Polygraphs of finite derivation type

Yves Guiraud 1, 2 Philippe Malbos 3
2 PI.R2 - Design, study and implementation of languages for proofs and programs
PPS - Preuves, Programmes et Systèmes, UPD7 - Université Paris Diderot - Paris 7, CNRS - Centre National de la Recherche Scientifique, Inria de Paris
Abstract : Craig Squier proved that, if a monoid can be presented by a finite convergent string rewriting system, then it satisfies the homological finiteness condition left-FP3. Using this result, he constructed finitely presentable monoids with a decidable word problem, but that cannot be presented by finite convergent rewriting systems. Later, he introduced the condition of finite derivation type, which is a homotopical finiteness property on the presentation complex associated to a monoid presentation. He showed that this condition is an invariant of finite presentations and he gave a constructive way to prove this finiteness property based on the computation of the critical branchings: being of finite derivation type is a necessary condition for a finitely presented monoid to admit a finite convergent presentation. This survey presents Squier's results in the contemporary language of polygraphs and higher-dimensional categories, with new proofs and relations between them.
Type de document :
Article dans une revue
Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2018, 28 (2), pp.155-201. 〈10.1017/S0960129516000220〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00932845
Contributeur : Yves Guiraud <>
Soumis le : mardi 13 décembre 2016 - 14:49:56
Dernière modification le : jeudi 26 avril 2018 - 10:28:54
Document(s) archivé(s) le : mardi 14 mars 2017 - 13:02:24

Fichier

ihdr.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yves Guiraud, Philippe Malbos. Polygraphs of finite derivation type. Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2018, 28 (2), pp.155-201. 〈10.1017/S0960129516000220〉. 〈hal-00932845v2〉

Partager

Métriques

Consultations de la notice

382

Téléchargements de fichiers

50