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A continuation method developed from a three-dimensional spectral finite element code is used to study natural
convection in a tilted rectangular cavity. The cavity has its length equal to two times the side of its square cross
section and it contains a fluid with a Prandtl number Pr = 1. A detailed bifurcation diagram is first obtained in
the case without inclination in order to get the sequence of the different branches of solutions and determine the
stable solutions. The focus is then put on the stable solutions in the inclined cavity, when the tilt occurs around its
longest axis. The subtle changes induced by the tilt on the convective system are clarified. Three different stable
solutions are obtained: the longitudinal roll L− solution (with the same sense of rotation as the inclination angle),
which develops smoothly from zero Rayleigh number on the leading branch; the longitudinal roll L+ solution
(with a sense of rotation opposite to the inclination angle), which is on a disconnected branch and is stabilized
beyond a secondary bifurcation point; the oblique roll O± solutions (corresponding to transverse roll solutions
perturbed by the longitudinal flow induced by the tilt), which quickly appear beyond saddle-node points on new
disconnected branches. The domain of existence of these stable solutions is eventually obtained and described in
the Rayleigh number-inclination parameter space. Finally, the Nusselt number is determined as a function of the
inclination at a constant Rayleigh number for the different stable solutions. The Nusselt number is maximum at
an inclination of 49.55◦ for the leading longitudinal roll L− solution.

DOI: 10.1103/PhysRevE.88.043015 PACS number(s): 47.20.Bp, 47.20.Ky, 47.11.−j

I. INTRODUCTION

Since the pioneering studies of Bénard [1] and Rayleigh
[2], the Rayleigh-Bénard convection has been extensively
studied. The first interest for these studies was to analyze
pattern formation, which was an intriguing phenomenon. This
problem, involving both fluid mechanics and heat transfer,
is also of great interest in practical applications, as for
example crystal growth (see the references in Lappa [3])
and thermal convection in the earth’s mantle [4]. The first
studies rather concerned infinitely extended layers for which
analytical derivations could be performed, but studies in
confined enclosures have also developed in connection with
practical applications and with the progress in numerical
computing [5]. Rayleigh-Bénard convection is an interesting
problem for the dynamics of the flows which develop from the
motionless conductive solution [6]. A critical Rayleigh number
Rac has to be reached for the onset of flows, and subsequent
flow bifurcations can occur before a chaotic state is reached.
The dynamics are particularly rich in confined situations where
geometry effects and boundary conditions play an important
role and where symmetry considerations are involved [7].
Numerical linear stability analyses have first been carried out
to determine the variation of Rac with the aspect ratio of the
cavity, as those of Catton [8] for rectangular parallelepipedic
cavities and Charlson and Sani [9] for cylindrical cavities.
These linear stability studies were also able to identify the flow
patterns that developed at values of the Rayleigh number, Ra,
slightly above Rac, but cannot give information about further
flow transitions occurring at larger Ra. Nonlinear analyses
were thus needed. The numerical methods using parameter
continuation and bifurcation methods, which were recently
developed in the case of three-dimensional situations, prove to

be very efficient for such studies. In the cylindrical situation,
we can mention the work on the influence of a free surface
by Touihri et al. [10], where complex bifurcation diagrams
have been obtained. In the parallelepipedic situation, very
interesting results are reported by Puigjaner et al. [11–13].
Detailed bifurcation diagrams give the development of the
steady flow patterns inside a cubical cavity heated from
below with either adiabatic or conducting lateral walls and
filled either with air (Pr = 0.71) or silicone oil (Pr = 130).
Different flow patterns are found to be stable in the same
Ra range. These bifurcation diagrams allow us to explain the
transitions between different steady flow patterns observed
experimentally by Pallares et al. [14] in a cubical cavity
filled with silicone oil. Pallares et al. [15] also studied such
transitions in a cubical cavity by three-dimensional direct
numerical simulations. They obtain different flow structures
and identify transitions between them, but cannot give precise
bifurcation diagrams due to the lack of a continuation method.

Rayleigh-Bénard flows can be disturbed by small uncon-
trolled perturbations, coming for example from thermal defects
or a small inclination of the cell (by an angle θ ). The inclination
effect is particularly interesting as it induces a flow at any
value of Ra and, thus, prevents the existence of the no-flow
conductive state found in the horizontal case. Changes of flow
symmetries will also occur and modifications of the bifurcation
diagrams are expected. Rather few studies are related to this
inclination effect in Rayleigh-Bénard situations. Cliffe and
Winters [16] calculated the bifurcation diagram for a tilted
two-dimensional square cavity. They show that the primary
pitchfork bifurcation, which is found in the horizontal case,
disappears and that the diagram predicts a leading solution
(convective roll generated by the inclination) which develops
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smoothly from zero Rayleigh number and an anomalous
solution (with opposite sense of rotation) on a disconnected
branch initiated at a saddle-node point. The saddle-node
critical Rayleigh number is also predicted as a function of
the inclination angle of the cell. In their review paper on the
Rayleigh-Bénard convection, Bodenschatz et al. [6] mention
different studies concerned by the inclination effect. Most of
these studies have considered extended layers and they analyze
how the shear flow induced by the inclination modify the
transitions to transverse or longitudinal rolls. One of the studies
by Kirchartz and Oertel [17] considers more confined layers,
with aspect ratios 10:4:1 and 4:2:1. Using both experiments
and numerical calculations, the authors obtain very interesting
results showing the influence of the inclination angle, the
Rayleigh number, and the Prandtl number on the different
flow patterns. More recently, Pallares et al. [15] give some in-
formation on the influence of very small inclinations (θ � 1◦)
on the flow patterns obtained in a cubical cavity. At given
values of Ra, they show that some of the solutions obtained
without inclination are still present with a small inclination,
whereas other solutions are no longer observed and replaced
by a solution with a different structure. They cannot, however,
explain why these transitions occur. Finally, two other papers,
a rather old paper by Ozoe et al. [18] and a quite recent paper
by Adachi [19], consider the natural convection in an inclined
square channel or duct. In these papers, the inclination is due
to a rotation around the longitudinal axis of the channel. Ozoe
et al. [18] performed both two-dimensional simulations in
the cross section of the square channel and experiments in a
convection channel with dimensions 15 mm × 15 mm × 270
mm. They focused on the heat transfer properties of natural
convection expressed in terms of the Nusselt number. Both
theoretically and experimentally, the maximum heat transfer
is found to occur at about 50◦ of inclination and is associated
with a longitudinal roll. This longitudinal roll is obtained
experimentally for inclinations θ > 10◦. For θ < 10◦, more
complex flow structures are obtained, suggesting the presence
of multiple stationary modes. Hence, a minimum heat transfer
was found at an inclination of about 10◦. Finally, when the
square duct was kept almost horizontal (θ < 1◦), a series
of side-by-side two-dimensional roll cells was eventually
established. Adachi [19] considers the stability of natural
convection in an inclined square duct. He does not perform
three-dimensional simulations, but considers that the duct
has an infinite length and calculates the stability of the
two-dimensional basic flows in the square cross section
of the duct with regard to three-dimensional perturbations.
He can thus obtain information on the longitudinal one-
roll solution and on its stability, but cannot calculate the
transverse roll solution, which is the first to appear without
inclination, and cannot obtain the mixed mode solutions that
are expected with inclination. We thus see that there is a
need for three-dimensional simulations on such Rayleigh-
Bénard problems involving tilted confined cavities, and that
continuation methods would be the appropriate tool for
these studies.

In this paper, a continuation method developed from a
spectral finite element code is used to study the three-
dimensional flows in a tilted rectangular enclosure. We wanted
to extend the former studies of Ozoe et al. [18] and Adachi

[19] on tilted square ducts to finite length cavities. Our
rectangular enclosure with a length equal to two times the size
of the square cross section can be considered as a truncated
(or finite-length) square duct. This cavity has a reasonable
length for three-dimensional computing, it avoids the solution
degeneracy of the strongly symmetric cubical cavity, and, as
in the duct with infinite length, the first transition is expected
to be to transverse rolls and to occur before the transition to
the longitudinal roll. The thermal boundary conditions on the
sidewalls are chosen as adiabatic as in the work of Ozoe et al.
[18]. On this problem, we first present the precise bifurcation
diagram obtained in the horizontal situation. We then put into
light all the subtle modifications induced in the bifurcation
diagram around the first primary and secondary bifurcations
by applying a slight tilt to the cavity. We finally determine the
domains of existence for the different stable solutions in the
Ra-θ parameter space, and conclude with comparisons with
previous works.

II. MATHEMATICAL MODEL AND NUMERICAL
TECHNIQUES

A. Mathematical model

The mathematical model consists of a rectangular paral-
lelepiped cavity filled with a fluid and differentially heated.
The cavity has aspect ratios Az = L∗/h∗ = 2 and Ay =
l∗/h∗ = 1, where L∗ is the length of the cavity (along z∗),
h∗ is its height (along x∗), and l∗ is its width (along y∗). (Note
that the superscript ∗ denotes the dimensional quantities.) The
origin of the system of coordinates is placed at the center of
the cavity and its axes are parallel to the edges of the cavity.
The coordinates (x∗,y∗,z∗) are then normalized by h∗ to obtain
(x,y,z), as shown schematically in Fig. 1. The two walls cor-
responding to yz planes at x = −1/2 and x = 1/2 (lower and
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FIG. 1. Geometry of the dimensionless heated parallelepiped
cavity. The xy cross section of the cavity is a unit square and its
length is 2. The two walls corresponding to yz planes at x = −1/2
and x = 1/2 are isothermal and held at TH = 1/2 and TC = −1/2,
respectively. The other sidewalls are adiabatic. The cavity is tilted by
an angle θ (expressed in degrees) around the −z axis.
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upper walls, respectively, in the case without inclination) are
isothermal. They are held at different temperatures, T ∗

H for the
wall at x = −1/2 and T ∗

C for the wall at x = 1/2, with T ∗
H >

T ∗
C , whereas the other sidewalls are adiabatic. The cavity is

tilted by an angle θ around the −z axis. θ is defined as the angle
between the horizontal plane and the hot wall (yz plane at x =
−1/2) and is given in degrees throughout the text (the super-
script ∗ is omitted). The fluid is assumed to be Newtonian with
constant physical properties (kinematic viscosity ν∗, thermal
diffusivity κ∗, density ρ∗), except that, according to the Boussi-
nesq approximation, the fluid density is considered as temper-
ature dependent in the buoyancy term with a linear law ρ∗ =
ρ∗

m[1 − β∗(T ∗ − T ∗
m)], where β∗ is the thermal expansion

coefficient and T ∗
m is a reference temperature taken as the mean

temperature (T ∗
H + T ∗

C )/2. The convective motions are then
modeled by the Navier-Stokes equations coupled to an energy
equation. Using h∗, h∗2/κ∗, κ∗/h∗, ρ∗κ∗2/h∗2, and (T ∗

H − T ∗
C )

as scales for length, time, velocity, pressure, and temperature,
respectively, these equations take the following form:

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇p + Pr ∇2u

+ Pr Ra T [cos(θ ) ex + sin(θ ) ey], (2)

∂T

∂t
+ (u · ∇)T = ∇2T , (3)

with boundary conditions given by T = 1/2 on x = −1/2
and T = −1/2 on x = 1/2, ∂T /∂z = 0 on z = −1, 1 and
∂T /∂y = 0 on y = −1/2, 1/2, and u = 0 on all the bound-
aries. The dimensionless variables are the velocity vector u =
(u,v,w), the pressure p, and the temperature T = (T ∗ − T ∗

m)/
(T ∗

H − T ∗
C ). ex and ey are the unit vectors in the x and y

directions, respectively, and the nondimensional parameters
are the Rayleigh number, Ra = β∗(T ∗

H − T ∗
C )gh∗3/κ∗ν∗,

and the Prandtl number, Pr = ν∗/κ∗. g is the gravitational
acceleration. We can also define the Nusselt number Nu,
which expresses the actual heat transfer through yz planes
compared to the diffusive heat transfer. Due to the adiabatic
sidewalls, Nu is the same for all yz planes. It can be
calculated easily at the boundaries x = ±1/2 where, due to
the boundary condition u = 0, its expression is simply given
by Nu = ∫

y,z
(−dT /dx) dy dz.

B. Numerical techniques

The governing equations of the model are solved in the
three-dimensional domain using a spectral element method,
as described in [20]. The spatial discretization is obtained
through Gauss-Lobatto-Legendre points distributions; the time
discretization is carried out using a semi-implicit splitting
scheme where, as proposed by Karniadakis et al. [21], the
nonlinear terms are first integrated explicitly, the pressure
is then solved through a pressure equation enforcing the
incompressibility constraint (with a consistent pressure bound-
ary condition derived from the equations of motion), and
the linear terms are finally integrated implicitly. This time
integration scheme is used for transient computations with
the third-order accurate formulation described in [21]. But,

in its first-order formulation, it is also used for steady state
solving [22], eigenvalue and eigenvector calculation, and
determination of bifurcation points [23,24] through a Newton
method. These methods, which are essential in this study to
determine bifurcation diagrams, are described in the following.

We first consider steady state solving. The first order time
scheme can be written in the abbreviated form

X (n+1) − X (n)

�t
= N (X (n),Ra) + LX (n+1), (4)

where X denotes all of the spatially discretized fields
(u(u,v,w),T ), and N and L are the spatially discretized
nonlinear and linear operators. For the purpose of the Newton
solver, this time scheme can be slightly modified and expressed
as

X (n+1) − X (n) = −L−1[N (X (n),Ra) + LX (n)]. (5)

Now we consider the steady-state problem

N (X,Ra) + LX = 0, (6)

and solve it with a Newton method. Each Newton step can be
written as

[NX(X,Ra) + L]δX = −[N (X,Ra) + LX],
(7)

X ← X + δX,

where NX(X,Ra) is the Jacobian of N with respect to X
evaluated at X and Ra. In order to improve the convergence of
the iterative inversion, we rather solve

−L−1[NX(X,Ra) + L]δX = −(−L−1)[N (X,Ra) + LX],

(8)

where the operator −L−1 serves as a preconditioner (i.e.,
approximate inverse for N + L). If we solve the linear
system (8) by an iterative conjugate gradient method, we need
only provide the right-hand side and the action of the matrix-
vector product constituting the left-hand side. Referring to
Eq. (5), we see that the right-hand side of Eq. (8) can be
obtained by carrying out a time step, and the matrix-vector
product by carrying out a linearized version of the same time
step. The Jacobian matrix is thus never constructed or stored.
The GMRES algorithm from the NSPCG software library [25]
is generally used as iterative solver, as it was found to be
more robust than the biconjugate gradient squared algorithm
(BCGS) previously used [10]. Note that the system (8) is only
appropriate for solving the steady state problem at constant
Ra. At a saddle node, where X ceases to be a function of Ra, a
new algorithm is therefore needed to follow a solution branch.
When any component X l varies faster than some threshold,
we treat this as an imminent saddle node by fixing X l and
allowing Ra to vary. One Newton step for solving (6) becomes[NX(X, Ra) + L NRa(X, Ra)

eT
l 0

] [
δX
δRa

]

= −
[N (X, Ra) + LX

0

]
,

X ← X + δX,

Ra ← Ra + δRa. (9)
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In this system, eT
l is the transpose of the lth unit vector. This

system will be preconditioned and solved in the same way
as the system (7). With the use of (7) and (9), it will then
be possible to follow any solution branches. The predictor,
i.e., the initial guess for the Newton iteration, is evaluated by
quadratic or linear extrapolation along the solution branch.

When computing steady solutions along a branch, we are
interested in determining whether the solutions are stable
or unstable. For that, we need to calculate the leading
eigenvalues—those with the largest real part and thus re-
sponsible for initiating instability—and their corresponding
eigenvectors. One possibility is to evaluate a set of those
eigenvalues (for example the ten leading ones) with an Arnoldi
method, which gives a large overview of the stability changes.
To do so, we use Arnoldi’s method from the ARPACK library
[26] and follow the ideas of Mamun and Tuckerman [22],
i.e., the action of the Jacobian is obtained by time stepping
the linearized equations of the problem [linearized version
of Eq. (5)] with a small time step equal to 10−5. In this
way, we are able to calculate the exponential of the leading
eigenvalues through Arnoldi’s method with a good accuracy
(the first ten real or complex leading eigenvalues and their
corresponding eigenvectors are generally computed). Such
Arnoldi calculation is, however, costly and cannot be done at
each continuation step. Another possibility, using the fact that
the eigenvalue spectrum usually does not change drastically
when following a solution branch on a given range of the
continuation parameter, is to follow a specific eigenvalue
(generally the largest stable eigenvalue, which is expected to
become soon unstable) at each continuation step through a
Newton method. This calculation follows the same ideas as
for steady-state solving. For a known steady solution X , to
calculate the eigenvalue λ associated with a given eigenvector
h whose lth component is normalized to a given value q, we
have to solve

[NX(X, Ra) + L]h − λh = 0,
(10)

hl − q = 0.

One Newton step for solving the system (10) is[NX(X, Ra) + L − λ −h
eT
l 0

] [
δh
δλ

]

= −
[

[NX(X, Ra) + L]h − λh
0

]
,

h ← h + δh,

λ ← λ + δλ. (11)

Preconditioned as in Eq. (8), this system can still be solved
by conjugate gradient iterations, the different terms being
obtained by minor modifications of the first-order time
integration scheme. Note that λ and h are real quantities in
case of steady eigenvalue calculation, but they are complex
quantities in case of oscillatory eigenvalue calculation. In this
last case, we will rather write two real equations, respectively
associated with the real part hr and imaginary part hi of the
eigenvector.

Once we have identified a Ra range where a bifurcation
point exists (the real part of an eigenvalue has been found to
change its sign in this Ra range), we proceed to determine

the precise location of this bifurcation point, i.e., find the
corresponding critical Rayleigh number. This direct calcula-
tion of the bifurcation points is more complex than steady
state solving but follows the same rationale. We will consider
a steady bifurcation point. At this bifurcation point, X is a
solution to Eq. (6), and the Jacobian is singular, with a null
vector h whose lth component will be normalized to q:

N (X, Ra) + LX = 0,

[NX(X,Ra) + L]h = 0, (12)

hl − q = 0.

One Newton step for solving Eqs. (12) is⎡
⎣NX(X, Ra) + L 0 NRa(X, Ra)

NX,X(X, Ra) h NX(X, Ra) + L NX,Ra(X, Ra) h
0 eT

l 0

⎤
⎦

⎡
⎣ δX

δh
δRa

⎤
⎦ = −

⎡
⎣ N (X, Ra) + LX

[NX(X, Ra) + L] h
0

⎤
⎦ ,

X ← X + δX,

h ← h + δh,

Ra ← Ra + δRa. (13)

Note that for a primary bifurcation point, X is the known
conductive solution, and the Newton step is reduced to[NX(X, Ra) + L NX,Ra(X, Ra) h

eT
l 0

] [
δh
δRa

]

= −
[

[NX(X, Ra) + L] h
0

]
,

h ← h + δh,

Ra ← Ra + δRa. (14)

In the systems (13) and (14), NRa is the Jacobian of N with
respect to Ra, NX,X is the double Jacobian of N with respect
to X , and NX,Ra is the Jacobian of N with respect to both
X and Ra. Preconditioned as in Eq. (8), these systems can
still be solved by conjugate gradient iterations. As before,
the different terms of the right-hand side and of the matrix-
vector product are obtained through slightly adapted first order
normal or linearized time steps. Note that the direct calculation
of Hopf bifurcation points, which follows the same ideas, is
also available in the code, but it was almost not used during
this study.

C. Continuation

Our first objective is to compute the global bifurcation
diagrams associated with our physical system. For that, a
continuation procedure has been developed, which organizes
the different steps of the calculation. Note that we have first
to define the range of Ra values over which we want to follow
the solution branches.

We can take the noninclined situation, where a diffusive
solution exists, as an example. In that case, the leading
eigenvalues of the diffusive solution are first calculated for
increasing Ra in order to detect the steady primary bifurcations.
We alternate an expensive step using Arnoldi’s method
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allowing the calculation of the ten leading eigenvalues and
several cheaper steps based on the solution of the system (11)
allowing us to follow a specific, well chosen eigenvalue. When
the real part of an eigenvalue changes sign as Ra is increased,
this is an indication that a bifurcation just occurred. The
corresponding eigenvector is thus used as an initial guess in the
direct calculation of the bifurcation point, which is performed
by solving the Newton system (14). The critical Rayleigh
number, Rac, and the critical eigenvector are then stored. Once
the limit Ra number is reached, a new sequence begins.

For each primary bifurcation point, successively, a branch-
ing algorithm uses the critical eigenvector as a predictor in
order to jump to the steady solution branch emerging at this
point. This branching algorithm is based on the solution of
the system (9) so as to be able to catch both supercritical
and subcritical branches. The new branch is then followed
by continuation, using either (7) or (9), up to the limit Ra
number. For each steady solution calculated along the branch,
some leading eigenvalues are calculated, in the same way as
for the diffusive solution branch. This allows us to detect the
secondary steady bifurcation points, which, once detected, will
be precisely calculated using (13), with an initial guess corre-
sponding to the solution and the transitional eigenvector at the
detection point. The steady branches emerging at the steady
secondary bifurcation points can, in turn, be reached using
the branching algorithm, with a predictor built on the critical
solution perturbed by the critical eigenvector. These branches
can then be followed by continuation up to the limit Ra number.

The direct calculation of the bifurcation points by Newton
method can also be used independently. When a bifurcation
point has been found to play an important role in the dynamics
of our system, it could be interesting to follow its evolution
as we vary other parameters of the problem (for example,
the inclination angle or the Prandtl number). In that case,
the critical Rayleigh number, solution, and eigenvector at the
reference value of the parameter are used as initial guess,
and the parameter is varied with a small increment. When
the convergence of the Newton system [(14) or (13)] at a
given value of the parameter is reached, new critical values
are obtained, which, in turn, are used as the initial guess for
the next step at a slightly modified value of the parameter. We
generally choose a constant increment value for the parameter,
but this value is further decreased if difficulties of convergence
are encountered. Stability maps can thus be obtained, which
may improve the understanding of our physical situation by
extending the results obtained with the bifurcation diagrams
at given parameter values to larger parameter ranges.

Note that, in spite of the continuation procedure, it is
difficult to calculate a complex bifurcation diagram in a single
run of the code. The fact that, at each continuation step, we
do not use Arnoldi’s method, but rather follow a selected
eigenvalue, makes it possible to miss some of the bifurcations.
We can indeed follow an eigenvalue, which seemed to
be a good candidate for transition, while another eigenvalue
evolves more quickly and is eventually the first to become
unstable. Sometimes, this transition can be detected at the
next Arnoldi step. In any case, an a posteriori careful reading
of the output file will reveal any missed bifurcations, and
a specific calculation will then be conducted to determine
them precisely. We have, however, tested that the bifurcation

diagram corresponding to the horizontal cavity in the range
0 � Ra � 4000 (see Fig. 2) could be obtained in a single run
of the code.

III. RESULTS

Our results concern the convective flows induced in a
parallelepiped cavity with Ay = 1 (square xy cross section)
and Az = 2, and for Pr = 1. After some validation tests and
symmetry considerations, we will first consider the case where
the cavity is horizontal, and we will then study the influence
of an inclination of the cell, when this inclination corresponds
to a rotation around the longest axis of the cell (here the −z

axis).

A. Validation and tests of accuracy

The validation of the method cannot be done with the
parallelepiped cavity studied here as no results are available
for such cavity. We then choose the case of the cubical cavity
which was recently studied by Puigjaner et al. [11–13]. Table I
shows the critical Rayleigh number, Rac, obtained for the first
three primary bifurcations inside a cubical cavity (Ay = 1,
Az = 1) heated from below. The calculations were conducted
for Pr = 1 and for three different numbers of grid points. We
first see the good convergence of the results with the refinement
of the grid. The critical Rayleigh number obtained for the
same primary bifurcation points by Puigjaner et al. [12] inside
a cubical cavity for Pr = 130 are also given for comparison.
(Note that Rac corresponding to a primary threshold does not
depend on Pr.) A good agreement is obtained between the
different results. In order to also assess the accuracy of the
code at higher Ra, as well as the feasibility of the calculation
when the cavity is heated from the side, we ran the code for the
well-known case of a cubical cavity filled with air (Pr = 0.71)
differentially heated between two opposite vertical sidewalls
(θ = 90◦) with the remaining walls set adiabatic. A benchmark
for this situation was proposed by Wakashima et al. [27].
They computed the Nusselt number Nu in this cubical cavity
with a finite difference method having a fourth-order accuracy.
Table II compares the Nusselt number obtained by our
continuation method to the benchmark values. We used
a 31 × 31 × 31 grid with a Gauss-Lobatto-Legendre point
distribution while Wakashima et al. [27] used a uniform
120 × 120 × 120 grid. As expected, the differences between
the benchmark values and our results increase at higher values
of Ra. Nevertheless, the percent difference is within 0.7% even
at values of Ra as high as 106.

For the calculations in the parallelepiped cavity (Ay = 1,
Az = 2), the same refined mesh comprising 27 × 27 × 41
points (in the x, y, and z directions, respectively) was chosen
for all the cases. It gives a very good precision for the
calculation of the different bifurcation points, as indicated by
the precision tests given in Table III. (The bifurcation points
used in these mesh refinement tests are presented further in this
section.) The precision slightly decreases for inclined cavities
when the variation of the critical Rayleigh number with θ

is very steep (see Fig. 8). The test done on the saddle-node
point N± for θ = 4◦, however, shows that the value of Rac

changes by less than 0.01% when the mesh is further refined.

043015-5



TORRES, HENRY, KOMIYA, MARUYAMA, AND BEN HADID PHYSICAL REVIEW E 88, 043015 (2013)

 0

 5

 10

 15

 20

 2000  2500  3000  3500  4000  4500  5000  5500  6000
Ra

|u| max

0 1 2 3 4 5 6

0 1

0

1

2 3

3
2

4 5

4

4
5
4

P1 P2 P3 P4 P5 P6

S1B2

S1B3

S1B4

S1B6

B1

B2

B2−1

B3

B4

B5 B6

B6−1

 0

 2

 0
 0

 2

 0
 0

 2

 0
 0

 2

 0
 0

 2

 0
 0

 2

 0
 0

 2

 0
P1 P2 P3 P4 P5 P6 S1B 3−1

FIG. 2. Bifurcation diagram in the case of a horizontal 1 × 1 × 2 cavity heated from below (Pr = 1). The abscissa indicates the Rayleigh
number Ra and the ordinate the maximum absolute value of the vertical velocity inside the cavity. The solution branches Bj obtained in the
range 2000 � Ra � 6000 and initiated from the first six primary bifurcations are plotted. The number of eigenvalues with a positive real part
(unstable steady eigenvalues for this diagram) is indicated for each branch, 0 corresponding to the stable solutions. Solid circles indicate steady
bifurcation points denoted as Pi (for the ith primary point) or SiBj (for the ith secondary bifurcation point on the branch Bj ). Insets show
vertical velocity contours in the horizontal midplane (x = 0) for the critical eigenvectors at the first six primary bifurcation points (P1 to P6)
and for the solution at the saddle-node point S1B3−1 on the closed loop branch B3−1 between S1B3 and S1B4. The positive and negative vertical
velocities are indicated by solid and dashed lines, respectively.

The calculation of the solutions by the Newton method is
less difficult, so that the chosen mesh also gives a good
precision for the solutions in the whole parameter range studied
(0 � Ra � 25 000, 0◦ � θ � 90◦).

B. Symmetries

In such confined convective situations, the flow states have
different symmetries which play an important role as they
are often involved in the different bifurcations. Indeed, at

TABLE I. Critical Rayleigh numbers Rac for the first three primary bifurcation points (P1, P2, and P3) in a horizontal cubical cavity heated
from below (θ = 0◦). Three different meshes are listed to assess the calculation accuracy. The Prandtl number is set to Pr = 1. The results of
Puigjaner et al. [12] are listed for comparison (Pr = 130).

This work, Pr = 1 Puigjaner et al. [12]

Grid 22 × 22 × 22 27 × 27 × 27 33 × 33 × 33 Pr = 130

P1 3388.521 3388.525 3388.527 3389
P2 5900.429 5900.442 5900.448 5902
P3 7456.133 7456.143 7456.148 7458
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TABLE II. Nusselt number Nu in a cubical cavity filled with
air (Pr = 0.71) differentially heated between two opposite vertical
sidewalls (θ = 90◦) at high values of Ra. Comparisons between our
results and the benchmark results proposed by Wakashima et al. [27].

This study, Wakashima et al. [27], Difference,
Ra Nu Nu �Nu (%)

104 2.0551 2.0624 0.0073 (0.35)
105 4.3370 4.3665 0.0295 (0.68)
106 8.6394 8.6973 0.0579 (0.67)

a bifurcation point, a symmetry of the solution is generally
broken by the critical eigenvector (pitchfork bifurcation) and
the solutions on the new branch bifurcating at this point will
have lost this symmetry. Checking the symmetries is then not
only important to characterize the different flow states, but
also to check the coherence of the bifurcation diagram and
sometimes to guess the new solutions which must be obtained
(for example, when a tilt of the cavity is imposed).

Under the approximation of the model, the basic diffusive
no-flow solution in the horizontal situation (which is simply
T = −x and u = 0) presents different symmetries: reflection
symmetries SPyz

, SPxz
, and SPxy

with respect to the three middle
planes (longitudinal yz plane at x = 0, longitudinal xz plane
at y = 0, and transverse xy plane at z = 0, respectively),
which, by combination, induce π -rotational symmetries SAx

,
SAy

, and SAz
about the three middle axes (x, y, and z axes,

respectively). These symmetries belong to a Z2 × Z2 × Z2 =
Z2 × D2 group. As an example, we define two of these
symmetries, SPxy

and SAz
, and the others can be obtained by

circular permutation:

SPxy
: (x,y,z,t) → (x,y, − z,t),

(15)
(u,v,w,T ) → (u,v, − w,T ),

SAz
: (x,y,z,t) → (−x, − y,z,t),

(16)
(u,v,w,T ) → (−u, − v,w, − T ).

The symmetry SC with respect to the center point of the
cavity can also be obtained by combination of the previous
symmetries. When the flow is triggered, at least the up-down
SPyz

symmetry is broken. The effective symmetries of the flow
will depend on the flow configuration triggered.

When the cavity is tilted around the longitudinal −z axis,
there is no motionless state for Ra �= 0 and the convection
first induced corresponds to a single longitudinal roll with the
−z axis as axis of rotation and the same sense of rotation as
the inclination angle. The original symmetries of this inclined

TABLE IV. Critical Rayleigh number Rac for the first six primary
bifurcation points (P1–P6) for a horizontal 1 × 1 × 2 cavity heated
from below (Pr = 1).

P1 P2 P3 P4 P5 P6

2726.53 2818.78 3443.54 3498.72 4504.21 4717.45

case are those of the longitudinal roll, which are the SPxy
,

SAz
, and SC symmetries. These symmetries belong to a Z2 ×

Z2 = D2 group. In both the horizontal and tilted situations,
when increasing Ra, bifurcations to new flow states (steady or
oscillatory) will occur, at which some of the symmetries will
usually be broken.

C. Horizontal cavity

In the case of the horizontal cavity, where a diffusive
solution exists and where convection sets in beyond primary bi-
furcation points, the entire continuation algorithm described in
Sec. II C was used to calculate the bifurcation diagram. All the
solutions emerging from the first ten primary bifurcation points
and within the range 0 � Ra � 10 000 were calculated. For
reasons of concision, we will restrict the detailed presentation
to the solutions in the range 0 � Ra � 6000, which emerge
from the first six primary bifurcation points (denoted as P1 to
P6). The onset of convection, at the first primary bifurcation
point P1, occurs at Ra = 2726.53. The critical values for the
other five primary bifurcation points can be found in Table IV.
All these primary bifurcations are pitchforks, as they at least
break the up-down symmetry.

The critical eigenvectors at these primary bifurcation points
are plotted as insets in Fig. 2. Here, the vertical velocity
contours in the horizontal midplane (x = 0) are presented,
solid and dashed lines indicating positive and negative vertical
velocities. We see that the eigenstructures can be characterized
by their number nT of counter-rotating transverse rolls (with
axis along y) and their number nL of counter-rotating longi-
tudinal rolls (with axis along z), and can then be denoted as
(nT ,nL) structures. They also have characteristic symmetries
which can be related to the parity of nT or nL: odd values
correspond to symmetries with respect to axes and even values
correspond to symmetries with respect to planes. We thus
see for example that the critical eigenstructure at P1 [(2,0)
structure] has the SPxy

and SPxz
symmetries, whereas those at

P2 [(0,1) structure] and P6 [(2,1) structure] have the SPxy
and

SAz
symmetries.

The bifurcation diagram in the range Ra � 6000 is pre-
sented in Fig. 2. The maximum absolute value of the vertical
velocity |u|max on the grid is plotted as a function of the

TABLE III. Mesh refinement tests of numerical accuracy for different critical Rayleigh numbers corresponding to primary bifurcation
points (P1 and P6) and secondary bifurcation points (S1B2 and S1B6) for θ = 0◦, to the secondary bifurcation point Sd for θ = 7◦, and the
saddle-node point N± for θ = 4◦.

Grid points along x, y, and z P1 P6 S1B2 S1B6 Sd (θ = 7◦) N± (θ = 4◦)

23 × 23 × 37 2726.521 4717.442 3213.635 4885.286 10 584.305 16 916.910
27 × 27 × 41 2726.525 4717.450 3213.618 4885.294 10 584.236 16 919.437
31 × 31 × 45 2726.528 4717.453 3213.610 4885.298 10 584.210 16 920.352
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FIG. 3. Vertical velocity contours in the horizontal midplane (x = 0) for the solutions at Ra = 6000 on the different branches issued from
the first six primary bifurcation points for a horizontal 1 × 1 × 2 cavity heated from below (Pr = 1). Among these eight solutions, only the
solutions on the B1 and B2 branches are stable.

Rayleigh number Ra. For this diagram, we only calculated one
branch emerging from each bifurcation point. This, however,
is not a restriction in the horizontal case as we will see
that all the bifurcations (as the primary bifurcations) are
pitchfork bifurcations, for which the two emerging branches
give equivalent solutions and can be plotted as a single curve
in our diagram featuring |u|max. Such a diagram could have
been equivalently plotted using the Nusselt number Nu. The
plot with |u|max was clearer and was then preferred. In the
diagram, precisions on the stability of each branch are given
by indicating the number of unstable real eigenvalues (no
unstable complex conjugate eigenvalues were found). Solid
circles indicate steady bifurcation points. Note moreover
that all the solutions obtained on the different branches at
Ra = 6000 are depicted in Fig. 3. In this range (Ra � 6000),
six primary bifurcations were detected on the diffusive branch
and precisely calculated. From these primary bifurcations,
thanks to the branching algorithm, six primary branches were
calculated and followed up to Ra = 6000. Four secondary
bifurcation points were then detected and precisely calculated
on these primary branches, and the secondary branches
emerging from these points were eventually calculated. We
choose to denote the primary and secondary branches as Bi

and Bi−j , respectively, where i is the index of a primary branch
and j is the index of a secondary branch on this primary branch.
Likewise, the secondary bifurcation points on these branches
(say Bm) will be denoted as SlBm, where l indicates the lth
secondary bifurcation point. The results show that the first
primary branch B1, which corresponds to two transverse rolls,
is stable in the calculated range of Ra. The second primary
branch B2, which corresponds to a single longitudinal roll, is
unstable at its onset, but stabilized at a secondary bifurcation
point S1B2 (Rac = 3213.62). The critical eigenvector at this
bifurcation point is a transverse two-roll structure, similar
to the primary eigenvector at P1. The bifurcated branch
B2−1, which is one time unstable, corresponds to a kind
of two-oblique-roll structure which has kept the reflection
symmetry with respect to the xy plane, as shown in Fig. 3.
The third primary branch B3 corresponding to three transverse
rolls and the fourth primary branch B4 corresponding to a (1,1)
structure (which are, respectively, two-time and three-time
unstable at their onset) exchange stability through a short
secondary branch which connects them. This branch (which
can be denoted as B3−1 or B4−1) bifurcates supercritically
from B3 at S1B3 (Rac = 3609.24), turns at a saddle-node
point S1B3−1 (Rac = 3615.53), and connects with B4 at S1B4

(Rac = 3612.51). The eigenvector at the secondary bifurcation
point on B3 (B4) is similar to the flow solution on B4 (B3). The
structure of the flow on this closed loop secondary branch is
shown as the inset in Fig. 2 at the saddle-node point S1B3−1.
We see that this structure still includes oblique rolls, but with
a π -rotation symmetry with respect to the y axis. Note that
this secondary branch was calculated two times during the
continuation procedure, as it emerges from the secondary
bifurcation points on both B3 and B4. The fifth primary branch
B5, which corresponds to a long-scale transverse circulation
embedding two co-rotating transverse cells, remains four-time
unstable from its onset at P5 to Ra = 6000. The sixth primary
branch B6 (five-time unstable at its onset and corresponding to
a (2,1) structure) is stabilized once at S1B6 (Rac = 4885.29).
The solution on the bifurcated branch B6−1, which is five time
unstable, has lost the SPxy

symmetry.
A summary of the characteristics of this bifurcation diagram

is finally given in Table V and Fig. 3. In Table V, we give
the values of the critical Rayleigh number for the secondary
bifurcations involved in the diagram. Five such bifurcations
have been found, among which four are secondary pitchforks
and one is a saddle node. These bifurcation points were directly
calculated as the solution of the system (13), which allows us
to obtain results with a very good precision. In Fig. 3, the eight
solutions obtained at Ra = 6000 on the different branches
issued from the first six primary bifurcation points are depicted.
Note however that, as these branches are initiated at pitchfork
bifurcation points, an equivalent solution exists for each of
these solutions, which is its symmetric with respect to the
symmetry broken at the pitchfork point. The solutions on the
six primary branches (B1 to B6) are similar to the eigenvectors
that initiate them (at points P1 to P6, respectively) and have
the same symmetries. The convective flows are, however, more
intense, so that thinner boundary layers are observed. For the
solutions on the secondary branches, one of the symmetries

TABLE V. Critical Rayleigh number Rac for the secondary
bifurcation points found in the range Ra � 6000 for a horizontal
1 × 1 × 2 cavity heated from below (Pr = 1). SiBj denotes the ith
secondary bifurcation point on the branch Bj . All these secondary
bifurcation points are pitchforks, except S1B3−1 which is a saddle-
node point connecting B3−1 to B4−1.

S1B2 S1B3 S1B3−1 S1B4 S1B6

3213.62 3609.24 3615.53 3612.51 4885.29
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of the corresponding primary solutions has been broken. For
example, the SAz

symmetry of B2 is broken on B2−1 which
keeps the SPxy

symmetry, and the SPxy
and SAz

symmetries of
B6 are broken on B6−1 which keeps the central SC symmetry.
Further calculations extended up to Ra = 10 000 and initiated
from the first ten primary bifurcations have shown that up
to 18 secondary and tertiary bifurcations can be found and
that 22 solutions are obtained at Ra = 10 000. Nevertheless,
among all these solutions, only the first two solutions on B1

and B2 are stable. The solution on the B1 branch corresponds
to a transverse two-roll structure (denoted as a T solution) and
is stable at its onset at P1 (Rac = 2726.53). The solution on
the B2 branch corresponds to a longitudinal one-roll structure
(denoted as a L solution) and is stable beyond the secondary
bifurcation S1B2 (Rac = 3213.62). Additional computations
for larger Ra values were performed for these two branches.
The branches appear to be stable in a large Ra range, at least
up to Ra = 80 000. Their stability limits correspond to Hopf
bifurcation points, which have been localized at Rac = 87 025
and 81 156 for the B1 and B2 branches, respectively. The
associated angular frequencies are ω = 154.43 and 8.72.

Note finally that the degeneracy of the solutions at the first
bifurcation point in a cubical cavity (due to the D4 symmetry,
see Puigjaner et al. [13]) is suppressed when Az �= Ay (change
to a D2 symmetry). In our cavity with Az = 2 and Ay = 1,
the T , L and oblique solutions, which were triggered at the
same bifurcation point in the cubical cavity, are now separated.
More precisely, the T and L solutions still belong to primary
branches (as they have the D2 symmetries), the T solution
being the first to appear, whereas oblique solutions can be
found on a secondary branch initiated from the L branch.
This sequence of primary bifurcations (T solutions triggered
before L solutions) is similar to that found in longer or infinite
square ducts [18,19]. This is an argument for calling our
parallelepiped cavity a truncated or finite length square duct
and we can expect that the comparisons between our results
and those in longer square ducts will make sense.

D. Tilted cavity

In this part of the study concerned by the influence of a tilt
θ of the cavity around the horizontal −z axis, we will focus
on the two branches which are stable (at least in part) in the
horizontal situation (the B1 and B2 branches). As indicated in
Sec. III B, when a tilt is imposed to the cavity, the symmetries
of the problem are changed and the bifurcations found in the
horizontal situation will change as well. To better analyze
the influence of the tilt, we will compare the bifurcation
diagram obtained in the horizontal situation (θ = 0◦) with
that obtained for a very small inclination angle, θ = 0.01◦.
The two calculated diagrams are plotted in Fig. 4 in the
same Ra range (2600 � Ra � 3400). In order to distinguish
between roll structures with opposite sense of rotation, we
now plot the velocity u1 (along x) at a representative point
(x1 = y1 = 0.174 19, z1 = 0.2307) as a function of Ra. In
these diagrams, the stable solutions are given as solid lines
whereas the unstable solutions are given as dashed lines.

When the cavity is tilted, there is no motionless diffusive
solution and the convection sets in as soon as Ra is different
from zero. Due to the inclination θ chosen (around the −z
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FIG. 4. Bifurcation diagram for the convection in a 1 × 1 × 2
cavity in the case without inclination (a) and in the case with a
small inclination (θ = 0.01◦) (b), for the range 2600 � Ra � 3400.
The abscissa indicates the Rayleigh number Ra and the ordinate
the velocity u1 (along x) at a representative point inside the cavity
(x1 = y1 = 0.17419, z1 = 0.2307). The stable solutions are given
as solid lines. Solid circles indicate steady bifurcation points. The
second primary bifurcation P2 in the horizontal case is changed to
a saddle-node point Nd when the cavity is tilted. Insets in (b) are
contours of the u velocity (along x) in the mid-yz plane (x = 0) for
different solutions at Ra = 3400 and at the first bifurcation point S0

(Ra = 2726.53).

axis), this convection at small Ra corresponds to a weak
single longitudinal roll with the same sense of rotation as
the inclination angle (L− solution), a solution which has the
SPxy

and SAz
symmetries. The primary bifurcation point P1

is replaced by a secondary bifurcation point denoted as S0.
S0 is still a pitchfork, as the eigenvector (which is close to
a transverse two-roll flow) breaks the SAz

symmetry of the
longitudinal roll. The solutions on the branches emerging from
S0 have only the SPxy

symmetry and cannot then be exact T

solutions, but, for θ = 0.01◦, they still look similar to the
transverse two-roll solutions obtained in the horizontal case,
and they are stable. The bifurcation P2, which leads from
no-flow to longitudinal roll solutions for θ = 0◦, is suppressed

043015-9



TORRES, HENRY, KOMIYA, MARUYAMA, AND BEN HADID PHYSICAL REVIEW E 88, 043015 (2013)

Leading branch Disconnected branch
Ra = 2726.60 3205.33 3400 3400 2834.76 3221.85 3400

S0 S Nd Sd

|u|max = 0.0713 5.371 6.473 0.0168 0.654 5.459 6.461

= 1.00002 1.12713 1.18479 1.00000 1.00186 1.13126 1.18402

 0

 2

 0
 0

 2

 0
 0

 2

 0
 0

 2

 0
 0

 2

 0
 0

 2

 0
 0

 2

 0

FIG. 5. Solutions corresponding to a single longitudinal roll, along the leading branch (L− solutions, left) and along the disconnected
branch (L+ solutions, right), in a 1 × 1 × 2 cavity inclined by θ = 0.01◦. The leading branch is stable below S0 and above S, the disconnected
branch is stable above Sd . Contours of the u velocity (along x) in the mid-yz plane (x = 0) in the upper pictures; temperature contours and
velocity vector field in the mid-xy plane (at z = 0) in the lower pictures.

by the inclination (the solution at small Ra is already of this
type) and is replaced by an imperfect bifurcation. We have a
leading branch which is the continuity of the branch obtained at
small Ra and corresponds to L− solutions, and a disconnected
branch which corresponds to L+ solutions (longitudinal roll
with a sense of rotation opposite to the inclination angle) and
exists beyond a saddle-node point Nd . Some solutions on the
leading branch and on the disconnected branch are shown in
Fig. 5. For the L− solutions on the leading branch, the flow is
still very weak at S0 and associated with almost undeformed
isotherms and a Nusselt number Nu very close to 1. The
flow increases for larger Ra values, and at S the longitudinal
roll is already quite intense and associated with clearly
deformed isotherms in the xy plane and Nusselt numbers larger
than 1. For the L+ solutions on the disconnected branch, the
flow is very weak on the part of the branch which is close to the
diffusive solution found in the horizontal case (Nu ≈ 1). It is
still weak, but increases, at the level of Nd and becomes quite
intense on the second part of the branch. As the flow for the
L+ solutions is opposite to the flow for the L− solutions, the
deformation of the isotherms is also inverted and opposite to
the inclination. The secondary bifurcations S1B2+ and S1B2−,
which were found in the horizontal case, are still present for
θ = 0.01◦, but they do not occur at the same critical value of
Ra and they will evolve differently when increasing θ . In the
inclined case, these secondary bifurcations are denoted as S for
the leading branch and Sd for the disconnected branch. They
are still pitchfork as they break the SAz

symmetry of the L+
and L− solutions. The leading branch, which was destabilized
at S0, is restabilized at S, whereas the disconnected branch is
stabilized beyond Sd . The solutions obtained on the branches
bifurcating at S and Sd correspond, as for θ = 0◦, to a kind
of two-oblique-roll structure with the SPxy

symmetry. These
solutions are all one time unstable. The critical values for
the different bifurcation points just mentioned for θ = 0◦ and
0.01◦ are given in Table VI.

The bifurcation diagram obtained for θ = 0.01◦ has clearly
shown the four bifurcation points that are important in our
inclined cavity situation, i.e., S0, Nd , S, and Sd . It is then
interesting to follow these points (expressed through their
critical Rayleigh number) as a function of the inclination
angle θ in order to provide a more complete description of
the influence of the tilt on the stability of the system. The
paths of these points for 0◦ � θ � 1◦ are shown in Fig. 6.
The bifurcation points S0 and S, which belongs to the same
leading branch of L− solutions, evolve differently with θ :
RaS0 increases whereas RaS decreases. The two points quickly
collide and disappear at a critical angle θc ≈ 0.2714◦. Beyond
this value of θ , due to the disappearance of its unstable
portion between S0 and S, the leading branch of L− solutions
becomes continuously stable. This change can be observed
in Fig.7 where bifurcation diagrams, focused on the leading
branch dynamics, are given for θ = 0.27◦ and 0.28◦, values
below and above the critical angle θc. This figure also shows
that, in the same process at θc ≈ 0.2714◦, the two secondary
branches originally initiated at S0 and S connect between
them, giving origin to two disconnected branches. These
disconnected branches, which have the same dynamics, are
initiated at saddle-node points denoted as N+ and N−. The
two parts of these branches corresponding to solutions closer
to a transverse two-roll structure are stable whereas the two
other parts are one time unstable. The saddle-node points N+
and N− are in fact not created at θc but a little before, more

TABLE VI. Critical Rayleigh number Rac for the main bifurcation
points found in the case of the horizontal cavity (θ = 0◦) and the
slightly inclined cavity (θ = 0.01◦).

θ P1 → S0 P2 → Nd S1B2− → S S1B2+ → Sd

0◦ 2726.53 2818.78 3213.62 3213.62
0.01◦ 2726.60 2834.76 3205.33 3221.85
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FIG. 6. Path of the different bifurcation points (secondary bi-
furcation points S, S0, and Sd , saddle-node points Nd and N±) as
a function of θ (0◦ � θ � 1◦) for the tilted 1 × 1 × 2 cavity. The
abscissa is the inclination angle θ in degrees, and the ordinate is
the critical Rayleigh number Rac. Solid circles indicate specific
bifurcation points: those at θ = 0◦, the connection point between
N± and S0, and the collision point between S0 and S. A zoom of the
connection between N± and S0 is given in inset. The appearance of
the two saddle-node points N± from S0 occurs at θs ≈ 0.263◦ before
the collision between S0 and S at θc ≈ 0.2714◦.

precisely at θs ≈ 0.263◦ when the bifurcation at S0 becomes
slightly subcritical. The subcritical character of the bifurcation
at S0 can be seen in Fig. 7(a) for θ = 0.27◦. The saddle-node
points N+ and N− correspond to the same critical Rayleigh
number and are globally denoted as N±. Their evolution with
θ is depicted in Fig. 6: we see that their critical Rayleigh
number RaN± strongly increases with θ . The appearance of
these saddle-node points at θs ≈ 0.263◦, just before θc, is
also shown in the inset of the same figure. We now consider
the variation with θ of the two bifurcation points Nd and Sd

belonging to the disconnected branch of L+ solutions (Fig. 6).
Their critical Rayleigh numbers RaNd

and RaSd
both increase

with θ , but a little more slowly for RaNd
so that these points

will not collide. The variation of RaSd
is particularly important

as it gives the critical value of the Rayleigh number above
which the L+ solutions are stable and can thus be physically
observed. Note finally that the secondary bifurcation points S

and Sd , which correspond to the same critical Rayleigh number
for θ = 0◦, have very different evolutions when θ is increased.

The variation with θ of the main bifurcation points, in a
larger range of θ values (0◦ � θ � 20◦), is depicted in Fig. 8.
The critical Rayleigh number for the different points N±, Sd ,
and Nd increases with θ . The strongest increase is found for
N±, a smaller increase is observed for Sd , and the weakest
increase is found for Nd . Again, the evolutions of N± and Sd

are of particular importance because these points indicate the
values of Ra and θ at which solutions are stabilized. For these
different curves, there are limiting values of θ corresponding
to a very strong increase of the critical Rayleigh number. These
values are θ ≈ 9.235◦, 9.445◦, and 19.56◦ for N±, Sd , and Nd ,
respectively. Beyond these limiting angles, it can be expected
that the corresponding bifurcation point will disappear. For
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FIG. 7. Bifurcation diagrams in cases with inclination at θ =
0.27◦ (a) and θ = 0.28◦ (b). Only what occurs in connection with
the leading branch is shown. At θ = 0.27◦, a small Ra range on
the leading branch, between S0 and S, is still unstable, and the
saddle-nodes N± have already appeared on the secondary branches
initiated at S0. At θ = 0.28◦, just after the collision between S0 and S,
the leading branch is completely stable, and the secondary branches
formerly initiated at S0 and S appear as two disconnected branches.
Insets are contours of the u velocity (along x) in the mid-yz plane
(x = 0) for different solutions, one solution on the leading branch at
Ra = 2600, the solutions at the two saddle-node points N+ and N−
(Ra = 2867.66), and the four solutions on the disconnected branches
at Ra = 3400.

N±, the limiting value of θ is not shown in Fig. 8 because the
critical Rayleigh numbers reached at this limiting value are
about Rac ≈ 540 000, i.e., far above the Ra values plotted in
the graph. The solutions which are stabilized at Sd and N± are
given as insets in Fig. 8. The solution obtained at Sd , which
corresponds to the longitudinal roll L+ solution, is shown for
θ = 7◦. At N±, we have two equivalent solutions which are
stabilized and look like two-oblique-roll structures. One of
them is shown for θ = 4◦ in Fig. 8. The other solution can be
deduced by applying the SAz

symmetry. They will be denoted
as O± solutions in the following.
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FIG. 8. Path of the different bifurcation points (secondary bifur-
cation point Sd , saddle-node points Nd and N±) as a function of
θ (0◦ � θ � 20◦) for the tilted 1 × 1 × 2 cavity. For the different
bifurcations, there are limiting values of θ corresponding to a very
strong increase of the critical Rayleigh number. These values are
θ ≈ 9.235◦, 9.445◦, and 19.56◦ for N±, Sd , and Nd , respectively.
For N±, the Rac values reached at the limiting value of θ are about
540 000, i.e., far above the Ra values plotted in the graph. Insets
are contours of the u velocity (along x) in the mid-yz plane (x = 0)
for solutions which are stabilized at Sd (Rac = 10 584.24) and N±
(Rac = 16 919.44) for θ = 7◦ and 4◦, respectively.

We finally present the domains of existence of the three
different stable solutions L−, L+, and O± in the Ra-θ
parameter space in Fig. 9. Two plots are given, showing
different ranges of θ and Ra values: for θ � 1◦ where
interesting dynamics between the solutions are observable, and
for 0◦ � θ � 20◦ where a description for a broader inclination
range is shown, from which the results in the whole θ range
(0◦ � θ � 90◦) can be deduced. From the different domains
of existence determined for the L−, L+, and O± stable
solutions, we can also define zones in the Ra-θ parameter
space where one or several stable solutions are expected to
exist. Five different zones can thus be found, which are shown
in Fig. 9 and labeled with an encircled number.

We first comment on the domains of existence for each
stable solution. The leading longitudinal roll L− solution
(domain with grey background, zones 1, 3, 4, 5) exists in the
whole Ra − θ range studied, except in the small area with a
white background below θc ≈ 0.2714◦, and for θ = 0◦ below
RaS1B2 = 3213.62. This L− solution indeed also exists for
larger values of θ (up to θ = 90◦), and it is in this domain
the only existent solution (see the solutions obtained for Ra =
10 000 and increasing θ in Fig. 10). The opposite longitudinal
roll L+ solution (domain with up-left directed oblique lines,
zones 4, 5) exists above the line corresponding to the path
of the Sd bifurcation point (secondary bifurcation point on the
disconnected branch). This line begins at RaS1B2 = 3213.62 for
θ = 0◦, increases almost linearly with θ , before a very steep
increase for θ ≈ 9.445◦. This value of θ seems to be the limit
to get such a L+ solution. Finally, the two two-oblique-roll
O± solutions (domain with up-right directed oblique lines,
zones 2, 3, 5) exist above the line corresponding to the
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FIG. 9. Domains of existence of the different stable solutions
in the Ra-θ parameter space: the leading longitudinal roll L−
solution (domain with grey background), the opposite longitudinal
roll L+ solution (domain with up-left directed oblique lines), the
two two-oblique-roll O± solutions (domain with up-right directed
oblique lines). We can thus define five zones in the Ra-θ parameter
space (labeled with an encircled number) where one or several stable
solutions exist. We have one type of solutions in zones 1 and 2, two
types in zones 3 and 4, and three types in zone 5. The first plot
is a zoom of the second plot for small values of θ . Note that the
leading longitudinal roll L− solution (domain with grey background
and zone 1) indeed exists up to θ = 90◦. A sketch of the different
solutions, showing the sign of the u velocity (along x) in the mid-yz

plane (x = 0), is finally given.

successive paths of the S0 and N± bifurcation points (the first
bifurcation point on the leading branch and the saddle-node
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FIG. 10. Nusselt number Nu (a) and dimensionless flow rate Q

(b) as a function of the inclination θ for the stable L− and L+
solutions at Ra = 10 000 (solid lines). Nu and Q are also given for
the unstable L+ solutions as dashed lines. The Nusselt number is
also given for the stable O± solution in (a). As expected from Fig. 9,
the O± solution exists and is stable in a small range of θ values, up
to the saddle-node point N± at θ = 2.5418◦. The L+ solution exists
up to the saddle-node point Nd at θ = 16.4577◦, but is stable only up
to the secondary bifurcation point Sd at θ = 6.697◦. The L− solution
is stable in the whole range of θ values, up to θ = 90◦. The Nusselt
number for this L− solution is maximum for θ ≈ 49.55◦, whereas
the maximum for Q occurs for θ ≈ 29.1◦.

points which are further generated, respectively). This line
begins at RaP1 = 2726.53, follows the curve of S0, and then
increases strongly along the path of N±, so that it intersects
the Sd path. The increase is almost linear for small values of
θ , but becomes then steeper. The value θ ≈ 5◦ reached for
Rac = 25 000 (limit of the graph) is not the limit value for the
N± path. As indicated before, the limit value was obtained
at θ ≈ 9.235◦ and corresponded to Rac ≈ 540 000. We do not
know if stable O± solutions can be obtained up to such large
values of Rac. In any case, as the destabilization of the stable
B1 and B2 branches (from which the different L−, L+, and

O± stable solutions are obtained when θ �= 0◦) only occurs
beyond Ra = 80 000 (see at the end of Sec. III C), we can
expect that the domains of existence of the different solutions
will extend far above the limit value Ra = 25 000 of our
plots. We finally describe the five zones in the Ra-θ parameter
space where one or several stable solutions exist. In zones
1 and 2, we only have one type of stable solution: the L−
solution in zone 1 (remember that this zone 1 extends up to
θ = 90◦) and the O± solutions in zone 2. In zones 3 and 4, we
have two types of stable solutions: the L− solution together
with the O± solutions in zone 3, and the L− solution together
with the L+ solution in zone 4. Finally in zone 5, the three
types of stable solutions can be obtained. We see that zones 2
and 3 are very small, whereas the other zones have a far larger
extent, particularly zone 1.

All these stable solutions, however, cannot be reached
so easily. It is then interesting to give some comments on
the possibility or difficulty to reach them. In the horizontal
situation, the transverse roll T solution, which is triggered at
the first primary bifurcation P1, is naturally obtained from the
no-flow solution by increasing Ra. This T solution will also
be eventually reached by increasing Ra when θ is nonzero
but smaller than θs ≈ 0.2714◦. In contrast, if θ is larger than
θs , only the longitudinal roll L− solution will be obtained if
gradually increasing Ra from Ra = 0. This indicates that a
good horizontality of the cavity (θ < θs) is required to obtain
the expected T solution in the Rayleigh-Bénard situation. If
we now proceed by increasing θ at constant Ra, we can first
state that for Ra � RaP1 (Ra � 2726.53), the L− solution
will be continuously obtained up to θ = 90◦. Beyond RaP1 ,
the transverse roll T solution obtained at θ = 0◦ will be
maintained, although transformed into an oblique roll O±
solution, up to the limit θ values corresponding to the S0 and
N± curves shown in Figs. 6 and 8. Beyond these limit θ values
(which are in the range 0 � θ � 9.235), we can expect that the
L− solution will still be obtained. In contrast, for decreasing θ

(from, for example, θ = 90◦) at constant Ra, the L− solution
will be always obtained, except for 2726.53 � Ra � 3213.62,
in the small domain close to θ = 0◦ corresponding to the zone
2 in Fig. 9, where an O± solution can be expected. Finally, the
L+ solution, though it is stable in a certain parameter range,
seems difficult to obtain as it is on a disconnected branch.
One possibility would be to get an L− solution at small θ in
this stable parameter range and to invert the tilt of the cavity
(opposite value of θ ). We can expect that this solution, which
will be an L+ solution due to the tilt inversion, will proceed
and can be maintained for increased θ values up to the limit θ

values corresponding to the Sd curve shown in Figs. 6 and 8.

E. Discussion

It is interesting to compare our results to those obtained in
some papers dealing with the influence of a tilt on Rayleigh-
Bénard convection. We will consider the papers of Cliffe and
Winters [16], Adachi [19], and Ozoe et al. [18].

Cliffe and Winters [16] consider the Rayleigh-Bénard
convection in a two-dimensional square cavity tilted by an
angle θ with the horizontal. This two-dimensional cavity can
also be seen as a square duct with an infinite extension, to be
compared with our three-dimensional finite length square duct.

043015-13



TORRES, HENRY, KOMIYA, MARUYAMA, AND BEN HADID PHYSICAL REVIEW E 88, 043015 (2013)

The sidewalls are insulated as in our case. The authors show
that the pitchfork bifurcation at which the one-roll solutions are
triggered for θ = 0◦ is changed by a cusp catastrophe when θ is
not zero: the flow then develops smoothly from zero Rayleigh
number on a leading branch, and two other solutions appear
on a disconnected branch terminating at a saddle-node point,
one of these solutions being stable. The stable solution on the
disconnected branch is called anomalous and it corresponds
to a one-roll flow with opposite sense of rotation with regard
to the stable leading solution. It is exactly what we obtain
in our three-dimensional situation at the primary bifurcation
point P2 where a longitudinal one-roll solution is triggered at
θ = 0◦: we see the disappearance of P2 when a tilt is imposed
and the presence of a leading branch and a disconnected
branch. The difference with the two-dimensional case is that
in the three-dimensional situation P2 is not the first primary
bifurcation point to appear, so that the branches initiated at
P2 for θ = 0◦ and those obtained from them when θ is not
zero are all unstable (at least for small θ and close to P2).
Cliffe and Winters [16] also give the path of the saddle-node
point in the Rac-θ parameter space and mention the cusp
shape close to θ = 0◦ and the limiting value for this path
at θ = 22◦. The cusp shape can be seen in our case in Fig. 6
(Nd curve close to P2) and the limiting value is shown in
Fig. 8 and corresponds to θ ≈ 19.56◦. The limiting value is
about 2◦ smaller in our three-dimensional situation than in the
two-dimensional cavity, but both values are roughly about 20◦.
The three-dimensional confinement may be responsible for the
difference in the limiting angle.

Adachi [19] considers the stability of natural convection in
an inclined square duct with perfectly conducting sidewalls.
His stability analysis considers two-dimensional basic flows
in the square cross section, which could be a conducting
solution or a one-roll solution, and the perturbations are
three dimensional. Without inclination, in this square duct
with infinite extension, the first transition from the no-flow
conducting solution is to a transverse multiroll solution
denoted as the T -roll solution and occurs at Rac = 2936.4.
The transition to a longitudinal one-roll solution, denoted
as the L-roll solution, occurs later at Rac = 5011.7. These
thresholds can be compared to our thresholds RaP1 = 2726.53
and RaP2 = 2818.78 leading to T and L solutions, respectively.
In both cases, the thresholds for the T solutions occur before
those for the L solutions. Our values are however smaller.
Two effects influence the thresholds: the three-dimensional
confinement must increase the thresholds, but the adiabatic
boundaries must decrease them. The second effect seems to
overcome the first effect in the situation we have chosen.
At θ = 0◦, the L-roll solution is found by Adachi [19]
to be unstable, which is expected because of the previous
transition to T rolls, but the further stabilization of this
L-roll solution is not mentioned. Concerning the T rolls
(which are three-dimensional structures), his method is not
able to calculate them. Adachi [19] further considers a small
inclination, θ = 0.01◦. For the L-roll solution, he is able to
calculate the leading branch, and the disconnected branch,
which is initiated at a saddle-node point at Rac = 5042. The
stability analysis of these branches shows that the leading
branch is stable up to Rac = 2941.6, which is the new threshold
associated to T -roll perturbations for θ = 0.01◦, whereas the

disconnected branch is unstable. The same type of behavior has
been found in our case. He also indicates that the transition
at Rac = 2941.6 must lead to a superposed flow between L

roll and T rolls, which corresponds to our oblique roll O±
solutions. Our three-dimensional calculations in a truncated
square duct of dimensionless length 2 have then confirmed
the findings of Adachi [19], but for adiabatic sidewalls.
Furthermore, our calculations have also extended the results
to all the three-dimensional solutions, which were followed by
continuation, and in a large range of θ values. Our results have
also put into light new behaviors as the further stabilization
of the L-roll branch, which lead to very interesting dynamics
when the cavity is tilted. The dynamics are particularly rich for
small angles of inclination (e.g., θ � 1◦ at Pr = 1). Such slight
inclination angles could be of great relevance in real physical
situations where the parallelepiped cavity is intended to be
horizontal but no specific precautions are taken to increase the
accuracy of its horizontality.

Ozoe et al. [18] study the heat transfer properties of
natural convection in an inclined square channel with insulated
sidewalls. They perform two-dimensional simulations in the
inclined square cross section for a channel considered as
infinite and obtain one-roll solutions featuring the longitudinal
roll solutions obtained in the three-dimensional channels.
They also perform experiments with glycerol in a three-
dimensional convection channel with dimensions 15 mm ×
15 mm × 270 mm, i.e., with an aspect ratio Az = 18. In these
experiments, the inclination θ is progressively decreased from
90◦ to 0◦. For fixed values of the Rayleigh number, they
numerically and experimentally obtain the Nusselt number
as a function of the inclination angle θ . The numerical and
experimental curves agree quite well for θ > 10◦ and indicate
a maximum heat transfer for θ ≈ 50◦. The flow in this θ range
corresponds to a longitudinal roll. For smaller inclinations,
transverse rolls or more complex flow structures (which are
not precisely described) are obtained experimentally (whereas
only longitudinal rolls can be obtained numerically), inducing
the presence of a minimum heat transfer at an inclination
of about 10◦. It is also indicated that the transverse roll
solution is the solution obtained when the cavity is kept
almost horizontal, with say less than one degree of inclination.
Interesting comparisons with our results can be obtained. The
longitudinal roll mentioned by Ozoe et al. [18] for θ > 10◦
must be the longitudinal roll L− solution obtained in our
study. From Fig. 9, this L− solution is also in our case
the only solution for θ > 10◦. The more complex solutions
obtained for θ < 10◦ could be our O± solutions. For small
inclination angles, these O± solutions look like transverse
roll solutions when Ra is sufficiently high [see the flow
structures in Fig. 7(b) for θ = 0.28◦ and Ra = 3400] and,
for θ � θc ≈ 0.2714◦, these solutions can be reached easily
by simply increasing Ra (in contrast, for larger inclinations,
they belong to disconnected branches). This observation is
in accordance with the fact that Ozoe et al. [18] mention
the existence of transverse roll solutions only for θ � 1◦.
Concerning the L+ solutions, which, as the L− solutions, are
quite easily recognizable, we can think that Ozoe et al. [18]
did not obtain them due to the fact that these solutions are
on a disconnected branch and the authors gradually decreased
the inclination of the cavity from θ = 90◦ step by step while
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fixing Ra. Ozoe et al. [18] also did not mention these L+
solutions in their two-dimensional numerical study. In any
case, the comparisons cannot be expected to be perfect due to
the differences between our approaches. First our simulations
concern a finite-length square duct with Az = 2 compared
to Az = 18 and Az → ∞ in the experiment and calculations
of Ozoe et al. [18], respectively. Then, our calculations are
performed for a Prandtl number Pr = 1 whereas Ozoe et al.
[18] use Pr = 10 in their two-dimensional calculations and
give values of Pr between 2690 and 2580 for their experiments.
Finally, our simulations can determine all the possible stable
solutions by continuation whereas Ozoe et al. [18] realize
temporal evolutions (either numerically or experimentally)
from different initial conditions and the stable solutions
obtained are those which exert the strongest attraction in the
corresponding phase space.

Nevertheless, in order to complement our comparisons with
the work of Ozoe et al. [18], we have calculated the Nusselt
number as a function of the inclination angle for the stable
L−, L+, and O± solutions obtained for Ra = 10 000. The
results are shown in Fig. 10(a) for 0◦ � θ � 90◦. The values
of the flow rate Q for the L− and L+ solutions are given
in Fig. 10(b). This dimensionless flow rate has been obtained
by integration of the u velocity (along x) on one half of the
yz plane (y � 0 or y � 0). For Ra = 10 000, the L− solution
is stable in the whole range of studied θ values. The curve
obtained in the Nu-θ parameter space for this L− solution is
similar to the curves obtained by Ozoe et al. [18]. The Nusselt
number is found to be maximum for θ ≈ 49.55◦, in close
agreement with the value θ ≈ 50◦ given by Ozoe et al. [18].
The Nusselt number values obtained with this L− solution at
Ra = 10 000 are within the range 2.05 � Nu � 2.4. Despite
the very different Prandtl number, these values are a little
smaller but not far from the values obtained by Ozoe et al. [18]
(e.g., 2 � Nu � 2.4 for Ra = 8000 and 2.2 � Nu � 2.65 for

Ra = 11 000). For Ra = 10 000, the O± solutions exist and
are stable in a small range of θ values, from 0◦ up to the
saddle-node point N± at θ = 2.5418◦. The Nusselt number
for these O± solutions increases with θ , and at fixed θ , the
values obtained are larger than those for the L− solution.
Concerning the L+ solution, it exists up to the saddle-node
point Nd at θ = 16.4577◦, but is stable only up to the secondary
bifurcation point Sd at θ = 6.697◦ (the unstable solutions are
given as dashed lines in Fig. 10). The Nusselt number for this
L+ solution strongly decreases when θ is increased, and this
decrease becomes very steep, almost vertical, at the existence
limit of the solution at the saddle-node point Nd . For these
L+ solutions, the decrease of Nu is justified by the fact that
the intensity of the roll, which rotates in a sense opposite to
the inclination, is decreased when the inclination is increased
[see in Fig. 10(b)]. Note that, as expected, the L− and L+
solutions have the same Nusselt number at θ = 0◦. We can
finally mention that, in our case, we do not obtain a minimum
Nusselt number as the one found experimentally by Ozoe
et al. [18] for θ ≈ 10◦. Concerning the flow rate Q shown in
Fig. 10(b), we see that its variation with θ for the L− solution
has a similar bell shape as the Nu curve, but with a maximum
which occurs at a far smaller inclination, at θ ≈ 29.1◦. The
differences which can be observed between the Nu and Q

curves indicate that, when θ is increased, the heat transfer is
not directly correlated with the intensity of the flow for these
L− solutions.

In order to clarify these observations, the flow structures
for these stable L− solutions at Ra = 10 000 and for different
values of the inclination θ from θ = 0◦ to θ = 90◦ are depicted
in Fig. 11. In each case, the velocity vector field and the
isovalues of the temperature are plotted in the square cross
section at z = 0 (mid-xy plane), which is the main flow plane
for these L− solutions. As expected, a one-roll flow is found
for all these L− solutions.

θ = 0◦ 5◦ 15◦ 30◦

45◦ 60◦ 75◦ 90◦

FIG. 11. Velocity vector field and isovalues of the temperature in the square cross section at z = 0 (mid-xy plane) for the stable L−
solutions at Ra = 10 000 and for different values of the inclination θ . The isotherms are rather horizontal near the boundaries and vertical in
the core for θ = 0◦ and rather vertical near the boundaries and horizontal in the core for θ = 90◦. Correspondingly, the flow evolves from a
circular roll at θ = 0◦ to a more square-shaped roll at θ = 90◦.
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To better analyze these results, we have to remember that
the isotherms create a buoyancy effect only when they are
not horizontal, the strongest effect being connected to vertical
isotherms. We can observe that for θ = 0◦, a situation where
the diffusive state corresponds to horizontal isotherms, the
isotherms remain almost horizontal along the boundaries (in
connection with the no-slip and adiabatic conditions at these
boundaries) and are only deformed by the flow in the core of
the cavity. The buoyancy effect is then mainly effective in the
core of the cavity and the flow then rather appears as a circular
roll. In this situation, the flow can be strong, without too
strongly affecting the thermal boundary layers, i.e., the Nusselt
number can be moderately affected by the intensity of the
flow. In contrast, for θ = 90◦, a situation where the diffusive
state would correspond to vertical isotherms, the isotherms
remain rather vertical along the boundaries and become almost
horizontal in the core. The buoyancy effect is then mainly
effective along the boundaries and the flow appears as a more
square-shaped roll with a quiescent core. In that case, the flow
can be reduced by the absence of buoyancy effect in the core,
but can nevertheless affect the thermal boundary layers and
maintain a relatively strong Nusselt number. This can explain
that the Nusselt number remains strong for θ = 90◦ while the
intensity of the flow rate is reduced, whereas a smaller value
of Nu is obtained for θ = 0◦ with a much stronger flow rate.

We can finally analyze the changes which occur when
θ is increased from θ = 0◦. With the inclination of the
cavity (θ �= 0), the buoyancy effect becomes effective closer
to the boundaries (inclination of the isotherms close to the
boundaries), which induces an increase of the flow, but this
buoyancy effect will be progressively reduced in the core
where the isotherms evolve from vertical to horizontal, which
will reduce the increase of the flow. According to Fig. 10, the
increase of the flow rate is effective up to θ ≈ 29.1◦, and it
induces an increase of Nu. For larger values of θ , as shown
for θ � 45◦ in Fig. 11, the isotherms become horizontal in
the core (no buoyancy effect). The flow rate will decrease,
but the Nusselt number will continue to increase due to the
sustained flow along the boundaries. According to Fig. 10,
Nu will eventually decrease only beyond θ ≈ 49.55, but this
decrease will be less steep than the decrease of the flow rate.

IV. CONCLUDING REMARKS

A continuation method developed from a three-dimensional
spectral finite element code and particularly well suited for the
studies involving complex bifurcation diagrams has been used
to study the three-dimensional convection in a rectangular
parallelepiped cavity tilted around its longest axis for a
fluid with Pr = 1. The cavity has a square cross section
and an aspect ratio Az = length/height = 2 (finite-length
square duct). When the cavity is horizontal (Rayleigh-Bénard
situation), a precise bifurcation diagram has been obtained
featuring all the different branches issued from the first primary
bifurcations or at subsequent secondary bifurcations. Among
these branches (which correspond to solutions with different
symmetries), the branches of interest, however, are those
initiated at the first two primary bifurcations P1 and P2 because
of the existence of stable solutions on these two branches. In
contrast, the branches and sub-branches initiated beyond P2

were found unstable in the whole Ra range studied. The first
branch initiated at P1 corresponds to transverse rolls with axis
perpendicular to the axis of the duct (T solution) and is stable
right from its onset at RaP1 = 2726.53. The second branch
initiated at P2 corresponds to a longitudinal roll with its axis
parallel to the axis of the duct (L solution) and is stabilized at a
secondary bifurcation point S1B2 (RaP2 = 2818.78, RaS1B2 =
3213.62).

The study has been extended from the Rayleigh-Bénard
situation to the case where a tilt is imposed to the finite-length
duct. This tilt, which is considered around the longest axis
of the rectangular enclosure, can be a slight defect of the
experimental device or can be imposed on purpose. Besides
the fundamental interest of this study, our idea was also to
complement the previous studies of Adachi [19] and Ozoe
et al. [18] for more extended square ducts. In these situations,
as in our case, without inclination the transition to transverse
rolls occurs before the transition to the longitudinal roll, and
the tilt (around an axis parallel to the axis of the duct) will
promote a longitudinal roll (denoted as L− solution in our
study).

Our numerical investigation has yielded interesting results.
As expected, the stable no-flow diffusive solution is replaced
by a stable L− solution in the inclined case. For small tilt
angles θ , the transition that occurred at P1 for θ = 0◦ is
maintained, so that there is a destabilization of the L− solution
(now at a secondary bifurcation called S0) leading to stable
perturbed T solutions denoted as O± solutions, which will
become clear oblique roll solutions for larger values of θ . In
contrast, the bifurcation at P2, which leads to L solutions
for θ = 0◦, is replaced by an imperfect bifurcation. Here,
the leading branch of L− solutions continuously evolves for
increasing Ra, with an increasing intensity of the flow, whereas
there is a disconnected branch of L+ solutions (with opposite
sense of rotation), which appears above a saddle-node point
Nd . The leading branch of L− solutions and the disconnected
branch of L+ solutions are eventually stabilized at secondary
bifurcation points S and Sd , respectively, souvenirs of the
secondary bifurcation points S1B2 found in the horizontal
case. When θ is increased up to θc ≈ 0.2714◦, the S0 and
S points on the leading branch will collide and disappear,
so that, for larger θ (up to θ = 90◦), the L− solutions on
the leading branch become continuously stable in the studied
Ra domain. Another consequence of this collision is that the
stable branches of O± solutions now belong to disconnected
branches above saddle-node points N±.

In the case of the inclined duct, three types of stable
solutions have then been found: the leading longitudinal roll
L− solutions, the longitudinal roll L+ solutions, and the
oblique roll O± solutions. We have been able to determine
the domains of existence of these different stable solutions
in the Ra-θ parameter space. The L− solutions are stable
at any θ (up to θ = 90◦) and in the Ra range studied
(Ra � 25 000), except in a small Ra range (2726.53 < Ra <

3213.62) below θc ≈ 0.2714◦. The L+ solutions are stable
beyond the bifurcation point Sd , i.e., below θ ≈ 9.445◦ and for
sufficiently large values of Ra. Finally, the O± solutions are
stable beyond the secondary bifurcation point S0 at very small
θ (below θs ≈ 0.263◦) and then beyond the saddle-node points
N±, i.e., below θ ≈ 9.235◦ and for generally very large values
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of Ra. Five different zones where different stable solutions
can coexist have eventually been determined. The possibility
or difficulty to reach these stable solutions has been further
discussed.

Finally, interesting comparisons with previous studies
dealing with convection in inclined ducts have been obtained.
These previous studies involved two-dimensional calculations
[16], three-dimensional stability studies [19], and experi-
mental measurements [18]. Our results obtained for a tilted
finite-length square duct confirm and complement the results
obtained in these previous studies. This good agreement
suggests that our results are also valid for longer square ducts.
The detailed description of the flow behavior obtained thanks

to the continuation method is also a motivation for performing
new experiments in this domain.
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