N. Bellomo, N. K. Li, and P. K. Maini, ON THE FOUNDATIONS OF CANCER MODELLING: SELECTED TOPICS, SPECULATIONS, AND PERSPECTIVES, Mathematical Models and Methods in Applied Sciences, vol.18, issue.04, pp.593-646, 2008.
DOI : 10.1142/S0218202508002796

N. Bellomo and L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Mathematical and Computer Modelling, vol.32, issue.3-4, pp.413-452, 2000.
DOI : 10.1016/S0895-7177(00)00143-6

M. Bertsch, D. Hilhorst, M. Mimura, and T. Wakasa, Traveling wave solutions in tumor growth model with contact inhibition. Work under progress

P. Babak, A. Bourlioux, and T. Hillen, The Effect of Wind on the Propagation of an Idealized Forest Fire, SIAM Journal on Applied Mathematics, vol.70, issue.4, pp.1364-1388, 2009.
DOI : 10.1137/080727166

H. Byrne and D. Drasdo, Individual-based and continuum models of growing cell populations: a comparison, Journal of Mathematical Biology, vol.14, issue.1, pp.657-687, 2009.
DOI : 10.1007/s00285-008-0212-0

C. Chatelain, T. Balois, P. Ciarletta, B. Amar, and M. , Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture, New Journal of Physics, vol.13, issue.11, pp.13-115013, 2011.
DOI : 10.1088/1367-2630/13/11/115013

P. Ciarletta, L. Foret, B. Amar, and M. , The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis, Journal of The Royal Society Interface, vol.35, issue.2, pp.345-368, 2011.
DOI : 10.1016/j.compbiomed.2003.11.004

H. Berestycki, B. Nicolaenko, and B. Scheurer, Traveling Wave Solutions to Combustion Models and Their Singular Limits, SIAM Journal on Mathematical Analysis, vol.16, issue.6, pp.1207-1242, 1985.
DOI : 10.1137/0516088

T. Colin, D. Bresch, E. Grenier, B. Ribba, and O. Saut, Computational modeling of solid tumor growth: the avascular stage, SIAM Journal of Scientific Computing, vol.32, issue.4, pp.2321-2344, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00148610

F. Cornelis, O. Saut, P. Cumsille, D. Lombardi, A. Iollo et al., In vivo mathematical modeling of tumor growth from imaging data: Soon to come in the future?, Diagnostic and Interventional Imaging, vol.94, issue.6, pp.593-600, 2013.
DOI : 10.1016/j.diii.2013.03.001

URL : https://hal.archives-ouvertes.fr/hal-01038054

A. Friedman, A hierarchy of cancer models and their mathematical challenges, Discrete and Continuous Dynamical Systems - Series B, vol.4, issue.1, pp.147-159, 2004.
DOI : 10.3934/dcdsb.2004.4.147

A. Friedman and B. Hu, Stability and instability of Liapunov-Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model, Transactions of the American Mathematical Society, vol.360, issue.10, pp.5291-5342, 2008.
DOI : 10.1090/S0002-9947-08-04468-1

I. Golding, Y. Kozlovsky, I. Cohen, B. Jacob, and E. , Studies of bacterial branching growth using reaction???diffusion models for colonial development, Physica A: Statistical Mechanics and its Applications, vol.260, issue.3-4, pp.510-554, 1998.
DOI : 10.1016/S0378-4371(98)00345-8

H. P. Greenspan, Models for the Growth of a Solid Tumor by Diffusion, Studies in Applied Mathematics, vol.9, issue.4, pp.317-340, 1972.
DOI : 10.1002/sapm1972514317

D. A. Kessler and H. Levine, Fluctuation-induced diffusive instabilities; Letters to Nature, pp.556-558, 1998.

M. Kowalczyk, B. Perthame, and . N. Vauchelet, Transversal instability in a two-component reaction-diffusion system

N. Jagiella, Parameterization of Lattice-Based Tumor Models from Data, UPMC, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00779981

E. Logak, Mathematical analysis of a condensed phase combustion model without ignition temperature , Nonlinear Anal, pp.1-38, 1997.

J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. Chuang, X. Li et al., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, vol.23, issue.1, pp.1-91, 2010.
DOI : 10.1088/0951-7715/23/1/R01

M. Mimura, H. Sakaguchi, and M. Matsushita, Reaction???diffusion modelling of bacterial colony patterns, Physica A: Statistical Mechanics and its Applications, vol.282, issue.1-2, pp.283-303, 2000.
DOI : 10.1016/S0378-4371(00)00085-6

B. Perthame, F. Quiròs, and J. , The Hele???Shaw Asymptotics for Mechanical Models of Tumor Growth, Archive for Rational Mechanics and Analysis, vol.34, issue.2
DOI : 10.1007/s00205-013-0704-y

URL : https://hal.archives-ouvertes.fr/hal-00831932

B. Perthame, F. Quiròs, M. Tang, and N. Vauchelet, Derivation of a Hele???Shaw type system from a cell model with active motion, Interfaces and Free Boundaries, vol.16, issue.4, p.906168
DOI : 10.4171/IFB/327

URL : https://hal.archives-ouvertes.fr/hal-00906168

T. Roose, S. J. Chapman, and P. K. Maini, Mathematical Models of Avascular Tumor Growth, SIAM Review, vol.49, issue.2, pp.179-208, 2007.
DOI : 10.1137/S0036144504446291

K. R. Swanson, R. C. Rockne, J. Claridge, M. A. Chaplain, E. C. Jr et al., Quantifying the Role of Angiogenesis in Malignant Progression of Gliomas: In Silico Modeling Integrates Imaging and Histology, Cancer Research, vol.71, issue.24, pp.71-7366, 2011.
DOI : 10.1158/0008-5472.CAN-11-1399

M. Tang, N. Vauchelet, I. Cheddadi, I. Vignon-clementel, D. Drasdo et al., Composite waves for a cell population system modeling tumor growth and invasion, Chinese Annals of Mathematics, Series B, vol.45, issue.2, pp.295-318, 2013.
DOI : 10.1007/s11401-013-0761-4