]× [−0.2, 1.2] and ε = 0.08 for both tests.

The mobility is defined by (4.1) with Mcst = 0.1 and Mdeg = 10.

For the first test case, the surface tensions are σ12 = 1, σ13 = 0.8, σ14 = 1.4,

σ23 = 1.1, σ24 = 0.9, σ34 = 1. We use the potential F
[σ]
0 + G[σ]. The potential

F
[σ]
0 is defined by (3.9) and the potential G[σ] by (3.13), the numerical values of

coefficients involved in this definition being Λ
[σ]
1;{1,2,3,4} ≃ 14.68, Λ

[σ]
2;{1,2,3,4} ≃ 15.13,

Λ
[σ]
3;{1,2,3,4} ≃ 15.14 and Λ

[σ]
4;{1,2,3,4} ≃ 14.69. A simplified expression of the partial
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Consistent potential F
[σ]
0 Non consistent potential Fnc

0

Fig. 2: Rising of a single bubble: vertical cutlines at t = 0.5.

① ②

③

④

Fig. 3: Two lenses initial configuration and phase numbering

derivatives of G[σ] (see Remark 4.1 below) can be used here since we a priori

know that no quadruple point will appear during the simulation. The time step is

equal to 10−4. The results we obtained at time t = 0.02 and t = 1 are presented

in Figure 4. As previously, The colors (in grayscale) represent the area where the

corresponding order parameter is greater than 0.5 and the solid black lines represent

three contour lines of each order parameter. The two lenses partially spread between

the two stratified phase and contact angles at triple points are consistent with the

prescribed values of surface tensions (Young’s relationship).

For the second test case, the surface tensions are σ12 = 1, σ13 = 1, σ14 =

2.5, σ23 = 2.5, σ24 = 1, σ34 = 1. Note that these values do not satisfy the ad-

missibility conditions presented in Section 2.3 for n = 4. This is not crucial here

since no quadruple point appears during the simulation and the admissibility con-

ditions for n = 3 holds for the four possible three-phase subsystems. We use the

potential F
[σ]
0 +G[σ] + ΛP [σ] with Λ = 21. The potential F

[σ]
0 is defined by (3.9),

the potential G[σ] by (3.13) and the potential P [σ] by (3.15), the numerical val-

ues of coefficients involved in these definitions being Λ
[σ]
i;{1,2,3,4} ≃ 37.00, for any
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t=0.02 t=1

Fig. 4: Partial spreading of two lenses (σ12 = 1, σ13 = 0.8, σ14 = 1.4, σ23 = 1.1,

σ24 = 0.9, σ34 = 1).

t = 0.008 t = 0.1

Fig. 5: Total spreading of two lenses

(σ12 = 1, σ13 = 1, σ14 = 2.5, σ23 = 2.5, σ24 = 1, σ34 = 1).

i = 1, 2, 3, 4 and Θkl;i;j = Θkl;j;i = −3.33 if (i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)},
Θkl;i;j = Θkl;j;i = 4.67 if (i, j) ∈ {(1, 4), (2, 3)}, with {i, j, k, l} = {1, 2, 3, 4}. We

use again a simplified expression of the partial derivatives of the potential G[σ]

and P [σ] (see Remark 4.1 below). The time step is equal to 2e-5. The results we

obtained at time t = 0.008 and t = 0.1 are presented in Figure 5. The two lenses

are extracted from the interface between the two stratified phases. This physical

motion corresponds to positive spreading coefficients.

Remark 4.1. It is interesting to note that the expressions of the derivatives of

G and P [σ] can be simplified at any point c which is a three-phase state. More

precisely, for any c ∈ S such that c̃{j0,k0,l0} = 0, with 1 6 j0 < j0 < k0 6 n, we can

check that

∂iG
[σ](c) =

∑

16j<k<l6n
j 6=i,k 6=i,l 6=i

Λ
[σ]
i;{i,j,k,l}cjckcl, ∀i ∈ {1, ..., n}.

∂iP
[σ](c) = 2ci

∑

16k<l6n

c2kc
2
l −

∑

16j<k6n
j,k 6=i

c2jc
2
k

∑

16l6n
l 6=i,j,k

Θjk;i;lcl, ∀i ∈ {1, ..., n}.
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①
②

③

④

t = 0 t = 0.08 t = 0.16 t = 0.24 t = 0.32

Fig. 6: Two bubbles rising through two statified phases (σij = 1, ∀i, j)

This gives a simple smooth expression of the partial derivatives of G[σ] and P [σ]

which is valid in the absence of quadruple point in the system. This is in particular

useful when implementing numerical schemes for this problem.

4.3.3. Rising bubbles across interfaces

In this section, we present two examples of simulations using the 4-phase Cahn-

Hilliard/Navier-Stokes model. All the surface tensions are equal to 0.05. We use the

potential F [4] defined by (3.8).

The first test case corresponds to two bubbles (made of different phases), initially

at rest, rising in a mixture of two stratified heavier phases under the effect of gravity.

The time step is equal to 5e-4. The computational domain is [0, 0.4] × [0, 0.8] and

the initial configuration is shown on the left picture of Figure 6. The densities and

viscosities in pure phases are

̺1 = 1, ̺2 = 0.178, ̺3 = 1200, ̺4 = 1000,

η1 = 1e-4, η2 = 1e-4, η3 = 0.15, η4 = 0.1.

The mobility is defined by (4.1) with Mcst = 0 and Mdeg = 5e-2.

Figure 6 presents the time evolution of the system we obtain. The colors (in

grayscale) represent the area where the corresponding order parameter is greater

than 0.5 and the solid black lines represent the contour lines ci = 0.5 of each order

parameter.

The second test case corresponds to a single bubble, initially at rest, rising in

a mixture of three stratified heavier phases under the effect of gravity. The time

step is equal to 5e-4. The computational domain is [−1.2e-2, 1.2e-2] × [0, 1.44e-1]

and the initial configuration is shown on the left picture of Figure 7. The densities
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①

②

③

④

t=0 t=0.2 t=0.4 t=0.6 t=0.8 t=1 t=1.4 t=2.2 t=3.4 t=4.2 t=4.6 t=5.4

Fig. 7: One bubble rising through three statified phases (σij = 1, ∀i, j)

and viscosities in pure phases are

̺1 = 1, ̺2 = 1000, ̺3 = 1100, ̺4 = 1200,

η1 = 1.e-4, η2 = 0.1, η3 = 0.01, η4 = 0.001.

The mobility is defined by (4.1) with Mcst = 0 and Mdeg = 1e-2.

Figure 7 presents the time evolution of the system we obtain and Figure 8 shows

20 contour lines of order parameters at t = 1. We observe that no spurious phases

appears during the simulation showing that the model is able to handle quite com-

plex situations while capturing correctly all the interfaces during the computation.

5. Appendices

A. Coefficients of the two-phase free energy

We need to connect the parameters A and B in the definition (1.1) of F with the

two physically and numerically relevant quantities: surface tension and interface

thickness. To this end, we analyse the case of a single interface on the whole real

line, which amounts at minimising the energy

c ∈ H1
loc(R) 7→ F1D(c) =

∫

R

A

2
|c′(x)|2 +Bf(c(x)) dx,

among all the functions connecting 0 to 1, that is such that lim−∞ c = 0 and

lim+∞ c = 1. Easy calculations lead to the following differential equation for the

minimiser cA,B

−Ac′′A,B +Bf ′(cA,B) = 0,

and then, since f(0) = f(1) = 0, to the equation

A

2
|c′A,B(x)|2 = Bf(cA,B(x)), ∀x ∈ R. (A.1)
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c1 c2 c3 c4

Fig. 8: One bubble rising through three statified phases (σij = 1, ∀i, j),
20 contour lines of order parameters at t = 1.

This imply that 0 < cA,B(x) < 1 and c′A,B(x) > 0 for any x ∈ R, so that we get

c′A,B(x) =

√
2B

A
f(cA,B(x)).

The function cA,B , which is unique up to translations, corresponds to the inter-

face profile and only depends on the ratio B/A. We decide to define the interface

thickness ε by the following formula

ε =
1

sup c′A,B

=

√
A

2Bmax[0,1] f
,

whose meaning is illustrated in Figure 9.

Moreover, in such a model the surface tension is defined as the total excess energy

related to the concentration variation in the interface that is, since f(0) = f(1) = 0,

σ = F1D(cA,B) =

∫

R

A

2
|c′A,B(x)|2 +Bf(cA,B(x)) dx.

From (A.1), we see that the two terms in the integral are actually equal, so that a

simple change of variables in the integral gives

σ = A

∫

R

|c′A,B(x)|2 dx =
√
2AB

∫

R

√
f(cA,B(x))c

′
A,B(x) dx =

√
2AB

∫ 1

0

√
f.
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ε

Fig. 9: Typical interface profile; Interface width

Combining the previous computations, we find the expressions (1.4) of A and B.

Remark A.1. The very classical case is to consider the fourth-order polynomial

potential f(c) = c2(1− c)2, in which case we find a = 3
2 , b = 12, and

cA,B(x) =
1

2

(
1 + tanh

(
2x

ε

))
, (A.2)

as in Refs. 3, 5.

B. Proofs of technical results about the matrix α[σ]

We give in this section the proofs of the two technical lemmas 2.1 and 2.2 which

concern existence, uniqueness and main properties of the matrix α[σ].

Proof (of Lemma 2.1).

• For any 1 6 i 6 n, we look for a row vector αi ∈ M1,n(R) and two real

numbers βi, γi ∈ R satisfying
{
αiσ = βi

tei + γi
t1,

αi1 = 0.
(B.1)

Observe that (B.1) is a system of n+ 1 equations with n+ 2 unknowns so

that it admits at least one non trivial solution.

Let us show that βi 6= 0. Indeed, if we assume that βi = 0 we have

αiσ = γi
t1,

and thus

αiσ
tαi = γi

t1 tαi = γi
t(αi1) = 0.

Since αi1 = 0, we deduce from (2.6) that αi = 0. Coming back to (B.1),

we conclude that finally βi = γi = 0 and αi = 0 which is not possible since

we considered a non trivial solution of (B.1).

This also proves that the space of solutions of (B.1) is of dimension 1.

• We can now define the matrix α[σ] whose rows are given by αi/βi and the

vector γ[σ] = (γi/βi)16i6n, in order to obtain the unique solution to

α[σ]σ = Id + γ[σ] ⊗ 1,
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α[σ]1 = 0.

• To prove that α[σ] is symmetric, we right-multiply the matrix equation by
t
(
α[σ]

)
to get

α[σ]σ t
(
α[σ]

)
= t

(
α[σ]

)
+γ[σ]⊗1 t

(
α[σ]

)
= t

(
α[σ]

)
+γ[σ]⊗ t

(
α[σ]1

)

︸ ︷︷ ︸
=0

.

Since σ is symmetric, we conclude that α[σ] is also symmetric and that the

following relation holds

α[σ]σα[σ] = α[σ].

• Finally, we consider ξ ∈ Ker α[σ] and we right multiply the transpose of

the matrix equation by ξ to obtain

σα[σ]ξ = ξ + (γ[σ] · ξ)1.

Since ξ ∈ Ker α[σ], we get

ξ = −(γ[σ] · ξ)1,

which proves that ξ ∈ Span{1}. This concludes the proof of the lemma.

Proof (of Lemma 2.2). We use (2.8) to deduce that

α
[σ]
ll = telα

[σ]σα[σ]el.

Moreover, since α[σ]el ·1 = 0 and α[σ]el is not zero (see (1.10)), we can use (2.6) to

obtain that α
[σ]
ll 6= 0. Without loss of generality, we prove the equality (2.15) only

for l = n. Since the matrix α[σ] is uniquely defined by (2.7) and symmetric, we can

compute the following quantities, for 1 6 i, j < n,




n−1∑

k=1

[
α
[σ]
ik − α

[σ]
in α

[σ]
kn

α
[σ]
nn

]
σkj =

(
α[σ]σ

)
ij
− α

[σ]
in

α
[σ]
nn

(
α[σ]σ

)
nj

= δij + γ
[σ]
i − α

[σ]
in

α
[σ]
nn

γ[σ]
n ,

n−1∑

k=1

(
α
[σ]
ik − α

[σ]
in α

[σ]
kn

α
[σ]
nn

)
= 0.

This proves that the coefficients defined by the right-hand side of (2.15) satisfy the

relationship (2.7) with γ[σ̃n] defined by

γ
[σ̃n]
i = γ

[σ]
i − α

[σ]
in

α
[σ]
nn

γ[σ]
n , i = 1, . . . , n− 1.

The uniqueness stated in Lemma 2.1 proves the result.
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Proof (of Lemma 3.1). To simplify the notation in the proof, we set α = α[σ],

γ = γ[σ]. We write α in the following block form

α =

(
α̃ δ
tδ α̂

)
,

and accordingly

σ =

(
σ̃ β
tβ σ̂

)
, γ =

(
γ̃

γ̂

)
.

Since the indexes of rows and columns can be permuted, it is sufficient to prove

that that the submatrix α̂ is invertible. The equation (2.11) leads to

α̃σ̃ + δ tβ = Ĩd + γ̃ ⊗ 1̃, (B.2)

tδσ̃ + α̂ tβ = γ̂ ⊗ 1̃. (B.3)

tδβ + α̂σ̂ = Îd + γ̂ ⊗ 1̂. (B.4)

Let us consider a ξ̂ such that α̂ξ̂ = 0. Since t1α = 0 we have

0 = t1α

(
0

ξ̂

)
= t1

(
δξ̂

α̂ξ̂

)
= t1̃δξ̂,

and thus

1̃ · (δξ̂) = 0. (B.5)

Moreover, from (B.3), we have

σ̃δξ̂ + βα̂ξ̂︸︷︷︸
=0

= (γ̂ · ξ̂)1̃. (B.6)

We deduce, using (B.5) that

t(δξ̂)σ̃(δξ̂) = 0,

and from (2.6) (which is also satisfied by the submatrix σ̃), we deduce that

δξ̂ = 0.

Bearing in mind (B.6), we get

(ξ̂ · γ̂) = 0.

We now multiply the transpose of (B.4) by ξ̂ we get

ξ̂ + (γ̂ · ξ̂)︸ ︷︷ ︸
=0

1̂ = tβ δξ̂︸︷︷︸
=0

+σ̂ α̂ξ̂︸︷︷︸
=0

= 0.

We get that ξ̂ = 0. This proves that α̂ is invertible.



Hierarchy of consistent n-component Cahn-Hilliard systems 39

C. Proof of proposition 3.1

We use the equality (3.2) to prove Proposition 3.1 and to this end, we begin with

the following lemma

Lemma C.1. We have the following equalities (for all 1 < k < n)

(i) S
[n]
1 [f ](c1, . . . , cn−1, 0) = S

[n−1]
1 [f ](c1, . . . , cn−1),

(ii) S
[n]
k [f ](c1, . . . , cn−1, 0) = S

[n−1]
k−1 [f ](c1, . . . , cn−1) + S

[n−1]
k [f ](c1, . . . , cn−1),

(iii) S[n]
n [f ](c1, . . . , cn−1, 0) = S

[n−1]
n−1 [f ](c1, . . . , cn−1).

Proof. The proof of (i) and (iii) is straightforward by using that f(0) = 0. Property

(ii) comes with the following splitting

S
[n]
k [f ](c1, . . . , cn−1, 0) =

∑

i∈I
[n]
k

n∈i

f(ci1 + ci2 + · · ·+ cik) +
∑

i∈I
[n]
k

n/∈i

f(ci1 + ci2 + · · ·+ cik).

In the first sum, n belongs to any k-uplet i; it means that ik = n. Since cn = 0, the

first sum is exactly S
[n−1]
k−1 [f ](c1, . . . , cn−1). In the second sum, n does not belong

to the k-uplet i; it means that the summation is performed over all the k-uplets of

(0, . . . , n− 1). The second sum is exactly S
[n−1]
k [f ](c1, . . . , cn−1).

With these properties at hand, we can now prove Proposition 3.1.

Proof (of proposition 3.1). Let 1 6 k < n. Using (i) and (ii) of Lemma C.1, we

find from the equality (3.2) that

Ψ
[n]
k [f ](c1, . . . , cn−1, 0) =

∑

26s6k

(−1)k−s

(
n− s

k − s

)
S
[n−1]
s−1 [f ](c1, . . . , cn−1)

+
∑

16s6k

(−1)k−s

(
n− s

k − s

)
S[n−1]
s [f ](c1, . . . , cn−1).

We renumber the first sum and use the recursive formula for binomial coefficients
(
n− s

k − s

)
−
(
n− s− 1

k − s− 1

)
=

(
n− s− 1

k − s

)
, 1 6 s 6 k − 1,

to obtain (i). Property (ii) is obtained in the same way.

D. Proof of proposition 3.2

In order to evaluate L
[n]
n (F [n]), we proceed step by step: we first evaluate

L
[n]
n (S

[n]
k [f ]) and then L

[n]
n (Ψ

[n]
k [f ]).
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Lemma D.1. For all 1 6 k < n, we have the following equalities

(i) L[n]
n (S

[n]
k [f ])(c1, . . . , cn−1, 0) =

n− k

nσ
S
[n−1]
k−1 [f ′](c1, . . . , cn−1)

− k

nσ
S
[n−1]
k [f ′](c1, . . . , cn−1),

(ii) L[n]
n (S[n]

n [f ])(c1, . . . , cn−1, 0) =0.

Proof. We first remark that

∂nS
[n]
k [f ](c1, . . . , cn−1, 0) = S

[n−1]
k−1 [f ′](c1, . . . , cn−1), ∀1 6 k 6 n. (D.1)

Moreover, following the same reasonning as in the proof of Lemma C.1, we have,

for 1 6 s, k < n

∂sS
[n]
k [f ](c1, . . . , cn−1, 0) =

∑

i∈I
[n]
k

s∈i,n∈i

f ′(ci1 + · · ·+ cik) +
∑

i∈I
[n]
k

s∈i,n/∈i

f ′(ci1 + · · ·+ cik)

=
∑

i∈I
[n−1]
k−1

s∈i

f ′(ci1 + · · ·+ cik−1
) +

∑

i∈I
[n−1]
k

s∈i

f ′(ci1 + · · ·+ cik).

We sum over s and count the number of times that a (k − 1)-uplet or k-uplet is

involved in the sum. We find, for 1 6 k < n,
∑

16s6n−1

∂sS
[n]
k [f ](c1, . . . , cn−1, 0)

= (k − 1)S
[n−1]
k−1 [f ′](c1, . . . , cn−1) + kS

[n−1]
k [f ′](c1, . . . , cn−1). (D.2)

In the case where k = n, the second term in the right hand side does not appear
∑

16s6n−1

∂sS
[n]
n [f ](c1, . . . , cn−1, 0) = (n− 1)S

[n−1]
n−1 [f ′](c1, . . . , cn−1) (D.3)

The conclusion is obtained by combining the equalities (D.1), (D.2) for (i) and the

equalities (D.1) (k = n), (D.3) for (ii).

Since the operator L
[n]
n is linear, it is now straightforward to find L

[n]
n (Ψ

[n]
k [f ])

when cn = 0.

Lemma D.2. For all 1 6 k < n, we have the following equalities

(i) L[n]
n (Ψ

[n]
k [f ])(c1, . . . , cn−1, 0) =− 1

nσ

∑

16s6k−1

β
[n]
k,sS

[n−1]
s [f ′](c1, . . . , cn−1)

− k

nσ
S
[n−1]
k [f ′](c1, . . . , cn−1),

(ii) L[n]
n (Ψ[n]

n [f ])(c1, . . . , cn−1, 0) =− 1

nσ

∑

16s6n−2

β[n]
n,sS

[n−1]
s [f ′](c1, . . . , cn−1)

+
n− 1

nσ
S
[n−1]
n−1 [f ′](c1, . . . , cn−1),
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where the coefficients β
[n]
k,s are given in the statement of Propsition 3.2.

Using again the linearity of the operator L
[n]
n , we eventually obtain the claimed

expression of L
[n]
n (F [n])(c) when cn = 0.
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