Rock magnetic investigation of possible sources of the Bangui magnetic anomaly
Mariane Ouabego, Yoann Quesnel, Pierre Rochette, François Demory, E. M. Fozing, T. Njanko, Jean-Claude Hippolyte, Pascal Affaton

To cite this version:

HAL Id: hal-00933326
https://hal.archives-ouvertes.fr/hal-00933326v2
Submitted on 3 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Rock magnetic investigation of possible sources of the Bangui magnetic anomaly

Ouabego² M., Quesnel² Y., Rochette² P., Demory² F., Fozing³ E.M., Njanko³ T., Hippolyte² J.-C., Affaton² P.

1 – Geosciences Laboratory, Bangui University, Bangui, Centrafrican Republic
2 – Aix Marseille University, CNRS, IRD, CEREGE UM34, 13545 Aix-en-Provence, France
3 – Environmental Geology Laboratory, Dschang University, BP67, Dschang, Cameroon

*Corresponding author:

Quesnel Yoann
Aix Marseille University, CNRS, IRD, CEREGE UM34, 13545 Aix-en-Provence, France
Ph.: +33 442971590
Fax: +33 442971595
Email: quesnel@cerege.fr

Abstract

The Bangui Magnetic Anomaly (BMA) is the largest lithospheric magnetic field anomaly on Earth at low latitudes. Previous studies investigated its geological source using constraints from satellite and ground magnetic field measurements, as well as from surface magnetic susceptibility measurements on rocks from the Panafrican Mobile Belt Zone (PMBZ). Here we combine magnetic field data modelling and rock magnetic property measurements (susceptibility and natural remanent magnetization, NRM) on many samples from this PMBZ and the surrounding formations. It reveals that NRM is a significant component of the total magnetization (Mt) of the BMA source, which reaches 4.3 A/m with maximum thicknesses of
8 and 54 km beneath the western and eastern parts of the BMA. Only the isolated and
relatively thin banded iron formations and some migmatites show such Mt values. Thus we
suggest that the thick BMA source may be composed either by overlapped slices of such
metamorphic rocks, or by an iron-rich mafic source, or by a combination of these two
geological structures.

Keywords: Bangui magnetic anomaly, magnetization, geological source, modelling, banded
iron formation

1 – Introduction

Located in Centrafrican Republic, the Bangui Magnetic Anomaly (BMA) is one of the
largest lithospheric magnetic field anomaly on Earth, proeminent even at satellite altitude.
Different models have been proposed concerning its geological source. First, Regan and
Marsh (1982) suggested that a geological metamorphic process affected the entire crust of this
area during the Panafrican orogenesis, creating physical property contrasts between cratonic
regions and collisional belts. Ravat (1989) reinforced this model but suggested an additional
concentrated near-surface ore-like body (see also Ravat et al., 2002 and Langel and Hinze,
1998). This shallow body could correspond to the remains of an iron meteorite that fell in this
area during the Proterozoic era (Girdler et al., 1992; see also De et al., 1998 and Gorshkov et
al., 1996). Shock, thermal and/or chemical remanent magnetizations acquired during and after
the impact should have led to this highly-magnetized body. However, the impact hypothesis is
less suitable since the impactor material does not survive in significant amount in large craters
and thus cannot contribute to such a large magnetic anomaly (Koeberl, 1998). Furthermore no
shock remanent magnetization was observed on the rock samples from this area (Marsh,
1977). All these studies lack of constraints from magnetic property measurements on the
corresponding rocks of this area. Here we combined rock magnetic measurements with magnetic field anomaly modelling in order to investigate the possible source of the BMA.

In the first section, we summarize the geological context of the Centrafrican Republic, especially in our studied area. Then, the BMA is introduced before the description of the methods used. The next section details the results of magnetic property measurements and BMA modelling over the studied area. The last section corresponds to a discussion on the origin of the BMA, in the context of the general challenge involved in understanding large and deep crustal anomalies using limited access to rock samples (e.g. Frost and Shive, 1986; McEnroe et al., 2004, Rochette et al., 2005).

2 – Geological context

Central Africa is a key area of the African Plate since it constitutes the transition between several old cratons (Figure 1a,b). This transition corresponds to several orogenic belts such as the Panafrican belt (Nickles, 1952; Gérard, 1958; Black, 1966; Mestraud, 1971; Alvarez, 1992, 1995; Rolin, 1995a,b). These belts are mobile zones of the Panafrican Orogenesis at 600 ± 100 Ma (Kennedy, 1964; Rucci, 1965; Black, 1966). During this orogeny plate movements closed oceanic areas leading to a belt of suture zones around the cratons in the African regions of Gondwana. Our study area corresponds to Central Africa (Cameroon, Centrafrican Republic, Chad and Congo) where the West-African and Congolese cratons are separated by the Precambrian and Palaeozoic Oubanguides mobile zones (Figure 1b; Nickles, 1952; Gérard, 1958; Mestraud, 1971; Rolin, 1995b). Four geological domains are observed in this area from the rare outcrops of the Archean terranes (about 3.5 Ga), the Eburnean basement (2.4-2.2 Ga), the Neoproterozoic Panafrican cover (600 Ma) and the post-Panafrican domain (Figure 1b,c). We focus our study on the southwestern part of the Centrafrican Republic (Figure 1c) where the Oubanguides Panafrican Belt borders to the
north the Congo craton. Syn- and post-glacial Marinoen sediments cover the Neoproterozoic layers (Alvarez, 1999; Rolin, 1995a). A collision of an oceanic plate led to the presence of metamorphic rocks that were sampled in this area (granulites, quartzites including Banded Iron Formations (BIF), migmatites, orthogneisses, metabasalts, metasediments and metaperidotites). All metamorphic grades are found from granulite to green schist. The whole sequence was remobilized during the Panafrican orogenesis in nappes (formation 6 on Figure 1c) cut by N140 and N70-trending reverse faults (Figure 1c).

3 – Geophysical context

The western part of Central Africa shows one of the most prominent large-scale magnetic anomaly on Earth: the Bangui magnetic anomaly (BMA; Figure 2). It corresponds to a multipolar magnetic anomaly with a negative central lobe and two positive north and south lobes (all are located south to the geomagnetic equator). It reaches about 800 km of N-S wavelength and about 1000 nT of amplitude at ground level. Its E-W axial extension also reaches about 700 km. Near the magnetic equator and in the sub-tropical zone, this is the largest magnetic field anomaly. Here we use the anomaly field from the Magnetic Field model 7 (MF7; modified from the MF6 of Maus et al. (2008)) and downward continued to near the Earth's surface (2.5 km altitude – but this is considered as the 'satellite' signal in the following). This model was derived using 2007-2010 magnetic data from the low-Earth orbit CHAMP satellite. It resolves the crustal magnetic field anomalies with wavelengths larger than 300 km, for example the long-wavelength part of the BMA.

Ground magnetic data with a heterogeneous spatial resolution are also used in this study. They were acquired by LeDonche and Godivier (1962) in Centrafrican Republic and Chad (therefore no ground data were acquired at the southern lobe of the BMA). The published maps are of the horizontal and vertical components of the total magnetic field, as
well as the declination. To recover the total magnetic field (TF) anomaly, they subtracted the corresponding International Geomagnetic Reference Field (IGRF) model values from TF values. We preferred to apply the Definitive Geomagnetic Reference Field (DGRF) model for year 1960 (coefficients published in Finlay et al. (2010)) to derive the anomaly. It should be noted that the TF anomaly values are close to the horizontal component anomaly values, as expected for such low latitudes near the magnetic equator. The shape of the BMA differs between the satellite data map and the ground data map. Indeed the latter reveals that the western limit of the negative lobe of the satellite-derived anomaly is more heterogeneous at ground level, with a local positive E-W elongated central anomaly nearby (5°N, 17°E) surrounding by local negative lobes south and north. Also, the E-W transition between the central negative lobe and the northern positive one on the satellite-derived anomaly map is about 0.3° north than the same transition on the ground data map. This could indicate that the main source body lies in the lower and middle crusts but that only several branches of this source may really reach the upper crust. The negative lobe of the anomaly is more intense (-1000 nT) on the ground data map than on the satellite anomaly map (-400 nT). It is also very well correlated to a negative Bouguer gravimetric anomaly (data from Boukéké et al., 1995) of -125 mGal, indicating that the magnetization contrasts in the crust of this area may be correlated to rock density contrasts from the same source region.

4 – Methods

4.1 – Magnetic anomaly modelling

To investigate the magnetic properties of the BMA source, we first used a modelling method with the observed (ground as well as satellite-derived) magnetic and ground gravimetric anomaly fields. The GM-SYS module of the GEOSOFT Oasis montaj software was used. Gravity (Boukéké et al., 1995) and magnetic anomaly data along the NW-SE
profiles shown on Figure 2 were considered. The geometry of the different geological layers was constrained by 1) our own field observations (only near the western profile), 2) data from previous geological maps (Rolin, 1995a), and 3) gravimetric and magnetic anomaly data. Along the western profile, only the surface geology, ground magnetic and gravimetric data really constrained the model, because the satellite-derived magnetic signal cannot reproduce the short wavelengths observed at 2.5 km altitude. On the other hand, along the long eastern profile, too few surface observations, probably representing very 'local' anomalies, exist to consider the interpolated profile as a reasonable constraint. The directions of the remanent magnetization vector of the source body were initially set to the 2011 and 1960 Bangui magnetic field directions (Finlay et al., 2010) for modelling of satellite-derived and ground data, respectively, but could vary if necessary during the inversion. The main aim of the magnetic modelling was to infer the approximate range of total magnetization (Mt) of the most magnetic formation beneath the BMA under the assumptions of induced magnetization constraint and of a source model geometry able to fit the data whatever the location (western or eastern profiles).

4.2 – Sampling and rock magnetic measurements

Over 50 large hand samples were obtained in the area of Figure 1c, during several field missions. Sampling was designed to cover all lithologies and degrees of metamorphism observed in this area. Petrography was determined using thin sections and, in some cases, X-ray diffraction and chemical analysis. Low field magnetic susceptibility measurements were carried out using SM30 susceptibility meter (ZH Instruments) for large samples and KLY2 susceptibility meter (AGICO) for small samples. Mass susceptibility χ was calculated using the weight of the samples. For remanence and further rock magnetic measurements a first set of samples (chosen to be representative of all lithologies) was completed by all samples with
high susceptibility remaining in the collection: therefore the proportion of high susceptibility
samples is higher in the studied set. A total of 22 samples were thus fully investigated
magnetically. The Natural Remanent Magnetization (NRM) as well as saturation isothermal
remanent magnetization (SIRM) acquired at 1 T were measured using a spinner magnetometer
Minispin (Molspin) for large samples. In one case NRM was analysed by alternating field
demagnetization of a small sample using a superconducting rock magnetometer 760R (2G
enterprises). To characterize the magnetic minerals, thermomagnetic curves were acquired
using a MFK1 susceptibility meter (AGICO) with CS3 furnace (up to 650°C under argon
atmosphere), ambient temperature hysteresis measurements were performed with a vibrating
sample magnetometer Micromag 3900 (PMC) and its cryostat allowed measuring low
temperature remanent magnetizations.

To compare with the magnetic properties of somewhat similar formations within the
Panafrican belt, we analysed susceptibility data from East Cameroon (Betaré Oya area, see
Figure 1a,b and Kankeu et al., 2009) as well as West Cameroon (after Njanko et al., 2012 and
ongoing magnetic anisotropy investigations of amphibolites and granitoids). Some samples
from W Cameroon were also measured for rock magnetic properties.

Mass normalized rock magnetic measurements were used to evaluate in-situ Mt (in
A/m) of the sampled formations using the following formula:

\[Mt = \rho (\text{NRM} + \chi H) \]

with \(\rho \) the rock density (2.7 g/cm\(^3\) for all rocks – a typical value for deep continental crust,
see Table 1 - except itabirites which were assumed to be 3.2 g/cm\(^3\)) and \(H \) the present
magnetic field intensity in Bangui (33.6 µT, i.e. 26.8 A/m). Using field intensities at the dates
of the discussed magnetic field surveys makes negligible changes. This formula assumes that
the induced and remanent magnetization components are colinear. Thus the resulting Mt values computed with this equation will be maximum values. The Koenigsberger ratio (Q=NRM/χ H) was also calculated.

5 – Results

5.1 – Magnetic anomaly modelling

The best models to represent the crustal magnetization and density variations beneath the western and eastern BMA profiles are shown in Figure 3, and the parameters associated to each layer are indicated in Table 1. For the most magnetic layer, using a shape similar than the one shown in Figure 3 but with different Mt value and associated thickness, a Mt of 4.3 A/m indeed results in the best predictions of the data along both eastern and western profiles (see Table A1, Figures A1 and A2 in Supplementary Material). Only the 2.5 km-altitude satellite-derived magnetic data of the western profile and the ground magnetic data of the eastern profile are not well predicted, as expected (see explanations in Section 4.1). The resulting magnetization directions are similar to the input values. Similarly to the results of previous BMA modelling studies, the superficial geological layers seem to be weakly magnetized. With the selected shape, the top of the main magnetic source (layer 1) is 9 km deep beneath the short western profile, 5 km deep beneath the long eastern profile. The total magnetic thickness of this layer reaches 38 and 54 km beneath the western and eastern profiles, respectively, even if significant lateral N-S thickness variations are observed beneath the western profile (Figure 3). This confirms that a huge amount of strongly magnetized rocks is preserved in the crust of Centrafrican Republic, even beneath the sampled area near Bangui. The gravity and magnetization contrasts in the models are similar to those of the model proposed by Marsh (1977) and Regan and Marsh (1982) using satellite data only and modelling the whole BMA. In particular, the magnetic source seems to be less dense (density
contrast of about -0.03 g/cm3) than the deep non-magnetic surrounding rocks (mainly layer 3), but denser (> 0.2 g/cm3) than the superficial non-magnetic formations (not considered in model (b) of Figure 3). Note that a small relief of the Moho is necessary to completely explain the shape of the gravity signal along the two profiles. Concerning the 4.3 A/m magnetization intensity for the most magnetic layer of the best model, using only induced magnetization would require a rather unrealistically high k of 16×10^{-2} SI for the rocks of the studied area. Therefore we arbitrarily separated this Mt value into a NRM of 4 A/m and a volumic susceptibility k of 10^{-2} SI (Table 1).

5.2 – Magnetic property measurements

Table 2 shows the magnetic properties of the 22 studied samples. Most of our strongly magnetic samples have Koenigsberger ratios (Q) larger than 1 (minimum values 0.3), stressing the importance of not relying only on susceptibility measurements. Only two samples corresponding to migmatite (8576) and itabirite (8603), have Mt over 4.3 A/m, while five other samples have 0.8<Mt<2.3 A/m, from the above lithologies plus granodiorite (8632) and orthogneiss (240). Other lithologies (metaperidotites, metabasalts, granulite and non itabiritic metasedimentary rocks) have negligible Mt. The strong Mt values are coherent with the susceptibility measurements made by Marsh (1977) on outcrops from the area beneath the large Bangui magnetic anomaly, eastward from our own sampling. Those samples with the largest observed magnetic susceptibilities are itabirites from Bakala (k around 0.1 SI) and charnockites from Kaga Bandaro (k around 0.02 SI). We do not elaborate further on Marsh (1977) data obtained using a Bison large coil applied on the outcrops, as their precision and cross-calibration with our more precise data is unknown.

Hysteresis loops obtained on chips from the 6 most magnetic samples reveal 4 samples (Figure 4; including 8576) typical of multidomain magnetite -Mrs/Ms<0.02, Bcr/Be>5,
Bcr<20 mT- and two samples (8603 and 240) typical of hematite -Mrs/Ms>0.5, Bcr/Bc≈1.3, Bcr>20 mT. Hematite appears multidomain for the itabirite sample (8603) and single domain for the orthogneiss (240). To confirm these identifications, we measured low temperature remanent magnetizations on the two most magnetic samples (Figure 5) and high-temperature susceptibility on the 4 samples showing multidomain magnetite (Figure 6). At low temperature, Morin and Verwey transitions are visible on 8603 and 8576 respectively (Figure 5), indicating that pure hematite and pure magnetite are indeed present in these rocks. Magnetite Curie point (at 580°C; Figure 6) is observed on all samples but in 8603 and 240 over 50% of initial susceptibility remains over 650°C, indicative of hematite that should carry most of the remanence. For sample 240, this weak residual signal may also correspond to instrument drift, but the previous hysteresis measurements have shown hematite.

For surface rock samples, the measured NRM intensities can be biased by the viscous remanent magnetization (VRM) component and other possible spurious unwanted magnetizations, especially lightning induced IRM that can generate anomalously high NRM (Verrier and Rochette, 2002). Therefore we scaled measured NRM with saturation IRM, and computed theoretical in situ NRM intensities from measured SIRM. For samples containing magnetite, we applied a theoretical NRM/SIRM ratio of 2% (Gattacceca and Rochette, 2004) using a thermo-remanent magnetization (TRM) in the present magnetic field in Bangui. These modelled Mt values are shown in the last column of Table 2. Only two samples exhibit modelled values significantly different from the value computed using our NRM and susceptibility measurements: magnetite-bearing migmatite (8576) and hematite-bearing gneiss (243). For the latter, modelled value is much higher, possibly due to a multicomponent IRM with opposite directions. Measured value for 8576 is 3 times larger than the modelled Mt, suggesting that lightning has biased our NRM measurement, although much larger NRM/SIRM ratios are commonly observed for samples affected by lightning (Verrier and
An alternative-field demagnetization experiment with REM’ ratio computed following Gattacceca and Rochette (2004) does confirm that 8576 NRM is affected by lightning, with REM’ peaking at 30%. For samples containing hematite (8603 and 240), the modelled Mt values (using NRM/SIRM = 50% after Kletetschka et al., 2000, and Dunlop and Kletetschka, 2001) are similar to the observed ones (30 to 50%).

Finally, we compare the magnetic properties of our samples with those measured on other rock samples from the Panafircan belt in Cameroon (Figure 7). For West Cameroon Fomopea amphibolites (Njanko et al., 2012; geographic position near 5.5N and 10E), among 16 sites (with 2 to 4 samples per sites), the maximum k is 9×10^{-2} SI, with 25% of the sites above 10^{-2} SI. In the Nkambé area (6N and 10E), mostly with granitoids but also with accessory amphibolites, the maximum k is 5×10^{-2} SI in both lithologies, with 16% of the over 1200 samples above 10^{-2} SI (Fozing et al., in preparation). Rock magnetic measurements, including hysteresis loops and thermomagnetic curves, have been performed on a selection of 48 samples (Table A2 of the Supplementary Material). They all show a multidomain to large pseudo-single domain magnetite signal. Modelled Mt has been computed after SIRM and susceptibility measurements (Figure 8). Only 15 samples yield values over 1 A/m, a single one being over 4 A/m (at 6.8 A/m). For those strong samples, Q ratio is always over 1 (average around 2), stressing again the need to take remanence into account, even for multidomain magnetite. For the East Cameroon study of Kankeu et al. (2009, at 5.5N and 14E), the susceptibility of 65 metasediments (schist, quartzite and gneiss) and 18 deformed granites was measured. For these two classes, the maximum k is 2 and 5×10^{-2} SI, with 5 and 61% of the samples above 10^{-2} SI, respectively.

It appears from Figure 7 that the mean magnetic susceptibility distribution is roughly similar regardless of the location in the Panafircan belt, with metamorphic rocks derived from basalts and granites having the strongest magnetic susceptibilities. These histograms confirm...
on a larger scale the conclusion from our samples: no surface lithologies are able to account for the BMA by induced magnetization alone (e.g. Shive, 1989). A review of the extensive magnetic anisotropy work in Panafrican intrusives from NE Brasil (e.g. Archanjo et al., 1995, 1998, 2002) confirms this conclusion. When taking into account remanence it appears that magnetite-bearing crustal rocks (granitoids and amphibolite) exceptionally reaches the BMA total magnetization (Figure 8).

6 – Discussion

These results indicate that a single lithology -hematite-bearing itabirites, i.e. BIF, interstratified with amphibolites and other metasediments- shows strong enough total magnetization Mt to be the magnetic source of the BMA (Mt > 4.3 A/m). Lithologies rich in multidomain magnetite (some amphibolites and granites) fail by about a factor 2 to account for the BMA, assuming no significant enhancement of NRM at depth. No magnetic field observations were made at the itabirite sampling locations (LeDonche and Godivier, 1962), but such outcrops should result in a local small-wavelength high-amplitude magnetic field anomalies. Our assumption that the deep crustal lithologies responsible for the BMA could be outcropping over the BMA relies on the possibility that some slices from these deep lithologies have been brought to the surface through orogenic processes (e.g. Rolin, 1991). Our modelling shows that the deep magnetic source seems to be less dense than the deep non-magnetic surrounding rocks (granulites?), but denser than most of the superficial non-magnetic formations (quartzites and schists). We also note the numerous reverse faults in this Panafrican belt around Bangui that witness a compressive regime which may have favored the thickening of the iron-rich formations (Figure 1c).

The total magnetization intensity and the expected volume of the geological source of the BMA are coherent with a mafic (basaltic) lower crust, as Pin and Poidevin (1987) and
Hemant and Maus (2005) suggested. This metabasalt or amphibolitic part of the Central Africa's lower crust may be the root of the migmatite basement. However, our results also suggest that BIF may compose the source of the BMA because of their magnetization. These rocks are assumed to compose about 25% of the source of the Kursk magnetic anomaly in Russia (Taylor, 1987; Ravat et al., 1993; Langel and Hinze, 1998). In such case, a positive gravimetric anomaly should be associated to the BMA, as Schmidt et al. (2007) observed on a similar geological formation in Australia (magnetization up to 100 A/m). However as itabirite can be an order of magnitude more magnetized than the BMA source, a volume occupied by a mixture of 10% itabirite (i.e. a maximum thickness of 2 km) and 90% of low density and less magnetic rock can account for the BMA without inducing a significant excess of mass. As mentioned earlier, a negative gravimetric contrast is associated to the BMA in its central part, but a positive one is found west of Bangui nearby Cameroon border (Boukéké et al., 1995), where a positive magnetic anomaly and itabirites are also observed. Finally, the combination of these two possible magnetic formations (itabirites and amphibolite) may explain the long wavelength and large intensity of the BMA.

It is interesting to note that probably all Panafrican metamorphic crustal formations, including these magnetic rocks from the lower crust, may be found on surface today in the Centrafrican Republic, while for other large magnetic anomalies like the Beattie magnetic anomaly in South Africa, the source is from the upper and middle crust but covered by the Karoo basin sediments (Quesnel et al., 2009). Two key points of our interpretation are the possible Curie isotherm -deepened in case of hematite-bearing rocks- in the Central Africa lithosphere, as well as the magnetic mineralogy that carries these strong magnetization intensities at such depth (Frost and Shive, 1986; McEnroe et al., 2004). If it is hematite, our study puts forward a candidate lithology: itabirite or BIF. If it is multidomain magnetite, then the candidate lithology has not been sampled at the surface. It should be two times richer in
magnetite than the most magnetite-rich granitic and amphibolitic samples studied so far. Such
a high Fe amount should correspond to a positive gravity anomaly that is not observed.
However, a “homogeneous” tectonic mixing of BIF slices, a few km thick in total, with other
metasediments and a few tens of km thick series of magnetite-rich metamagmatic rocks may
be the best solution to account for all geophysical data.

7 – Conclusion

Using modelling and rock magnetism constraints, we investigated the source of the
BMA using samples obtained over the anomaly in Centrafrican Republic, as well as
geologically related areas in Cameroon. Modelling implies a total magnetization of the order
of 4 A/m on a thickness up to 54 km, possibly associated with relatively moderate density of
2.87. No surface sample can account for this magnetization based only on induced
magnetization. Large enough remanent magnetization intensities are observed for only two
surface samples, but lightning has affected one. This highlights the fact that modelled in-situ
NRM$s based on IRM and magnetic mineralogy may be a more reliable indicator in magnetic
anomaly interpretation, compared to NRM actually measured on surface samples, which can
yield strongly-biased values with respect to NRM at depth.

The only remaining lithology, with NRM up to 50 A/m, is hematite-bearing itabirites
(BIF) that are Neoproterozoic iron-rich metasediments. Other magmatically-derived
lithologies rich in multidomain magnetite (migmatite, amphibolite, granite) can account for
only a few A/m at most. We suggest that the two types of geological formation may compose
the deep crust of this area and particularly the extended deep magnetic source. Further
constraints given by drilling or by other geophysical methods like seismsics or
magnetotellurics are needed to validate (or not) this interpretation and the previously-
published models. Concerning magnetics, new high-resolution ground and airborne magnetic
field measurement surveys will surely improve the characterization of this source, including its possible extensions toward the surface. In the same time, one should benefit from the upcoming SWARM satellite mission (Friis-Christensen et al., 2006) that will allow the use of lateral and vertical magnetic gradients to study such large magnetic anomalies.

Acknowledgments

The Bangui University is acknowledged for its support to this work, as well as the OSU-Institut Pytheas. We also thank the two anonymous reviewers who greatly contributed to improve the first state of this manuscript.

References

Maus, S., Yin, F., Lühr, H., Manoj, C., Rother, M., Rauberg, J., Michaelis, I., Stolle, C., Müller, 2008. Resolution of direction of oceanic magnetic lineations by the sixth-

Rolin, P., 1995a. Carte tectonique et géologique de la République Centrafricaine au 1/1.000000, ORSTOM.

Figure captions

Figure 1: Location (a), regional (b) and local (c) geological contexts of the studied area. In (a), the black rectangle and disks correspond to the sampled areas in Centrafrican Republic and Cameroon, respectively. The dotted-dashed line delineates the coastline of South America, translated and rotated next to Africa. A zoom is shown in (b) where the relationships between the different Archean blocks are reconstituted. Zone A corresponds to the Paleoproterozoic rocks with Archean inheritances underlining the border of the mega-Congo craton. Zone B are the Pan-African rocks with Paleoproterozoic inheritances. Zone C represents the nappes of the 600 Ma Central African Belt. Zone D corresponds to the Mesozoic sediments of the Benue trough and Zone E are the oceanic rocks. PF, Pernambuco fault; ADF, Adamawa fault; TBF, Tchollire–Banyo fault; dotted-dashed lines: reconstituted South America (SW one) and Africa (NE one) coastlines. This (b) regional map is modified from Penaye et al. (2004), Poidevin (1991), Ferré et al. (1996), Feybesse et al. (1998), Almeida et al. (2000) and Toteu et al. (2001). The dashed rectangle corresponds to the Centrafrican sampled area (c), while the black disks show the approximate locations of the sampled areas in Cameroon. In (c), modified from Rolin (1995a), details about the surface lithology and the structural features of the studied area nearby Bangui are shown. 1, Archean gneissic basement; 2, Paleoproterozoic migmatitic domain; 3, Lower-Neoproterozoic domain with (a) quartzites and (b) itabirates; 4, Upper-Neoproterozoic schists; 5, Upper-Neoproterozoic limestones/marbles; 6, Panafrian Gbayas Nappe with orthogneisses, granulites and granites; 7, Post-Panafrian cover with sandstones and clays. Black filled circles with names indicate the sampling sites.
Figure 2: Interpolated magnetic anomaly maps near the surface over Centrafrican Republic and Chad. On left, gridded data from the satellite MF7 model (derived from Maus et al. (2008) downward continued to 2.5 km of altitude). On right, ground magnetic data interpolated from LeDonche and Godivier (1962). The solid lines correspond to the selected profiles for modelling, while the rectangle indicates the location of Figure 1c.

Figure 3: Crustal magnetic models (bottom panels) along the NW-SE western (a) and eastern (b) profiles (top panels) shown on Figure 2. Sat, satellite-derived magnetic data; Ground, ground magnetic data; Gravi, ground gravity data (Boukéké et al., 1995); Obs, observations, Pred, predictions. For models, layer density and magnetization properties are represented by the filling color and/or pattern (see Table 1 for details). Formation 1 has a total magnetization intensity (Mt) of 4.3 A/m, which corresponds to the best model with this source geometry (see Supplementary Material).

Figure 4: Hysteresis curves (specific magnetization) of four samples. Bc, coercitive field; Ms, saturation magnetization; Mrs, remanent magnetization at saturation; Bcr, coercitive field of the remanent magnetization, derived from the back-field curve.

Figure 5: Low-temperature remanent magnetization (RM) curves for two samples (cooling and subsequent heating of a room temperature IRM), showing the Verwey (in a) and Morin (in b) transitions. For (b) is also shown the induced magnetization (IM) heating and cooling curves, measured in a 0.3 T field.

Figure 6: Effect of heating (black) and cooling (gray) on the normalized magnetic susceptibility of the same four samples as in Figure 4.
Figure 7: Histogram (in logarithmic representation) of k_m, the mean magnetic susceptibility, for Cameroon and Centrafrican Republic (CR) rock samples.

Figure 8: Histogram of modelled total magnetization (Mt) derived from IRM and susceptibility measurements on Panafrican magnetite-bearing rocks from Cameroon (black) and Centrafrican Republic (white).
Figure 3 revised
Figure 6

Click here to download high resolution image
Table 1. Magnetization* and density contrasts of the best models for the source of the BMA.

<table>
<thead>
<tr>
<th>Layer**</th>
<th>(k) (10(^{-3}) SI)</th>
<th>NRM (A/m)</th>
<th>(d) (g.cm(^{-3}))</th>
<th>Rock type***</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>4.0</td>
<td>2.870</td>
<td>Magnetic source layer</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3.000</td>
<td>Metabasalt</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2.900</td>
<td>Granulite/Orthogneiss</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>2.850</td>
<td>Amphibolite</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-</td>
<td>2.665</td>
<td>Quartzite</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-</td>
<td>2.630</td>
<td>Schist</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-</td>
<td>2.640</td>
<td>Panafrican nappe</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>3.300</td>
<td>Mantle rocks</td>
</tr>
</tbody>
</table>

*all layers have their magnetization oriented in the 1960 (I= -14.5°, D=-5°) and 2011 (I= -16.76°, D=0.3°) magnetic field directions in Bangui for the modelling of the ground and satellite magnetic data, respectively.

**see correspondance in Figure 3.

***these rock types are expected with regards as their densities, their magnetization properties and the surface geology.
Table 2. Magnetic properties of rock samples from the Bangui area.

<table>
<thead>
<tr>
<th>Lithology</th>
<th>ID</th>
<th>χ (10$^{-9}$ m3.kg$^{-1}$)</th>
<th>NRM (A.m2.kg$^{-1}$)</th>
<th>Mt (A/m)</th>
<th>Q</th>
<th>NRM/SIRM (%)</th>
<th>Laboratory modelled Mt (A/m)</th>
<th>Sampling site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itabirite</td>
<td>8603</td>
<td>798</td>
<td>23856.2</td>
<td>76.4</td>
<td>1117.8</td>
<td>43.6</td>
<td>88.1</td>
<td>Bogoin</td>
</tr>
<tr>
<td></td>
<td>243</td>
<td>629</td>
<td>237.5</td>
<td>0.8</td>
<td>14.1</td>
<td>5.1</td>
<td>7.5</td>
<td>Bogoin</td>
</tr>
<tr>
<td>Migmatite</td>
<td>8576</td>
<td>12201</td>
<td>2041.1</td>
<td>6.4</td>
<td>6.3</td>
<td>7.6</td>
<td>2.3</td>
<td>Mabo</td>
</tr>
<tr>
<td></td>
<td>8575</td>
<td>8496</td>
<td>66.0</td>
<td>0.8</td>
<td>0.3</td>
<td>0.7</td>
<td>1.1</td>
<td>Mabo</td>
</tr>
<tr>
<td>Orthogneiss</td>
<td>240</td>
<td>85</td>
<td>833.8</td>
<td>2.3</td>
<td>365.5</td>
<td>53.1</td>
<td>2.1</td>
<td>Mabo</td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>229</td>
<td>342.8</td>
<td>0.9</td>
<td>55.9</td>
<td>36.1</td>
<td>1.5</td>
<td>Mabo</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>5165</td>
<td>102.7</td>
<td>0.7</td>
<td>0.7</td>
<td>3.4</td>
<td>0.5</td>
<td>Mabo</td>
</tr>
<tr>
<td></td>
<td>216</td>
<td>23</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>-</td>
<td>Galabadjia</td>
</tr>
<tr>
<td>Granodiorite</td>
<td>8632</td>
<td>7587</td>
<td>382.9</td>
<td>1.6</td>
<td>1.9</td>
<td>1.6</td>
<td>1.8</td>
<td>La Mbi</td>
</tr>
<tr>
<td>Metaperidotite</td>
<td>8840</td>
<td>5223</td>
<td>76.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>La Mbi</td>
</tr>
<tr>
<td></td>
<td>8838</td>
<td>1235</td>
<td>105.6</td>
<td>0.4</td>
<td>3.2</td>
<td>-</td>
<td>-</td>
<td>La Mbi</td>
</tr>
<tr>
<td></td>
<td>8836</td>
<td>164</td>
<td>3.0</td>
<td>0.0</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>Sibut</td>
</tr>
<tr>
<td>Quartzite</td>
<td>203</td>
<td>1902</td>
<td>82.7</td>
<td>0.4</td>
<td>1.6</td>
<td>-</td>
<td>-</td>
<td>Boali</td>
</tr>
<tr>
<td></td>
<td>8564</td>
<td>5</td>
<td>1.4</td>
<td>0.0</td>
<td>11.0</td>
<td>-</td>
<td>-</td>
<td>Bossembélé</td>
</tr>
<tr>
<td></td>
<td>213</td>
<td>7</td>
<td>0.8</td>
<td>0.0</td>
<td>3.8</td>
<td>-</td>
<td>-</td>
<td>Mbalki</td>
</tr>
<tr>
<td></td>
<td>452</td>
<td>20</td>
<td>0.4</td>
<td>0.0</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>Ouango</td>
</tr>
<tr>
<td>Granulite</td>
<td>230</td>
<td>304</td>
<td>38.8</td>
<td>0.1</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
<td>Sibut</td>
</tr>
<tr>
<td>Metabasalt</td>
<td>8602</td>
<td>292</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>Bogoin</td>
</tr>
<tr>
<td>Micaschist</td>
<td>249</td>
<td>171</td>
<td>2.2</td>
<td>0.0</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>Boali</td>
</tr>
<tr>
<td>Metasilexite</td>
<td>217</td>
<td>52</td>
<td>1.3</td>
<td>0.0</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>Kamaro</td>
</tr>
<tr>
<td></td>
<td>Code</td>
<td>Year</td>
<td>Age</td>
<td>Height</td>
<td>-</td>
<td>-</td>
<td>Fatima</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Cipolin</td>
<td>8631</td>
<td>-1</td>
<td>0.4</td>
<td>0.0</td>
<td>-11.9</td>
<td>-</td>
<td>-</td>
<td>Fatima</td>
</tr>
<tr>
<td></td>
<td>8610</td>
<td>-1</td>
<td>0.4</td>
<td>0.0</td>
<td>-13.0</td>
<td>-</td>
<td>-</td>
<td>Ndjimba</td>
</tr>
</tbody>
</table>