Polygraphs of finite derivation type

Yves Guiraud 1, 2 Philippe Malbos 3
2 PI.R2 - Design, study and implementation of languages for proofs and programs
PPS - Preuves, Programmes et Systèmes, UPD7 - Université Paris Diderot - Paris 7, CNRS - Centre National de la Recherche Scientifique, Inria de Paris
Abstract : Craig Squier proved that, if a monoid can be presented by a finite convergent string rewriting system, then it satisfies the homological finiteness condition left-FP3. Using this result, he constructed finitely presentable monoids with a decidable word problem, but that cannot be presented by finite convergent rewriting systems. Later, he introduced the condition of finite derivation type, which is a homotopical finiteness property on the presentation complex associated to a monoid presentation. He showed that this condition is an invariant of finite presentations and he gave a constructive way to prove this finiteness property based on the computation of the critical branchings: being of finite derivation type is a necessary condition for a finitely presented monoid to admit a finite convergent presentation. This survey presents Squier's results in the contemporary language of polygraphs and higher-dimensional categories, with new proofs and relations between them.
Type de document :
Article dans une revue
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2016, 〈10.1017/S0960129516000220〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00932845
Contributeur : Yves Guiraud <>
Soumis le : mardi 13 décembre 2016 - 14:49:56
Dernière modification le : mardi 16 janvier 2018 - 16:27:51
Document(s) archivé(s) le : mardi 14 mars 2017 - 13:02:24

Fichier

ihdr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Yves Guiraud, Philippe Malbos. Polygraphs of finite derivation type. Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2016, 〈10.1017/S0960129516000220〉. 〈hal-00932845v2〉

Partager

Métriques

Consultations de la notice

213

Téléchargements de fichiers

31