Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength
Jean-Pierre Tillich, Gilles Zémor

To cite this version:
Jean-Pierre Tillich, Gilles Zémor. Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2014, 60 (2), pp.1193-1202. 10.1109/TIT.2013.2292061 . hal-00931764

HAL Id: hal-00931764
https://hal.archives-ouvertes.fr/hal-00931764
Submitted on 15 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength

Jean-Pierre Tillich and Gilles Zémor

Abstract—The current best asymptotic lower bound on the minimum distance of quantum LDPC codes with fixed non-zero rate is logarithmic in the blocklength. We propose a construction of quantum LDPC codes with fixed non-zero rate and prove that the minimum distance grows proportionally to the square root of the blocklength.

LDPC codes, quantum codes, CSS codes.

I. INTRODUCTION

LDPC codes [20] and their variants are one of the most satisfying answers to the problem of devising codes guaranteed by Shannon’s theorem. They display outstanding performance for a large class of error models with a fast decoding algorithm. Generalizing these codes to the quantum setting seems a promising way to devise powerful quantum error correcting codes for protecting, for instance, the very fragile superpositions manipulated in a quantum computer. It should be emphasized that a fast decoding algorithm could be even more crucial in the quantum setting than in the classical one. In the classical case, when error correction codes are used for communication over a noisy channel, the decoding time translates directly into communication delays. This has been the driving motivation to devise decoding schemes of low complexity, and is likely to be important in the quantum setting as well. However, there is an important additional motivation for efficient decoding in the quantum setting. Quantum computation is likely to require active stabilization. The decoding time thus translates into computation delays, and most importantly in error suppression delays. If errors accumulate faster than they can be identified, quantum computation may well become infeasible: fast decoding is an essential ingredient to fault-tolerant computation.

Besides the search for efficiently decodable codes, there is additional theoretical motivation for studying quantum LDPC codes that is totally absent from the classical setting. The capacity of the depolarizing channel, the quantum equivalent of the binary symmetric channel, is unknown. What is clear however, is that capacity can only be achieved by making use of degeneracy: the same syndrome must be able to correct different error patterns. For this to be possible, the stabilizer group must contain elements of reasonably small weight. In other words, the quantum code must be at least partially low-density. This intuition is confirmed by the concatenated construction [16] (and the subsequent improvements [40], [18]) improving upon the hashing lower bound on the capacity of the depolarizing channel. All these constructions have many elements in the stabilizer group of very low Hamming weight. Quantum LDPC codes are not just about fast decoding schemes, but may be the way towards a better understanding of quantum channels from a purely information theory viewpoint.

Quantum generalizations of LDPC codes have been proposed in [35]. However, it has turned out that the design of high performance quantum LDPC codes is much more complicated than in the classical setting. This is due to several reasons, the most obvious of which being that the parity-check matrix of quantum LDPC codes must satisfy certain orthogonality constraints. This complicates significantly the construction of such codes. In particular, the plain random constructions that work so well in the classical setting are pointless here. There have been a number of attempts at overcoming this difficulty and a variety of methods for constructing quantum LDPC codes have been proposed [37], [30], [35], [12], [13], [34], [22], [24], [27], [17], [39], [3], [4], [26], [42], [28], [14], [5], [6]. However, all of these constructions suffer from disappointingly small minimum distances, namely whenever they have non-vanishing rate and parity-check matrices with bounded row-weight, their minimum distance is either proved to be bounded, or unknown and with little hope for unboundedness. The point has been made several times that minimum distance is not everything, because there are complex decoding issues involved, whose behavior depends only in part on the minimum distance, and also because a poor asymptotic behavior may be acceptable when one limits oneself to practical lengths. This is illustrated for instance in our case by the codes constructed in [28], [6] whose performance under iterative decoding are outstanding. Nevertheless, very poor minimum distances will imply significant error floors. We note also that it has recently been proved [32] that a sufficiently large growing minimum distance – for quantum LDPC codes – is enough to imply a non-zero decoding threshold, i.e. that the code corrects almost all error patterns of weight up to a value linear in the block length. Finally, the minimum distance has been the most studied parameter of error-correcting codes and given that asymptotically good (dimension and minimum distance both linear in the blocklength) quantum LDPC codes are expected to exist, it is of great theoretical interest, and possibly also practical, to devise quantum LDPC codes with...
large, growing, minimum distance. This is the problem that we address in the present paper, leaving aside decoding issues for discussion elsewhere.

Besides the above constructions, we must mention the design of quantum LDPC codes based on tesselations of surfaces [30], [8], [9], [15], [38], among which the most prominent example is the toric code of [30]. Toric codes have minimum distances which grow like the square root of the blocklength and parity-check equations of weight 4 but unfortunately have fixed dimension which is 2, and hence zero rate asymptotically. It turns out that by taking appropriate surfaces of large genus, quantum LDPC codes of non-vanishing rate can be constructed with minimum distance logarithmic in the blocklength, this has actually been achieved in [19, Th. 12.4], see also [44], [29]. To the best of our knowledge, this is until now the only known family of quantum LDPC codes of non-vanishing rate that yields a (slowly) growing minimum distance.

We improve here on these surface codes in several ways, by providing a flexible construction of quantum LDPC codes from any pair (H_1, H_2) of parity-check matrices of binary LDPC codes \mathcal{C}_1 and \mathcal{C}_2. Although the constructed quantum code belongs to the CSS class [11], [41], there is no restriction on \mathcal{C}_1 and \mathcal{C}_2. For instance, they do not need to be mutually orthogonal spaces as in the CSS construction. In particular we can choose $\mathcal{C}_1 = \mathcal{C}_2$, in which case our main result reads:

Theorem 1: Let H be a full-rank $(n-k) \times n$ parity-check matrix of a classical LDPC code \mathcal{C} of parameters $[n,k,d]$. There is a construction of a quantum LDPC code with H as building block, of length $N = n^2 + (n-k)^2$, dimension k^2, and quantum minimum distance d. The quantum code has a stabilizer (parity-check) matrix with row weights of the form $i + j$, where i and j are respectively row and column weights of the original parity-check matrix H.

In particular, any family of classical asymptotically good LDPC codes of fixed rate yields a family of quantum LDPC codes of fixed rate and minimum distance proportional to a square root of the block length.

It should also be mentioned that the rate of this construction can be further improved while keeping the same minimum distance as has been observed in [31].

II. Basic facts about CSS codes and Tanner graphs

In this section, we recall a few basic facts about quantum codes and give some terminology about LDPC codes.

CSS codes: The codes constructed in this paper fall into the category of Calderbank-Shor-Steane (CSS) codes [11], [41] which belong to a more general class of quantum codes called stabilizer codes [23], [10]. The first class is described with the help of a pair of mutually orthogonal binary codes, whereas the second class is given by an additive self-orthogonal code over $GF(4)$ with respect to the trace Hermitian inner product. Quantum codes on n qubits are linear subspaces of a Hilbert space of dimension 2^n and do not necessarily have a compact representation in general. The nice feature of stabilizer codes is that they allow to define such a space with the help of a very short representation, which is given here by a set of generators of the aforementioned additive code. Each generator is viewed as an element of the Pauli group on n qubits and the quantum code is then nothing but the space stabilized by these Pauli group elements. Moreover, the set of errors that such a quantum code can correct can also be deduced directly from this discrete representation.

For the subclass of CSS codes, this representation in terms of additive self-orthogonal codes is equivalent to a representation in terms of a pair $(\mathcal{C}_X, \mathcal{C}_Z)$ of binary linear codes satisfying the condition $\mathcal{C}_Z^\perp \subset \mathcal{C}_X$. The quantum minimum distance of such a CSS code is given by

$$d_Q \overset{\text{def}}{=} \min\{d_X, d_Z\}, \quad \text{where}$$

$$d_X \overset{\text{def}}{=} \min\{|x|, x \in \mathcal{C}_X \setminus \mathcal{C}_Z^\perp\},$$

$$d_Z \overset{\text{def}}{=} \min\{|x|, x \in \mathcal{C}_Z \setminus \mathcal{C}_X^\perp\}.$$

Such a code allows one to protect a subspace of k_Q qubits against errors where

$$k_Q \overset{\text{def}}{=} \dim\left(\mathcal{C}_X/\mathcal{C}_Z^\perp\right).$$

k_Q is called the quantum dimension of the CSS code. Notice that this quantity can be expressed in different ways in order to show its symmetric nature.

$$\dim\left(\mathcal{C}_X/\mathcal{C}_Z^\perp\right) = \dim\mathcal{C}_X - \dim(\mathcal{C}_Z^\perp) = \dim\mathcal{C}_X + \dim(\mathcal{C}_Z) - n = n - \dim(\mathcal{C}_X^\perp) + \dim(\mathcal{C}_Z) - n = \dim\mathcal{C}_Z - \dim(\mathcal{C}_X^\perp) = \dim\left(\mathcal{C}_Z/\mathcal{C}_X^\perp\right),$$

where n denotes the length of \mathcal{C}_X (or of \mathcal{C}_Z).

If H_X and H_Z are parity-check matrices of the binary codes \mathcal{C}_X and \mathcal{C}_Z respectively, the pair (H_X, H_Z) is referred to either as the stabilizer matrix or as the parity-check matrix of the quantum code, by analogy with the classical case. Its rows are also referred to as generators (of the stabilizer group).

LDPC codes: LDPC (Low Density Parity Check) codes are linear codes which have a sparse parity-check matrix. They can be decoded by using the Tanner graph associated to such a parity-check matrix H. This graph is defined as follows. Assume that

$$H = (h_{ij})_{1 \leq i \leq r, 1 \leq j \leq n}$$

is an $r \times n$ matrix (where n is the length of the code). The Tanner graph, which is denoted by $T(V, C, E)$ is bipartite and has:

(i) vertex set $V \cup C$, where the first set V is in bijection with the indices of the columns of H, say $V = \{1, \ldots, n\}$ and is called the set of variable nodes, whereas the second set C is called the set of check nodes and is in bijection with the indices of the rows of H: $C = \{\oplus_1, \ldots, \oplus_r\}$.

(ii) edge set E; there is an edge between \oplus_i and j if and only if $h_{ij} = 1$.

A CSS code defined by a couple of binary code $(\mathcal{C}_X, \mathcal{C}_Z)$ is said to be a quantum LDPC code if \mathcal{C}_X and \mathcal{C}_Z are LDPC codes, i.e. if \mathcal{C}_X and \mathcal{C}_Z have parity-check matrices H_X and H_Z that are both sparse.
III. THE TORIC CODE AND ITS GENERALIZATION

Our construction borrows both from classical LDPCs and Kitaev’s toric quantum code [30]. It is not a coincidence that we obtain minimum distances that grow like the square root of the blocklength, similarly to the toric code, but we shall achieve much larger dimensions that can grow linearly in the blocklength. To get a clear picture of the construction it is desirable to take a close look at the toric code and explain how we shall generalize it.

The toric code: The toric code is based on the graph G represented on Figure 1 which is a tiling of the 2-dimensional torus. The vertex set of the graph is $V = \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}$ and there is an edge between every vertex (x, y) and the four vertices $(x \pm 1, y), (x, y \pm 1)$. In the whole subsection, addition and subtraction are performed modulo m. Now number the edges from 1 to $n = 2m^2$ so as to identify the edge set with $\{1, 2, \ldots, n\}$. The ambient space \mathbb{F}_2^n is therefore identified with subsets of edges. The matrix $H_X = (h_{ij})$ is the vertex-edge incidence matrix, rows are indexed by vertices of the graph G_x, and $h_{ij} = 1$ if vertex i is incident to edge j. The associated code C_X is the cycle code of G, a cycle being by definition a set of edges \mathcal{E} such that every vertex is incident to an even number of edges of \mathcal{E}. Elements of the row-space C_X^\perp are called cocycles, rows of H_X are called elementary cocycles, and the row-space itself C_X^\perp is also known as the cocycle code of G.

The second matrix H_Z of the quantum code is defined as the face-edge incidence matrix. The faces are defined as the 4-cycles $(x, y), (x + 1, y), (x + 1, y + 1), (x, y + 1)$.

The rowspace C_Z^\perp of H_Z is therefore a subspace of the cycle code C_X, and the quotient C_X/C_Z^\perp is readily seen to have dimension 2, coset leaders of the quotient being given by cycles of the form $(a, 0), (a, 1), \ldots, (a, m - 1)$ and $(0, a), (1, a), \ldots, (m - 1, a)$, as represented by the thick lines on Figure 1. The dimension of the quantum code therefore equals 2 and the minimum weight of a vector of C_X not in C_Z^\perp is therefore equal to m.

To conclude that the minimum distance of the quantum code is actually m, it remains to determine the minimum weight of a vector of C_Z that is not in C_X^\perp, i.e. that is not a cocycle. This particular graph G has the nice property of being a tiling of a surface (the torus). This embedding into a surface allows one to define its dual graph. The (Poincaré) dual graph G' has vertex set equal to the faces of G, and there is an edge between two vertices of G' if the corresponding faces of G have a common edge in G. Furthermore the dual graph G' of G is isomorphic to G itself, and given that the edges of G define the edges of G', the ambient space \mathbb{F}_2^n can be identified with the edge set of the dual graph G'. With this identification, the elementary cocycles of G become the faces of G' and the faces of G become the elementary cocycles of G'. Hence the minimum weight of a vector of C_Z that is not in C_X^\perp is exactly the same as the minimum weight of a vector of C_X not in C_Z and the minimum distance of the quantum code is exactly m.

This duality argument is quite powerful because it ensures that whatever we prove on the weight of codewords of C_X not in C_Z^\perp is also valid for the weight of codewords of C_Z not in C_X^\perp: for this reason a number of quantum codes that arise by replacing the graph G by different tilings of different surfaces have been investigated (surface codes). Here we shall consider a different generalization that does not destroy graph duality but generalizes it.

Our first remark is that the graph G is a product graph: it is the product of two graphs each equal to an elementary cycle of length m. The (Cartesian) product of two graphs is namely defined as follows.

Definition 2 (graph product): The product $G_1 \times G_2$ of two graphs G_1 and G_2 has vertex set made up of couples (x, y), where x is a vertex of G_1 and y of G_2. The edges of the product graph connect two vertices (x, y) and (x', y') if either $x = x'$ and $\{y, y'\}$ is an edge of G_2 or $y = y'$ and $\{x, x'\}$ is an edge of G_1.

Note that any two edges $\{a, b\}$ and $\{x, y\}$ of G_1 and G_2 define the 4-cycle of $G_1 \times G_2$:

\[
\begin{array}{c}
(a, y) \rightarrow (b, y) \\
\downarrow \\
(a, x) \rightarrow (b, x)
\end{array}
\]

Fig. 2. 4-cycles occurring in a graph product.

Now, we are tempted to define a quantum code by, as before, declaring H_X to be the vertex-edge incident matrix of a product graph $G = G_1 \times G_2$ of two arbitrary graphs, and by declaring H_Z to be the matrix whose rows are the characteristic vectors of all faces, i.e. the 4-cycles of the form \ast. This is a quantum code which generalizes the toric code, since the latter corresponds to the case when G_1 and G_2 are two cycles of length m. This construction loses graph duality however, and our objective was to preserve it. In particular, it is not clear at all why the argument used for obtaining the value of d_X can also be used for deriving d_Z. But a closer look shows us that graph duality has not completely gone: the dual has simply become a hypergraph, whose vertex set is the set of faces of G and where the hyperedges are the subsets of those faces of G that meet in a common edge of G. This observation shows us that we really should consider products of hypergraphs rather than graph products to start with. This is the approach which was followed in a preliminary version.
of this work [43] where the construction is described in terms of products of hypergraphs. This way of viewing the toric code highlights the connections with algebraic topology and is also a natural generalization of the quantum code construction known under the name of surface codes.

However, we shall slightly change our point of view and detail our construction in a way that stays with the more familiar notion of graph product. This is the approach which we follow in the next paragraphs. The hypergraph connection will become apparent in Sections IV-C and IV-D.

Another way of viewing the toric code in terms of a graph product construction: There arises another interpretation of the toric code as a product of two cycles, of length double the previous length, by considering simultaneously the Tanner graphs of \mathcal{C}_X and \mathcal{C}_Z and by putting the qubits on the vertices instead of the edges. Indeed, let us consider for instance the Tanner graph corresponding to H_X for $m = 3$ which is depicted in Figure 3.

![Fig. 3. The Tanner graph of \mathcal{C}_X for $m = 3$: the dashed lines indicate the pair of vertices which are identified.](image)

It is insightful to consider the union of both Tanner graphs of \mathcal{C}_X and \mathcal{C}_Z (see Figure 4).

The Tanner graph of \mathcal{C}_X does not have a product graph structure, whereas the union of both Tanner graphs has now the structure of the product of two cycles of length 6 in the example and $2m$ in general. Notice that such a cycle can be viewed as the Tanner graph of the repetition code of length m. Moreover, it is clear from this picture why the rows of H_X and H_Z are orthogonal: two parity-check nodes of type X and Z respectively which are adjacent to a same variable node are also adjacent to a second variable node as shown in Figure 5. This comes from the very definition of a product graph as explained before.

This discussion strongly suggests to consider the following generalization of the toric code.

Definition 3: (CSS code $\Omega(G_1 \times G_2)$ associated to a graph product)

Let $G_1 = \mathcal{I}(V_1, C_1, E_1)$ and $G_2 = \mathcal{I}(V_2, C_2, E_2)$ be two Tanner graphs. Let

$$V \overset{\text{def}}{=} V_1 \times V_2 \cup C_1 \times C_2,$$

$$C \overset{\text{def}}{=} C_1 \times V_2 \cup V_1 \times C_2,$$

so that the product graph $G_1 \times G_2$ is a bipartite graph with vertex set $V \cup C$. Let $G_1 \times Z G_2$ be the Tanner graph defined as the subgraph of $G_1 \times G_2$ with set of variable nodes V and set of check nodes $C_1 \times V_2$. Similarly, define the Tanner graph $G_1 \times Z G_2$ as the subgraph of $G_1 \times G_2$ with set of variable nodes V and set of check nodes $V_1 \times C_2$: the union of the two edge-sets of $G_1 \times Z G_2$ and $G_1 \times Z G_2$ make up therefore the edge set of $G_1 \times G_2$. Finally, define the two classical codes $\mathcal{C}_X = \mathcal{C}_X(G_1 \times G_2)$ and $\mathcal{C}_Z = \mathcal{C}_Z(G_1 \times G_2)$ as the codes associated to the Tanner graphs $G_1 \times X G_2$ and $G_1 \times Z G_2$ respectively.

The couple $(\mathcal{C}_X, \mathcal{C}_Z)$ defines a CSS code that we denote by $\Omega(G_1 \times G_2)$.

The construction is summarized on Figure 6.

It is readily checked that if $G_1 = G_2$ are two cycles of even length $2m$, so that G_1 and G_2 are two isomorphic bipartite graphs with $|V_1| = |V_2| = |C_1| = |C_2| = m$, then the two Tanner graphs $G_1 \times X G_2$ and $G_1 \times Z G_2$ are the familiar Tanner graphs of \mathcal{C}_X and \mathcal{C}_Z depicted on Figure 3.

It will be explained shortly in the next section why the 4-cycle joining $(v_1, v_2), (c_1, v_2), (c_1, c_2)$ and (v_1, c_2) ensures...
that the couple \((\mathcal{C}_X, \mathcal{C}_Z)\) always defines indeed a CSS code.

It will also turn out that the minimum distance of the quantum code is related to the minimum distance of the classical binary codes with Tanner graphs \(\mathcal{G}_1\) and \(\mathcal{G}_2\).

\[V_1 \times V_2 \cup C_1 \times C_2 \text{ which are both adjacent to } (c_1, v_2) \text{ and } (v_1, c_2), \text{ namely } (c_1, c_2) \text{ and } (v_1, v_2). \] This implies in both cases that \(h_X(c_1, v_2)\) and \(h_Z(v_1, c_2)\) are orthogonal.

\[\gamma \]

\[\rho_X = \frac{\sum_{i,j} \lambda_i \lambda_j}{\rho_1 \rho_2} \]

\[\rho_Z = \frac{\sum_{i,j} \lambda_i \lambda_j}{\rho_1 \rho_2} \]

The number of vertices of degree \(j\) in \(V_1 \times V_2\) of the graph \(\mathcal{G}_1 \times \mathcal{G}_2\) is equal to \(|V_1||V_2|\lambda_1(j)\), whereas the number of vertices of degree \(j\) in \(C_1 \times C_2\) of degree \(j\) is equal to \(|C_1||C_2|\rho_2(j)\). This implies that

\[\lambda \]

\[\rho \]

\[\lambda_X(j) = \frac{|V_1||V_2|\lambda_1(j) + |C_1||C_2|\rho_2(j)}{|V_1||V_2| + |C_1||C_2|} \]

\[\rho_X(k) = \frac{\sum_{i,j} \lambda_i \lambda_j}{\rho_1 \rho_2} \]

\[\rho_Z(k) = \frac{\sum_{i,j} \lambda_i \lambda_j}{\rho_1 \rho_2} \]

\[\lambda_X(j) = \frac{|V_1||V_2|\lambda_1(j) + |C_1||C_2|\rho_2(j)}{|V_1||V_2| + |C_1||C_2|} \]

\[\rho_X(k) = \frac{\sum_{i,j} \lambda_i \lambda_j}{\rho_1 \rho_2} \]

\[\rho_Z(k) = \frac{\sum_{i,j} \lambda_i \lambda_j}{\rho_1 \rho_2} \]
since \(|C_1| = \frac{k}{p} \). The number of vertices of degree \(k \) in \(C_1 \times V_2 \) of the graph \(G_1 \times G_2 \) is equal to the number of vertices \((e_1, e_2) \in C_1 \times V_2\) such that the degree of \(e_1 \) in \(G_1 \) plus the degree of \(e_2 \) in \(G_2 \) is equal to \(k \). This number is therefore equal to \(\sum_{i,j; i+j=k} |C_1||V_2|\rho_1(i)\lambda_2(j) \). This yields immediately that
\[
\rho_X(k) = \sum_{i,j; i+j=k} \rho_1(i)\lambda_2(j).
\]
The formulas for \(\lambda_Z(j) \) and \(\rho_Z(k) \) are obtained in a similar fashion.

This result implies that there is a large degree of freedom for choosing the degree distributions of the Tanner graphs \(G_1 \times X \) \(G_2 \) and \(G_1 \times Z \) \(G_2 \). This can potentially be used to devise quantum LDPC codes with very good iterative decoding performance.

\section{The hypergraph connection, product codes}

Our objective is to derive a formula for the dimension of the quantum code \(\mathcal{Q}(G_1 \times G_2) \). For this purpose we shall relate the Tanner graphs \(G_1 \times X \) \(G_2 \) and \(G_1 \times Z \) \(G_2 \) to Tanner graphs of product codes.

We first need to define another product notion \(G_1 \otimes G_2 \) for two Tanner graphs \(G_1 \) and \(G_2 \) that will make \(G_1 \otimes G_2 \) the Tanner graph of the product code \(C_1 \otimes C_2 \) when \(C_1 \) and \(C_2 \) are the codes associated to the Tanner graphs \(G_1 \) and \(G_2 \). This product is the natural extension of Definition 2 when \(G_1 \) and \(G_2 \) are viewed as hypergraphs.

Recall that a hypergraph \(\mathcal{H} = (V, E) \) is simply a set \(V \) together with a collection \(E \) of subsets called hyperedges or simply edges. A hypergraph is a graph when every edge has cardinality 2. Consider the following definition:

Definition 6: Let \(\mathcal{H}_1 = (V_1, E_1) \) and \(\mathcal{H}_2 = (V_2, E_2) \) be two hypergraphs. The **product hypergraph** \(\mathcal{H}_1 \otimes \mathcal{H}_2 \) is defined as the hypergraph \(\mathcal{H} = (V, E) \) such that \(V = V_1 \times V_2 \) and \(E \) is the collection of subsets of \(V \):

- either of the form \(\{v_1\} \times e_2 \) with \(v_1 \in V_1 \) and \(e_2 \in E_2 \),
- or of the form \(e_1 \times \{v_2\} \) with \(e_1 \in E_1 \) and \(v_2 \in V_2 \).

It should be clear that when \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) are graphs then \(\mathcal{H}_1 \otimes \mathcal{H}_2 \) reduces to the graph product of Definition 2.

Now hypergraphs are often described by their associated bipartite graph: for a hypergraph \(\mathcal{H} = (V, E) \) this bipartite graph has vertex set \(V \cup \mathcal{E} \) and we put an edge between \(v \in V \) and \(e \in \mathcal{E} \) whenever \(v \in e \) in \(\mathcal{H} \). Conversely, any bipartite graph, in other words any Tanner graph \(\mathcal{T}(V, C, E) \), generates a hypergraph on vertex set \(V \) by declaring that the hyperedges are the neighborhoods of the check vertices \(c \), when \(c \) ranges over \(C \).

Tanner graphs are of course simply bipartite graphs. The terminology “Tanner” serves the sole purpose of reminding us that we are interested in the associated error-correcting code. Translated into Tanner graph terminology, Definition 6 becomes:

Definition 7: Let \(G_1 = \mathcal{T}(V_1, C_1, E_1) \) and \(G_2 = \mathcal{T}(V_2, C_2, E_2) \) be two Tanner graphs. The **hypergraph product** \(G_1 \otimes G_2 \) of \(G_1 \) and \(G_2 \) is defined as the induced subgraph of \(G_1 \times G_2 \) with variable node set \(V_1 \times V_2 \) and check node set \(C_1 \times V_2 \cup V_1 \times C_2 \).

Now the hypergraph product of Tanner graphs is directly related to the standard product construction for codes. We recall the definition:

Definition 8 (Product code): Let \(C_1 \) and \(C_2 \) be binary codes of length \(n_1 \) and \(n_2 \) respectively. The product code \(C_1 \otimes C_2 \) of \(C_1 \) and \(C_2 \) is the binary code of length \(n_1 \times n_2 \) whose codewords may be viewed as binary matrices of size \(n_1 \times n_2 \) and such that a matrix belongs to \(C_1 \otimes C_2 \) if and only if all its columns belong to \(C_1 \) and all its rows to \(C_2 \).

It is well known (see [36, Ch. 18. §2] for instance) that the dimension of the product code is given by

Proposition 9: Let \(C_1 \) and \(C_2 \) be binary linear codes.

\[
\dim(C_1 \otimes C_2) = \dim C_1 \dim C_2.
\]

The following proposition is straightforward:

Proposition 10: For \(i \in \{1, 2\} \), let \(G_i = \mathcal{T}(V_i, C_i, E_i) \) be a Tanner graph of the binary linear code \(C_i \). A Tanner graph for \(C_1 \otimes C_2 \) is given by \(G_1 \otimes G_2 \).

Now to describe the Tanner graphs \(G_1 \times X \) \(G_2 \) and \(G_1 \times Z \) \(G_2 \) in terms of hypergraph products and to derive the dimensions of the associated codes \(C_X \) and \(C_Z \), we need one extra tool:

\section{The Transpose Tanner Graph}

Definition 11 (Transpose of a Tanner graph): The transpose of a Tanner graph \(\mathcal{T}(V, C, E) \) is the Tanner graph \(\mathcal{T}(C, V, E) \).

In other words, transposing a Tanner graph amounts to exchanging the role of the variable node set with the check node set. For a binary linear code \(C \), we shall abuse notation somewhat and denote by \(C^T \) (and call it a transpose code of \(C \)) the binary code specified by \(C^T \) where \(C \) is a Tanner graph for \(C \), even if this notion assumes implicitly some choice for the Tanner graph of \(C \). We do this whenever the choice of the underlying Tanner graph is obvious from the context. Note that the length of \(C^T \) can be varied by adding or removing redundant parity-checks to the parity-check matrix/Tanner graph for \(C \). The transpose code can be viewed as the code associated to the linear combinations of the rows of a parity-check matrix of the code which are equal to 0. This interpretation directly leads to the following relationship between the dimension of a code and its transpose:

Proposition 12: Let \(C \) be a binary code specified by a Tanner graph \(G = \mathcal{T}(V, C, E) \). Then the dimension \(\dim(C^T) \) of \(C \) and the dimension \(\dim(C^T) \) of the code associated to the transpose \(C^T \) are related by

\[
\dim(C^T) = |V| - |C| + \dim(C^T).
\]

We are now ready now to derive the aforementioned relationship between the Tanner graphs \(G_1 \times X \) \(G_2 \) and \(G_1 \times Z \) \(G_2 \) and Tanner graphs of product codes.

Proposition 13: For \(i \in \{1, 2\} \), let \(G_i = \mathcal{T}(V_i, C_i, E_i) \) be the Tanner graph of a binary code \(C_i \), then

\[
\begin{align*}
G_1 \times X \ G_2 &= (G_1^T \otimes G_2^T) \times \mathcal{T}(V_1, C_1, E_1) \\
G_1 \times Z \ G_2 &= (G_1 \otimes G_2^T)^T.
\end{align*}
\]
In other words,
\[\mathcal{C}_X(S_1 \times S_2)^T = \mathcal{C}_1^T \otimes \mathcal{C}_2 \]
(15)
\[\mathcal{C}_Z(S_1 \times S_2)^T = \mathcal{C}_1 \otimes \mathcal{C}_2^T. \]
(16)

Remember that $S_1 \times S_2$ is the subgraph of $S_1 \times S_2$ induced by vertex node set $V_1 \times V_2 \cup C_1 \times C_2$ and check node set $C_1 \times V_2$. This gives (13) by definition of the hypergraph product: (14) is obtained analogously. Equalities (15) and (16) follow directly.

From this last proposition, Proposition 9 and Proposition 12, we obtain immediately that the dimension of the quantum code $\Omega(S_1 \times S_2)$ is given by

Proposition 14: For $i \in \{1, 2\}$, let S_i be the Tanner graph of a binary code \mathcal{C}_i and let $k_i = \dim(\mathcal{C}_i), k_i^T = \dim(\mathcal{C}_i^T)$. The quantum dimension k_Q of $\Omega(S_1 \times S_2)$ is given by

\[k_Q = k_1 k_2 + k_1^T k_2^T. \]

Let ξ be the number of check nodes of S_i and let n_i be the length of \mathcal{C}_i. By using first Fact 12, then Proposition 13 and finally Proposition 9, we obtain

\[\dim(\mathcal{C}_X(S_1 \times S_2)) = n_1 n_2 + r_1 r_2 - r_1 n_2 + \dim(\mathcal{C}_X(S_1 \times S_2)^T) = n_1 n_2 + r_1 r_2 - n_1 n_2 + \dim(\mathcal{C}_1^T \otimes \mathcal{C}_2) = n_1 n_2 + r_1 r_2 - n_1 n_2 + k_1^T k_2. \]

We derive in a similar way that

\[\dim(\mathcal{C}_Z(S_1 \times S_2)) = n_1 n_2 + r_1 r_2 - r_2 n_1 + k_2^T k_2. \]

By using Formula (4) for the quantum dimension we obtain

\[k_Q = \dim(\mathcal{C}_X(S_1 \times S_2)) - n_1 n_2 - r_1 r_2 + \dim(\mathcal{C}_Z(S_1 \times S_2)) = n_1 n_2 + r_1 r_2 - n_1 n_2 + k_1^T k_2 - n_1 n_2 - r_1 r_2 + n_1 n_2 + r_1 r_2 - r_2 n_1 + k_1^T k_1 = (n_1 - r_1)(n_2 - r_2) + k_1^T k_2 + k_2^T k_1 = (k_1 - k_1^T)(k_2 - k_2^T) + k_1^T k_2 + k_2^T k_1 = k_1 k_2 + k_1^T k_2^T. \]

Comment: If we go back to our initial definition of Kitaev’s toric code, with \mathcal{C}_X being defined as the cycle code of the (graph) product of a cycle with itself, and if we wish to express the Tanner graph of \mathcal{C}_X as a function of the Tanner graph S of the original cycle, then the more natural expression for \mathcal{C}_X will be that it has the Tanner graph

\[(S \otimes S)^T \]
and then \mathcal{C}_Z will come out as:

\[(S^T \otimes S^T)^T. \]

However, since S^T is isomorphic to S (a cycle of even length), the more twisted Tanner graph expressions in (13) and (14) generalize the toric code just as well. Definition 3, equivalently Proposition 13, has the following two advantages:

- the quantum code $\Omega(S \times S)$ always has positive dimension when S is the Tanner graph of any non-trivial code, by Proposition 14,
- $\mathcal{C}_X(S \otimes S)$ and $\mathcal{C}_Z(S \otimes S)$ are clearly isomorphic.

V. Minimum distance

In this section, we show that the minimum distance of the quantum code $\Omega(S_1 \times S_2)$ has a very simple expression, when we adopt the convention that the minimum distance of a code reduced to the all-zero codeword is ∞.

Theorem 15: For $i \in \{1, 2\}$, let d_i be the minimum distance of a code with Tanner graph S_i and let d_i^T denote the minimum distance of the code specified by the transpose Tanner graph S_i^T. The minimum distance d_Q of the quantum code $\Omega(S_1 \times S_2)$ satisfies

\[d_Q \geq \min(d_1, d_2, d_1^T, d_2^T). \]

and is given by

\[d_Q = \min(d_1, d_2, d_1^T, d_2^T). \]

in the following cases

- $d_i = \min(d_1, d_2, d_1^T, d_2^T)$ for some $i \in \{1, 2\}$ and $d_{3-i} \neq \infty$,
- or $d_i^T = \min(d_1, d_2, d_1^T, d_2^T)$ for some $i \in \{1, 2\}$ and $d_{3-i}^T \neq \infty$.

In other words, the minimum distance of the quantum code is governed by the minimum distance of the underlying binary codes \mathcal{C}_i with Tanner graphs S_i and S_j when S_i^T and S_j^T are Tanner graphs of trivial codes. This also implies that by choosing the binary linear codes \mathcal{C}_i with linear minimum distance we will be able to construct families of quantum codes with minimum distance behaving like the square root of the blocklength (and with a dimension which is linear in the blocklength when the rates of \mathcal{C}_i are chosen appropriately). Moreover, by choosing S_1 and S_2 to be sparse it turns out by Proposition 5 that $S_1 \times S_2$ and $S_1 \times S_2$ are also sparse. In other words we obtain in this way quantum LDPC codes with a minimum distance which can be of the form $\Omega(\sqrt{N})$ where N is the blocklength of the quantum code. We will prove this theorem by first proving that the righthand-side is a lower bound on the minimum distance, then we will prove that this lower bound is attained by exhibiting suitable codewords of the quantum code.

A. A lower bound on the minimum distance

A common strategy for obtaining a lower bound on the minimum distance of a quantum CSS code is to simply look for lower bounds on the minimum distances of the classical codes \mathcal{C}_X and \mathcal{C}_Z. However this approach will necessarily fail here because of the LDPC nature of the CSS code. Recall that since $\mathcal{C}_Z^\perp \subset \mathcal{C}_X$ and $\mathcal{C}_X^\perp \subset \mathcal{C}_Z$, any lower bound on the minimum weight of \mathcal{C}_X and \mathcal{C}_Z will not exceed the minimum weight of the parity-check matrices H_X and H_Z of \mathcal{C}_X and \mathcal{C}_Z, which is a constant since H_X and H_Z are precisely constructed to have small row weights.
To obtain any interesting lower bound on the quantum minimum distance, we must therefore use its full definition, namely that the minimum distance is the smallest weight of a codeword of \(C \) not in \(C + Z \) or of a codeword of \(C \) not in \(C \). Our strategy will therefore be to consider a non-zero element of \(C \) and prove that when its weight is too small, then it has to belong to \(C \). By using the same notation as for Theorem 15 we will prove in this way that

Lemma 16:

\[
d_0 \geq \min(d_1, d_2, d_1^T, d_2^T).
\]

We first prove that any element \(x \) of \(C \) which is of weight less than \(\min(d_1, d_2^T) \) belongs to \(C \). We denote by \(\text{supp}(x) \) the support of \(x \) which is a subset of \(V_1 \times V_2 \cup C_1 \times C_2 \). Let \(V'_1 = \{ v' \in V_1 : \exists v \in V_2, (v', v) \in \text{supp}(x) \} \) and \(C'_2 = \{ c' \in C_2 : \exists c \in C_1, (c, c') \in \text{supp}(x) \} \). Let \(G_1 \) be the subgraph of \(G \) induced by \(V'_1 \cup C_1 \) and let \(G_2 \) be the subgraph of \(G \) induced by \(V_2 \cup C'_2 \).

Let \(\ell_1 \) (respectively \(\ell_2 \)) be the binary code defined by the Tanner graph \(G_1 \) (respectively \(G_2 \)), and let \(\ell_1^T \) (respectively \(\ell_2^T \)) be the binary code described by \(G_1 \) (respectively \(G_2 \)). Since a codeword of \(\ell^T \) can be viewed as a codeword of \(\ell \) by extending it with zeros on the positions of \(V_1 \setminus V'_1 \) and \(V_2 \setminus V'_2 \) we necessarily have \(\dim(\ell^T) = 0 \). A similar reasoning shows that \(\dim(\ell^T) = 0 \). By using Proposition 14 we see that the dimension of \(\Omega(G'_1 \times G'_2) \) is equal to zero. This is equivalent to

\[
C \subset C \times C_2 \subset C_1 \times C_2 \equiv C_1 \times C_2 \times C_2.
\]

Notice now that the restriction \(x' \) of \(x \) to the positions in \(V'_1 \times V'_2 \cup C_1 \times C_2 \) belongs to \(C \). Therefore it also belongs to \(C \). Finally denote by \(H_2 \) the row of \(H_2 \) corresponding to \(v_1 \in V_1 \times V_2 \) and \(c_2 \in C_2 \). We may write \(x' = \bigoplus_{(v'_1, c'_2) \in I} h_2(v'_1, c'_2) \) where \(I \) is some subset of elements of \(V_1 \times C_2 \). The point is now that the set of neighbors of any \((v'_1, c'_2) \) in the Tanner graph \(C \) is the same as the set of neighbors of \((v'_1, c'_2) \) in the Tanner graph \(C \). Therefore we also have \(x = \bigoplus_{(v'_1, c'_2) \in I} h_2(v'_1, c'_2) \) which implies that \(x \) belongs to \(C \).

We obtain similarly that any element \(x \) of \(C \) of weight less than \(\min(d_1, d_2^T) \) will belong to \(C \). It follows therefore that any element belonging to the union of \(C \) and \(C \) should have weight at least \(\min(d_1, d_2^T, d_2^T) \).

B. An upper bound on the minimum distance

Lemma 17: Let \(i \) belong to \(\{1, 2\} \). Assume that \(d_i \neq \infty \). Then \(d_0 \leq d_i \). If \(d_i \neq \infty \) then \(d_0 \leq d_i \).

We will prove here that if \(d_i \neq \infty \) then \(d_0 \leq d_1 \). The other inequalities are proved in a similar fashion.

As before, \(G_1 = \tau(V_1, C_1, E_1) \) and \(G_2 = \tau(V_2, C_2, E_2) \) denote the two Tanner graphs used to define the quantum code \(\Omega(G_1 \times G_2) \) and \(\Omega_1 \) and \(\Omega_2 \) are the binary codes of Tanner graphs \(G_1 \) and \(G_2 \) respectively.

It will again be convenient to identify codewords with their supports, and we will allow ourselves the use of set operations \(\cap, \cup \) and \(\times \) on vectors and likewise we will use vector addition on sets.

Consider a codeword \(x_1 \) of \(C_1 \) of weight \(d_1 \). Since \(d_2 \neq \infty \), \(C_2 \) is not reduced to the zero word, and therefore \(C_2 \) does not contain the whole of \(\{0, 1\} \). Therefore there exists an element \(y \) of \(V_2 \) such that \(\{y\} \) does not belong to \(C_2 \). Let \(x = x_1 \times \{y\} \). Our objective is to show that \(x \) is a weight \(d_1 \) codeword of \(C_1 \), which is not in \(C_1 \).

The vector \(x \) is clearly an element of \(C_1 \times G_2 \) since the only check nodes of the Tanner graph \(G_1 \times G_2 \) incident to \(x \) are nodes of the form \((c_1, y)\) with \(c_1 \) incident to \(x_1 \) in \(G_1 \).

We now assume that \(x \) is also an element of \(C_1 \times G_2 \) and work towards a contradiction.

\[C_1 \subset C_1 \times C_2 \subset C_1 \times C_2 \equiv C_1 \times C_2 \times C_2 \]

Notice now that since \(x \subset x_1 \times V_2 \), we can write

\[x = \bigoplus_{(v_1, c_2) \in U} h_2(v_1, c_2) \times (x_1 \times V_2) \]

\[x = \bigoplus_{(v_1, c_2) \in U} h_2(x_1, c_2) \times (x_1 \times V_2) \]

\[x = \bigoplus_{(v_1, c_2) \in U} h_2(x_1, c_2) \times (x_1 \times V_2) \]

since \(h_2(v_1, c_2) \cap (x_1 \times V_2) = \emptyset \) for \(v_1 \notin x_1 \). For an element \(x \) in \(x_1 \) we denote by

\[A(x) = \bigoplus_{(x_2, c_2) \in U} h_2(x_2, c_2) \times (x_2 \times x_2) \]

Notice that

\[A(x) \subset \{x_2 \times V_2 \}
\]

By combining this remark with \(x_1 \times \{y\} = x = \bigoplus_{x \in x_1} A(x) \), we obtain that for any \(x \) in \(x_1 \),

\[\{(x, y)\} = A(x). \]

On the other hand, we notice that

\[A(x) = \bigoplus_{(v_1, c_2) \in U} \{(x, v_2)\} \]
where by \(v_2 \sim c_2 \) we mean that \(v_2 \) is adjacent to \(c_2 \) in \(\mathcal{G}_2 \). This implies
\[
\{(x, y)\} = \bigoplus_{(x, c_2) \in U} \bigoplus_{v_2 \sim c_2} \{(x, v_2)\}
\]
This in turn implies
\[
\{y\} = \bigoplus_{(x, c_2) \in U} \bigoplus_{v_2 \sim c_2} \{v_2\}
\]
which means that \(\{y\} \) is in \(C_2^\perp \). This contradicts the assumption made on \(y \).

Lemmas 16 and 17 together prove Theorem 15. Theorem 1 is obtained by applying Theorem 15 with \(\mathcal{G}_1 = \mathcal{G}_2 \) the Tanner graph of an \([n, k, d]\) code.

VI. COMPARISON WITH OTHER CONSTRUCTIONS OF QUANTUM CODES BASED ON BINARY LINEAR CODES

Our construction can be viewed as a way of producing a quantum code from two classical binary codes \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \). The CSS construction achieves the same purpose but requires that \(\mathcal{C}_2^\perp \subset \mathcal{C}_1 \). Using this construction directly to obtain quantum LDPC codes is delicate due to the aforementioned orthogonality constraint. Our construction does not require this constraint and gives a quantum LDPC code when \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \) are classical LDPC codes. If we denote the length of \(\mathcal{C}_1 \) by \(n_1 \), its dimension by \(k_1 \), its co-dimension \(n_1 - k_1 \) by \(r_1 \), its minimum distance by \(d_1 \) and if we choose a full rank parity-check matrix \(H_1 \) for it which describes the Tanner graph \(\mathcal{G}_1 \) used in the construction, then a straightforward application of the previous results leads to a quantum code \(\mathcal{Q}(\mathcal{G}_1 \times \mathcal{G}_2) \) with parameters
\[
[[n_1 n_2 + r_1 r_2, k_1 k_2, \min(d_1, d_2)]].
\]
Notice that \(\mathcal{C}_X(\mathcal{G}_1 \times \mathcal{G}_2) \) has a parity-check matrix with the block form
\[
H_X = (H_1 \otimes I_{n_2}, I_{r_1} \otimes H_2^T)
\]
whereas \(\mathcal{C}_Z(\mathcal{G}_1 \times \mathcal{G}_2) \) has a parity-check matrix of the form
\[
H_Z = (I_{n_1} \otimes H_2, H_1^T \otimes I_{r_2})
\]
where \(I_t \) stands for the \(t \times t \) identity matrix. Notice that under this form, the property ensuring that we indeed define in this way a valid CSS code, namely \(H_X H_Z^T = 0 \), can be verified directly
\[
H_X H_Z^T = H_1 \otimes I_{n_2}, (I_{n_1} \otimes H_2)^T + I_{r_1} \otimes H_2^T, (H_1^T \otimes I_{r_2})^T = H_1 \otimes H_2^T + H_1 \otimes H_2^T = 0.
\]

This construction displays some similarities with the generalized Shor code construction, see [7], which produces with the help of two binary linear codes \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \) a quantum code with parameters \([[[n_1 n_2, k_1 k_2, \min(d_1, d_2)]]]\). The latter is also a CSS code and is associated to a couple \((\mathcal{C}_X, \mathcal{C}_Z)\) of binary codes satisfying \(\mathcal{C}_X^\perp \subset \mathcal{C}_Z \) defined by the following parity check matrices
\[
H_X = H_1 \otimes I_{n_2}, \quad H_Z = G_1 \otimes H_2.
\]
where \(G_1 \) is a generator matrix for \(\mathcal{C}_1 \). Notice that our construction yields the same dimension and minimum distance as the generalized Shor code but has an additional term \(r_1 r_2 \) in the length which compares favorably to Shor’s construction. Moreover, whereas our construction when applied to sparse matrices \(H_1 \)’s yields sparse matrices \(H_X \) and \(H_Z \), this is not the case in Shor’s construction: \(H_X \) stays sparse, however as soon as the minimum distance of \(\mathcal{C}_1 \) is large, this is not the case anymore for \(H_Z \). Unlike our construction, the generalized Shor code construction is unable to yield quantum LDPC code families with non constant minimum distance.

VII. CONCLUDING REMARKS

Quantum LDPC codes with better minimum distance.

Since an earlier version of the present paper was written, there have been some developments. The codes presented here have been improved a little bit in [31], [33] without changing the \(\Omega(n^{3/2}) \) lower bound on the minimum distance. A tantalizing issue still remains here which is to know whether there exist quantum LDPC codes with linear minimum distance or not. Here even obtaining a family of this kind with a vanishing rate would be interesting. Apart from the fact that such codes would guarantee to correct a constant rate of errors, this issue is also related to a fundamental question in quantum computation which is whether the quantum PCP conjecture holds or not [1]. In this setting, it would be desirable to know whether there exist quantum locally testable codes with constant robustness or soundness (see Definition 15 in [2], where constant soundness means that it is possible to choose \(R(\delta) \) as a positive constant for \(\delta \) sufficiently small) and such objects can only exist if quantum LDPC codes of linear minimum distance exist.

Fault tolerant quantum computing and decoding issues.

It has been proved in [32] that the codes constructed here can correct a linear fraction of errors with probability going to 1 as the length goes to infinity. As explained there, our codes offer an alternative route for performing fault tolerant quantum computation and they give an advantage over the toric codes when the computer size is sufficiently large. More recently in [21], it was shown that with the help of these codes it is possible in principle to perform fault tolerant quantum computation with a constant multiplicative overhead if there were an efficient syndrome decoding algorithm for these codes.

References

Jean-Pierre Tillich received the Engineer degree from École des Mines de Paris, Paris, France, in 1989 and the Ph.D. degree in computer science from École Nationale Supérieure des Télécommunications (ENST), Paris, in 1994. From 1997 to 2003, he was Assistant Professor at the University Paris XI. He is now a Researcher at the Institut de Recherche en Informatique et Automatique (INRIA), Rocquencourt, Le Chesnay, France.

From 2009 to 2012 he was an Associate Editor for Coding Theory for the IEEE TRANSACTIONS ON INFORMATION THEORY. His research interests include classical and quantum coding theory, cryptography and graph theory.

Gilles Zémor was born in Paris, France, in 1963. He received the Agrégation de Mathématiques in 1984, the Ph.D. degree in computer science from École Nationale Supérieure des Télécommunications (ENST), Paris, in 1989, and the Habilitation à Diriger des Recherches in mathematics from Paris 6 University in 2002.

From 1990 to 2006, he was Associate Professor at the Computer Science and Network Department of ENST. Since 2006 he is Professor at the Mathematics Institute of Bordeaux University.

From 2003 to 2006 he was an Associate Editor for Coding Theory for the IEEE TRANSACTIONS ON INFORMATION THEORY. His research interests include combinatorial mathematics, coding theory, additive number theory, and cryptography.