Large time existence for 3D water-waves and asymptotics, Inventiones mathematicae, vol.2, issue.4, pp.485-541, 2008. ,
DOI : 10.1007/s00222-007-0088-4
URL : https://hal.archives-ouvertes.fr/hal-00128402
Lannes A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations, Indiana Univ, Math. J, vol.57, pp.97-131, 2008. ,
Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comp, pp.25-2050, 2004. ,
Nonlinear Shallow Water Theories for Coastal Waves, Surveys In Geophysics, vol.94, issue.4, pp.315-337, 2004. ,
DOI : 10.1007/s10712-003-1281-7
Experimental investigation of wave propagation over a bar, Coastal Engineering, vol.19, issue.1-2, pp.151-162, 1993. ,
DOI : 10.1016/0378-3839(93)90022-Z
Verification of numerical wave propagation models for simple harmonic linear water waves, Coastal Engineering, vol.6, issue.3, pp.255-279, 1982. ,
DOI : 10.1016/0378-3839(82)90022-9
A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes, SIAM Journal on Scientific Computing, vol.30, issue.5 ,
DOI : 10.1137/070686147
URL : https://hal.archives-ouvertes.fr/hal-00370486
An efficient scheme on wet/dry transitions for shallow water equations with friction, Computers & Fluids, vol.48, issue.1, pp.192-201, 2011. ,
DOI : 10.1016/j.compfluid.2011.04.011
URL : https://hal.archives-ouvertes.fr/hal-00799075
Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes, submitted, 2013. ,
Velocity potential formulations of highly accurate Boussinesq-type models, Coastal Engineering, vol.56, issue.4, pp.467-478, 2009. ,
DOI : 10.1016/j.coastaleng.2008.10.012
Wave breaking in Boussinesq models for undular bores, Physics Letters A, vol.375, issue.14, pp.1570-1578, 2011. ,
DOI : 10.1016/j.physleta.2011.02.060
Modelling of periodic wave transformation in the inner surf zone, Ocean Eng, pp.1459-1471, 2007. ,
A splitting approach for the fully nonlinear and weakly dispersive Green???Naghdi model, Journal of Computational Physics, vol.230, issue.4, pp.230-1479, 2011. ,
DOI : 10.1016/j.jcp.2010.11.015
URL : https://hal.archives-ouvertes.fr/hal-00482564
Recent advances in Serre???Green Naghdi modelling for wave transformation, breaking and runup processes, European Journal of Mechanics - B/Fluids, vol.30, issue.6, pp.589-597, 2011. ,
DOI : 10.1016/j.euromechflu.2011.02.005
URL : https://hal.archives-ouvertes.fr/hal-00606543
A comparison of two different types of shoreline boundary conditions, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.39-40, pp.4475-4496, 2008. ,
DOI : 10.1016/S0045-7825(02)00392-4
Nonlinear Shallow Water Equation Modeling for Coastal Engineering, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.134, issue.2, pp.104-120, 2008. ,
DOI : 10.1061/(ASCE)0733-950X(2008)134:2(104)
A low-diffusion MUSCL scheme for LES on unstructured grids, Computers & Fluids, vol.33, issue.9, pp.1101-1129, 2004. ,
DOI : 10.1016/j.compfluid.2003.10.002
URL : https://hal.archives-ouvertes.fr/hal-00372840
Fully nonlinear long-wave models in the presence of??vorticity, Journal of Fluid Mechanics, vol.77 ,
DOI : 10.1029/2002JC001308
Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green???Naghdi Model, Journal of Scientific Computing, vol.37, issue.3, pp.105-116, 2011. ,
DOI : 10.1007/s10915-010-9395-9
URL : https://hal.archives-ouvertes.fr/hal-00482561
Boussinesq Modeling of Wave Transformation, Breaking, and Runup.???II: 2D, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.126, issue.1, pp.126-174, 2000. ,
DOI : 10.1061/(ASCE)0733-950X(2000)126:1(48)
A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II: boundary conditions and validation, International Journal for Numerical Methods in Fluids, vol.51, issue.9, pp.1423-1455, 2007. ,
DOI : 10.1002/fld.1359
URL : https://hal.archives-ouvertes.fr/hal-00182841
A wave-breaking model for Boussinesq-type equations including mass-induced effects, J. Wtrwy., Port, Coast., and Oc. Engrg, pp.136-146, 2010. ,
An Unsymmetric-Pattern Multifrontal Method for Sparse LU Factorization, SIAM Journal on Matrix Analysis and Applications, vol.18, issue.1, pp.140-158, 1997. ,
DOI : 10.1137/S0895479894246905
URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.5426
Comparison of computations with Boussinesq-like models and laboratory measurements, p.Delft Hydraulics, 1994. ,
On the well-balanced numerical discretization of shallow water equations on unstructured meshes, Journal of Computational Physics, vol.235, pp.565-586, 2013. ,
DOI : 10.1016/j.jcp.2012.10.033
Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations, submitted, 2014. ,
Mitsotakis, Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations, Eur. J ,
Finite volume schemes for dispersive wave propagation and runup, Journal of Computational Physics, vol.230, issue.8, pp.3035-3061, 2011. ,
DOI : 10.1016/j.jcp.2011.01.003
URL : https://hal.archives-ouvertes.fr/hal-00472431
Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations, International Journal for Numerical Methods in Fluids, vol.128, issue.11, pp.49-1213, 2005. ,
DOI : 10.1002/fld.1021
Further application of hybrid solution to another form of Boussinesq equations and comparisons, International Journal for Numerical Methods in Fluids, vol.22, issue.5, pp.827-849, 2007. ,
DOI : 10.1002/fld.1307
Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations, Journal of Computational Physics, vol.212, issue.2, pp.566-589, 2006. ,
DOI : 10.1016/j.jcp.2005.07.017
A Fifth???Order Stokes Theory for Steady Waves, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.111, issue.2, pp.216-234, 1985. ,
DOI : 10.1061/(ASCE)0733-950X(1985)111:2(216)
Simulation of nonlinear wave run-up with a high-order Boussinesq model, Coastal Engineering, vol.55, issue.2, pp.139-154, 2008. ,
DOI : 10.1016/j.coastaleng.2007.09.006
Strong Stability-Preserving High-Order Time Discretization Methods, SIAM Review, vol.43, issue.1, pp.89-112, 2001. ,
DOI : 10.1137/S003614450036757X
A derivation of equations for wave propagation in water of variable depth, Journal of Fluid Mechanics, vol.338, issue.02, pp.237-246, 1976. ,
DOI : 10.1017/S0022112076002425
Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling, Coastal Engineering, vol.57, issue.1, pp.1-18, 2010. ,
DOI : 10.1016/j.coastaleng.2009.08.004
Positivity-preserving method for high-order conservative schemes solving compressible Euler equations, Journal of Computational Physics, vol.242, pp.169-180, 2013. ,
DOI : 10.1016/j.jcp.2013.01.024
Large Time existence For 1D Green-Naghdi equations, Nonlinear Analysis: Theory, Methods & Applications, vol.74, pp.81-93, 2011. ,
Derivation and analysis of a new 2D Green???Naghdi system, Nonlinearity, vol.23, issue.11, p.2889, 2010. ,
DOI : 10.1088/0951-7715/23/11/009
URL : https://hal.archives-ouvertes.fr/hal-00447005
Efficient Implementation of Weighted ENO Schemes, Journal of Computational Physics, vol.126, issue.1, pp.202-228, 1996. ,
DOI : 10.1006/jcph.1996.0130
Mathematical and Computational Modeling for the Generation and Propagation of Waves in marine and Coastal Environments, 2013. ,
An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations, Coastal Engineering, vol.69, pp.42-66, 2012. ,
DOI : 10.1016/j.coastaleng.2012.05.008
Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesqtype equations, J. Comput. Phys, pp.271-281, 2014. ,
Boussinesq Modeling of Wave Transformation, Breaking, and Runup.???I: 1D, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.126, issue.1, pp.126-165, 1999. ,
DOI : 10.1061/(ASCE)0733-950X(2000)126:1(39)
The Water Waves Problem: Mathematical Analysis and Asymptotics, Mathematical Surveys and Monographs. AMS, vol.188, 2013. ,
DOI : 10.1090/surv/188
URL : https://hal.archives-ouvertes.fr/hal-01101991
Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Physics of Fluids, vol.21, issue.1, p.16601, 2009. ,
DOI : 10.1063/1.3053183
A numerical scheme for the Green- Naghdi model, J. Comp. Phys, vol.229, pp.2034-2045, 2010. ,
A shallow-water approximation to the full water wave problem, Communications on Pure and Applied Mathematics, vol.9, issue.9, pp.225-1285, 2006. ,
DOI : 10.1002/cpa.20148
Modélisation numérique et expérimentale des houles bidimensionnelles en zonecotì ere, 2006. ,
High order well-balanced CDG???FE methods for shallow water waves by a Green???Naghdi model, Journal of Computational Physics, vol.257, pp.257-169, 2014. ,
DOI : 10.1016/j.jcp.2013.09.050
Numerical resolution of well-balanced shallow water equations with complex source terms, Advances in Water Resources, vol.32, issue.6, pp.873-884, 2009. ,
DOI : 10.1016/j.advwatres.2009.02.010
URL : https://hal.archives-ouvertes.fr/hal-00799080
Runup of solitary waves on a circular Island, Journal of Fluid Mechanics, vol.31, pp.259-285, 1995. ,
DOI : 10.1016/0378-3839(92)90059-4
Modeling wave runup with depth-integrated equations, Coastal Engineering, vol.46, issue.2, pp.89-107, 2002. ,
DOI : 10.1016/S0378-3839(02)00043-1
Shock-capturing non-hydrostatic model for fully dispersive surface wave processes, Ocean Modelling, pp.43-44, 2012. ,
A new form of the Boussinesq equations with improved linear dispersion characteristics, Coastal Engineering, vol.15, issue.4, pp.371-388, 1991. ,
DOI : 10.1016/0378-3839(91)90017-B
A new form of the Boussinesq equations with improved linear dispersion characteristics, Coastal Engineering, vol.15, issue.4, pp.371-388, 1991. ,
DOI : 10.1016/0378-3839(91)90017-B
Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.459, issue.2033, pp.1075-1104, 2003. ,
DOI : 10.1098/rspa.2002.1067
Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes, International Journal for Numerical Methods in Fluids, vol.107, issue.5, pp.867-894, 2007. ,
DOI : 10.1002/fld.1311
URL : https://hal.archives-ouvertes.fr/hal-00295018
Weakly dispersive nonlinear gravity waves, Journal of Fluid Mechanics, vol.9, issue.-1, pp.519-531, 1985. ,
DOI : 10.1016/0378-4371(81)90149-7
Alternative Form of Boussinesq Equations for Nearshore Wave Propagation, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.119, issue.6, pp.618-638, 1993. ,
DOI : 10.1061/(ASCE)0733-950X(1993)119:6(618)
The Relative Trough Froude Number for initiation of wave breaking: Theory, experiments and numerical model confirmation, Coastal Engineering, vol.53, issue.8, pp.675-690, 2006. ,
DOI : 10.1016/j.coastaleng.2006.02.001
From the paddle to the beach ??? A Boussinesq shallow water numerical wave tank based on Madsen and S??rensen???s equations, Journal of Computational Physics, vol.231, issue.2, pp.328-344, 2012. ,
DOI : 10.1016/j.jcp.2011.08.028
The Dynamics of the Upper Ocean, second edition, 1977. ,
Stabilized residual distribution for shallow water simulations, Journal of Computational Physics, vol.228, issue.4, pp.1071-1115, 2009. ,
DOI : 10.1016/j.jcp.2008.10.020
URL : https://hal.archives-ouvertes.fr/inria-00538892
Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries, Journal of Computational Physics, vol.271, pp.306-341, 2014. ,
DOI : 10.1016/j.jcp.2013.12.048
URL : https://hal.archives-ouvertes.fr/hal-00826912
A new model of roll waves: comparison with Brock???s experiments, Journal of Fluid Mechanics, vol.10, pp.374-405, 2012. ,
DOI : 10.1098/rspa.1984.0079
The classical hydraulic jump in a model of shear shallow-water flows, Journal of Fluid Mechanics, vol.338, pp.492-521, 2013. ,
DOI : 10.1017/jfm.2012.96
URL : https://hal.archives-ouvertes.fr/hal-01459449
Boussinesq-type model for energetic breaking waves in fringing reef environments, Coastal Engineering, vol.70, pp.1-20, 2012. ,
DOI : 10.1016/j.coastaleng.2012.06.001
Mathematical balancing of flux gradient and source terms prior to using Roe???s approximate Riemann solver, Journal of Computational Physics, vol.192, issue.2, pp.192-422, 2003. ,
DOI : 10.1016/j.jcp.2003.07.020
Iterative Methods for Sparse Linear Systems, 1996. ,
DOI : 10.1137/1.9780898718003
Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle, Journal of Fluid Mechanics, vol.274, issue.-1, pp.117-134, 1987. ,
DOI : 10.1017/S0022112069002461
A Boussinesq model for waves breaking in shallow water, Coastal Engineering, vol.20, issue.3-4, pp.185-202, 1993. ,
DOI : 10.1016/0378-3839(93)90001-O
ContributionàContributionà l'´ etude desécoulementsdesécoulements permanents et variables dans les canaux, Houille Blanche, vol.6, pp.830-872, 1953. ,
A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation, Ocean Modelling, pp.43-44, 2012. ,
A Technique of Treating Negative Weights in WENO Schemes, Journal of Computational Physics, vol.175, issue.1, pp.108-127, 2002. ,
DOI : 10.1006/jcph.2001.6892
A temporally second-order accurate Godunov-type scheme for solving the extended Boussinesq equations, Coastal Engineering, vol.56, issue.1, pp.32-45, 2009. ,
DOI : 10.1016/j.coastaleng.2008.06.006
Depth-induced wave breaking in a non-hydrostatic, near-shore wave model, Coastal Engineering, vol.76, pp.1-16, 2013. ,
DOI : 10.1016/j.coastaleng.2013.01.008
A second-order semi-implicit hybrid scheme for one-dimensional Boussinesq-type waves in rectangular channels, International Journal for Numerical Methods in Fluids, vol.54, issue.5, pp.237-261, 2008. ,
DOI : 10.1002/fld.1679
Korteweg???de Vries Equation and Generalizations. III. Derivation of the Korteweg???de Vries Equation and Burgers Equation, Journal of Mathematical Physics, vol.10, issue.3, pp.536-539, 1969. ,
DOI : 10.1063/1.1664873
The runup of solitary waves, Journal of Fluid Mechanics, vol.87, issue.-1, pp.523-545, 1987. ,
DOI : 10.1017/S0022112058000331
Nearshore Dynamics of Tsunami-like Undular Bores using a Fully Nonlinear Boussinesq Model, J. Coastal Res., SI, vol.64, pp.603-607, 2011. ,
URL : https://hal.archives-ouvertes.fr/hal-00799006
A new approach to handle wave breaking in fully non-linear Boussinesq models, Coastal Engineering, vol.67, pp.54-66, 2012. ,
DOI : 10.1016/j.coastaleng.2012.04.004
URL : https://hal.archives-ouvertes.fr/hal-00798996
Hybrid finite volume -finite difference scheme for 2DH improved Boussinesq equations, Coastal Eng, pp.609-620, 2009. ,
Finite volume scheme for the solution of 2D extended Boussinesq equations in the surf zone, Ocean Eng, pp.567-582, 2010. ,
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, Journal of Computational Physics, vol.32, issue.1, pp.101-136, 1979. ,
DOI : 10.1016/0021-9991(79)90145-1
Modelling of wetting and drying of shallow water using artificial porosity, International Journal for Numerical Methods in Fluids, vol.31, issue.11, pp.1199-1217, 2005. ,
DOI : 10.1002/fld.959
Time-Dependent Numerical Code for Extended Boussinesq Equations, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.121, issue.5, pp.251-261, 1995. ,
DOI : 10.1061/(ASCE)0733-950X(1995)121:5(251)
A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves, Journal of Fluid Mechanics, vol.107, issue.-1, pp.71-92, 1995. ,
DOI : 10.1063/1.865459
The limit of applicability of linear wave refraction theory in a convergence zone, Res.Rep.H-71-3, 1971. ,
A unified model for the evolution nonlinear water waves, Journal of Computational Physics, vol.56, issue.2, pp.203-236, 1984. ,
DOI : 10.1016/0021-9991(84)90092-5
Positivity-preserving high order wellbalanced discontinuous Galerkin methods for the shallow water equations, Adv. Water Res, vol.229, pp.3091-3120, 2010. ,
Depth-integrated, non-hydrostatic model for wave breaking and run-up, International Journal for Numerical Methods in Fluids, vol.34, issue.13, p.473, 2009. ,
DOI : 10.1029/2007GL030158
On maximum-principle-satisfying high order schemes for scalar conservation laws, Journal of Computational Physics, vol.229, issue.9, pp.3091-3120, 2010. ,
DOI : 10.1016/j.jcp.2009.12.030
On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, Journal of Computational Physics, vol.229, issue.23, pp.8918-8934, 2010. ,
DOI : 10.1016/j.jcp.2010.08.016