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Abstract

In this paper, a hybrid approach to combine conditional restricted Boltzmann machines (CRBM) and echo

state networks (ESN) for binary time series prediction is proposed. Both methods have demonstrated their

ability to extract complex dynamic patterns from time-dependent data in several applications and benchmark

studies. To the authors’ knowledge, it is the first time that the proposed combination of algorithms is applied

for reliability prediction.

The proposed approach is verified on a case study predicting the occurrence of railway operation dis-

ruptions based on discrete-event data, which is represented by a binary time series. The case study concerns

speed restrictions affecting railway operations, caused by failures of tilting systems of railway vehicles.

The overall prediction accuracy of the algorithm is 99.93%; the prediction accuracy for occurrence of speed

restrictions within the foresight period is 98% (which corresponds to the sensitivity of the algorithm). The

prediction results of the case study are compared to the prediction with a MLP trained with a Newton

conjugate gradient algorithm. The proposed approach proves to be superior to MLP.

Keywords: Neural networks, Echo state networks, Conditional restricted Boltzmann machines, Railway

operations disruptions, Tilting system, Speed reductions, Discrete-event diagnostic data, Binary time series

predictions

1. Introduction

European railway networks have increasingly become more complex and interconnected due to in-

creased service frequency of passenger transportation and increased rail freight demand. The increased

frequency resulted partly in decreased buffering capacities for preventing failure propagation over the net-

works. Therefore, railway networks have become more vulnerable to failures that could cause severe opera-

tional disruptions (Dorbritz, 2012). As one of the countermeasures, both railway infrastructure systems and

rolling stock systems are being increasingly equipped with monitoring and diagnostic systems. These sys-

tems allow operators to identify locations of failures in shorter times and thereby provide higher availability

of the systems.

Data measured by remote systems give an insight into the processes occurring in the specific com-

ponents or subsystems, as opposed to considerations which are valid for average systems under average

operating conditions. Monitored data can be used to detect faults or failures, to diagnose them and to pre-

dict the considered systems remaining useful life (Vachtsevanos, 2006). In order to use data effectively,

at least one parameter (which can be measured and processed cost-efficiently) must exist that directly de-

scribes the systems condition, or the system condition must be able to be derived indirectly from measurable

parameters.

In addition to the continuously measured diagnostic data, there are also automatically recorded events

which occur at discrete random times. The recorded discrete events can range from confirming an enabled
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function to indicating that a signal exceeds defined limits. Some of these events are used to warn the

train driver or to assist the maintenance crew in their fault finding and corrective actions. Discrete-event

diagnostic data contains less information than continuously measured parameters. However, they provide

complementary information that cannot only be used for a posteriori analyses, but also for predictions. The

sequence of occurring discrete events can be represented by a binary time series.

Different types of models for binary time series regression have been proposed in the literature and

used in different fields of application, including reliability prediction (Kedem and Fokianos, 2002). The

regression models include state-space approaches, such as hidden Markov models (MacDonald and Zuc-

chini, 1997), generalized linear models (Green and Silverman, 1994), (McCullagh and Nelder, 1989) and

logistic regression models (Liang and Zeger, 1989). Machine learning techniques, such as Support Vector

Machines (SVM) and different types of neural networks, are also increasingly applied for time series re-

gressions (Yadav et al., 2007),(Zhang and Wan, 2007),(Zainuddin and Pauline, 2011), also in the field of

reliability prediction where they have proved to be powerful tools (Xu et al., 2003),(Pai, 2006),(Chatterjee

and Bandopadhyay, 2012). However, the most commonly used neural network model, multilayer percep-

trons (MLP), generally, suffer from drawbacks which include obtaining sub-optimal solutions due to local

minima and requiring long computation time.

In this paper, we propose a combination of conditional restricted Boltzmann machines (CRBM) and

echo state networks (ESN) for binary time series prediction. Both methods have demonstrated their ability

to extract complex dynamic patterns from time-dependent data in several applications (Salakhutdinov et al.,

2007), (Lin et al., 2009) and benchmark studies (Jaeger and Haas, 2004),(Ferreira et al., 2013). The prin-

cipal component analysis (PCA) is applied complementarily in this approach, to reduce the dimensionality

and extract the features. To the authors’ knowledge, it is the first time that the proposed combination of

algorithms is applied for reliability prediction.

The proposed approach is applied to a case study concerning the prediction of the occurrence of railway

operations disruptions caused by failures or malfunctions of the tilting system. In this work, diagnostic

event data of a railway vehicle fleet are used to forestall the future behavior of speed restrictions affecting

railway operations based on the evolution of the diagnostic event sequence in time. The prediction precision

of the prosed combination of algorithms is compared to the prediction performance achieved with a MLP

which is trained with a Newton conjugate gradient algorithm.

The remainder of the paper is organized as follows. Section 2 describes the case study and the applied

data, which are derived from the tilting system of a railway vehicle fleet. Section 3 presents the theoretical

and computational background of each of the applied algorithms and introduces the proposed combination

of algorithms to predict the occurrence of speed restrictions. Section 4 presents the results of the case

study obtained with the proposed hybrid approach and compares these results to those obtained with a MLP

trained with a Newton conjugate gradient algorithm. Section 5 discusses the obtained results and presents

the conclusions of this research.

2. Case Study

2.1. Object of the Case Study: Railway Rolling Stock Tilting System

In this research, the suitability of the proposed combination of algorithms for binary time series predic-

tions is verified on a case study predicting speed restrictions caused by railway rolling stock tilting system.

Failures of tilting systems directly affect schedule adherence and thereby service reliability. Therefore,

from the practical point of view, it is worthwhile for the operators to be able to predict the occurrence

of these failures, to be able to prevent them or, if the failures cannot be prevented, to communicate the

disturbances in advance to the passengers and infrastructure operators.

When trains run in track curves, passengers and objects inside experience centrifugal forces. The higher

the speed, the higher the experienced forces in curve. In order not to affect passenger’s comfort above

acceptable limits, speeds are reduced in track curves. Through targeted tilting of the car body, the forces

affecting the passengers and their comforts are reduced, and the trains are able to run with high speeds

in curves (Luebke and Hecht, 2008) with the same comfort level for passengers. This can shorten the

travelling times, especially on lines with numerous curves. Tilting systems induce 8-12% in travel time

savings, compared to conventional rolling stock systems.

However, if the tilting system is not active or fails, the normal speed restrictions in curves apply and the

travelling times are increased compared to the ones with functioning tilting system. If only even one of the
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tilting systems on any of the cars throughout the train is affected, the whole train has to reduce the speed.

The recovery times, that are included in the timetables to compensate for deviations in travelling times and

to buffer some unexpected events, are less than travel time savings induced by tilting systems. Therefore,

failures of tilting system directly affect schedule adherence and operational stability.

If the occurring speed reductions can be predicted, either they can be anticipated and prevented by

scheduling specific maintenance actions or the passengers can be informed in advance. Infrastructure op-

erators can also use the predictions on reduced speeds and increased travel times for rescheduling and

improving the overall level of service. Therefore, anticipating and preventing tilting system failures leads

to increased schedule adherence and improved service reliability.

2.2. Diagnostic Event Data

In this study, diagnostic discrete-event data from a European railway fleet consisting of 52 train sets

were considered, part of which consists of 9 cars and the other part of 11 coaches. The available observa-

tion period was 313 days (approximately ten months). The states of the trains show a wide variability as

the vehicles have been commissioned at different times, their preventive maintenance is not performed at

the same time and they operate under different operating conditions. Then, given the size of the fleet, the

dataset can be believed to cover all relevant combinations of the different pertinent parameters whose con-

sequences are reflected in the occurrences of the diagnostic events. Hence, the data are considered sufficient

to demonstrate the feasibility of the approach (Fink and Weidmann, 2013).

Data were collected automatically by event recorders which start recording parameters when a prede-

fined diagnostic event occurs. The number and character of parameters is predefined for each specific event

in the design process of the diagnostic system and is supposed to provide relevant information required to

resolve the occurred failure or malfunction. There are different types of recorded information associated

with a diagnostic event. These can be either measured parameters, such as outside temperature, overhead

line voltage, battery voltage etc., or the current state of different related systems is recorded, e.g. if the doors

are available to be opened or the heating and air conditioning system operates in a reduced power mode.

If the failures are critical and require some action of the driver, the occurring events are communicated

to the driver, otherwise they are just transmitted to the maintenance personnel. For the tilting system, the

occurring failures directly affect operation and thereby also schedule adherence. Events affecting the tilting

system are therefore directly communicated to the driver. Furthermore, it is also one of the systems that

generates a significant percentage of all diagnostic events affecting operation.

2.3. Data Generation and Preprocessing

The observation time period of 313 days is divided into time intervals of six hours and the time domain

is equally discretized. The length of the time interval has been chosen in a way of balancing practical

application needs and the requirement of having sufficiently informative data for the algorithm to learn the

evolving patterns within the time series. From the practical point of view, the possibilities of a maintenance

crew for anticipating impending failures during scheduled trips are limited. The reduction of the time

interval to e.g. three hours would not provide significant additional flexibility to the operator, given the

duration of single trips of up to 4.5 hours and the typical operational and planning conditions. On the other

hand, a reduced time interval would also increase the sparsity of the informative patterns in the time series.

On the contrary, the extension of the interval to, say, twelve hours would reduce the information content

of the prediction for the operator. Therefore, discrete time intervals of six hours have been considered as a

good level of aggregation.

For each of the six-hour time intervals, it is determined if at least one speed restriction due to a mal-

functioning tilting system has occurred. In that case a numerical label equal to 1 is assigned to the time

interval, otherwise it is assigned a numerical label equal to 0. By so doing, a binary time series is obtained,

which represents which of the time intervals experienced a speed reducing event and which did not. An

alternative approach to generate a time series would be to assign the exact number of speed restrictions in

the considered time interval. Assuming that the speed restrictions are caused by a technical failure that can

only be resolved by a specific maintenance action and given that the possibilities of a maintenance crew

to intervene during scheduled trips are limited, once a speed restriction has occurred, it will persist at least

for the duration of a single trip. Therefore, in practice, usually, only the first occurring speed restriction

influences the train operation.
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Patterns included in the dataset for training and testing are those for which a speed restriction has

occurred during the corresponding time period: in total, there were 501 patterns. The data patterns are

sparse: only in 2.5% of the time intervals at least one speed restriction event occurred.

The foresight period of the algorithm, which is the time frame for which the predictions are performed,

was set to seven days. This time frame is considered suitable for practical purposes to anticipate the oc-

curring disruptions for operational and maintenance planning and scheduling. In practical applications, the

prediction could be performed on a rolling basis.

The algorithm learns to predict time dependent patterns of the last seven days in the observation period,

based on the input of the preceding 306 days. In other words, the algorithm learns to allocate the occurrence

of speed restrictions for each of the six-hour time intervals for a seven-day time period.

This procedure results in an input dimension of 1216 (306 days with time intervals of six hours) and an

output dimension of 28 (seven days with time intervals of six hours).

3. Applied Algorithms

3.1. General Concepts of Artificial Neural Networks

Artificial neural networks are computational models that imitate basic features of biological neural net-

works and deduce functional behavior from data. They are composed of basic (mostly) nonlinear processing

units, usually referred to as neurons, interconnected by information storing entities, the so-called weights

(Haykin, 2009). Neural networks are ideally suited to problems for which little or no exact information is

known regarding the input-output functional relationships, but where data samples (patterns of input-output)

are available. These features make artificial neural networks a potentially valuable method for reliability

analysis tasks such as predicting degradation processes and failure behaviors of components and systems,

like railway rolling stock and infrastructure systems.

Different types of artificial neural networks are able to model static and dynamic processes. Static pro-

cesses are often modeled by feed-forward neural networks (Haykin, 2009), dynamic processes by recurrent

neural networks, which are capable of integrating memory in the learning process (Mandic and Chambers,

2001).

Artificial neural networks can implicitly learn functional relationships from data patterns in three differ-

ent ways: supervised, unsupervised and reinforced (Haykin, 2009). Supervised learning relates to learning

with a teacher. Inputs and corresponding outputs are presented to the neural network in a learning process,

during which the information storing weights (the parameters of the neural model) are updated so as to

minimize a predefined function measuring the error between the true output and the output predicted by the

neural network (Haykin, 2009). In the case of unsupervised learning, the true outputs are not known, and

the task of the artificial neural network is to identify structure and patterns existing within the data (Haykin,

2009). A mixed learning paradigm is reinforcement learning: the learning algorithm rewards the network

if the computed outputs are correct, without actually presenting the true output (Haykin, 2009).

In the work presented in this paper, we use conditional restricted Boltzmann machines (CRBM) and

echo state networks (ESN). CRBM usually learn in an unsupervised way (Ackley et al., 1985). ESN can be

used for both, supervised as well as unsupervised learning (Jaeger, 2005).

3.2. Echo State Networks

3.2.1. General Concepts of ESN

ESN are a specific type of recurrent neural network. Similar to other recurrent neural networks, ESN

are able to exhibit dynamic temporal behavior and have a memory. ESN are typically applied for model-

ing complex dynamic systems. They have been used in practical applications, such as iterated prediction

of time series, signal classification and dynamic pattern recognition tasks (Jaeger and Haas, 2004). The

ESN algorithm overcomes some shortcomings of more commonly used networks, such as Jordan-Elman

networks, and it has demonstrated a capability of achieving remarkable results in several benchmark studies

(Verstraeten, 2009).

In contrast to many other neural networks, such as MLP, the main structural element of ESN is a reser-

voir rather than a structure of neurons organized in layers (Verstraeten, 2009). The ESN reservoir contains a

defined number of randomly and sparsely connected neurons. The weights between the connected neurons

within the reservoir are fixed and are not trained during the training process.
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For an ESN, the training process works by presenting input signals (training signals) into the reservoir

to induce nonlinear responses. The single neurons exhibit an echoed response to the training signal and

generate a variation or a transformation of the induced training signal . Subsequently, a desired output

signal is determined by a trainable linear combination of all the generated response signals. In supervised

learning, a teacher signal is fed back to the reservoir.

The ESN main difference from other neural networks is that only the weights of the reservoir output

signals are trained. The weights of the connections within the reservoir are not trained but are generated

randomly. This approach significantly reduces the learning process compared to other algorithms (e.g.

backpropagation through time) (Jaeger, 2005).

One of the major properties of the echo state network is the so-called echo state property. This property

ensures that the network has a fading memory and thus that the influence of initial conditions, which are

randomly generated, diminishes asymptotically (Jaeger, 2005). Therefore, at the end of the training process

only learned relationships influence the output.

3.2.2. Mathematical Background of ESN

The theoretical concepts and the training algorithms for the echo state networks were derived from

(Jaeger and Haas, 2004), (Jaeger, 2005), (Jaeger et al., 2007), (Verstraeten, 2009), (Lukosevicius, 2012) and

are presented in the following.

Echo state networks are applied to learn a functional relationship between the given input u(n) ∈ R
Nu

and a desired output ytarget(n) ∈ R
Ny , where n = 1, . . . ,T is the discrete time and T is the number of data

points in the training dataset ℵ = {(u(n), ytarget(n))}. The task is to learn y(n) ∈ R
Ny , minimizing an error

measure E(y, ytarget) and generalizing on data that was unseen by the algorithm. The main principles of the

ESN along with the main annotations are presented in Figure 1.

.

.

.

.
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.

Win
W
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u(n)
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x(n)
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- E

Figure 1: Functioning principle of an echo state network

The error measure is typically a Mean-Square Error (MSE), such as the Root-Mean-Square Error

(RMSE):

E(y, ytarget) =
1

Ny

Ny
∑

i=1

√

√

√

1

T

T
∑

n=1

(yi(n) − y
target

i
(n))2, (1)

RMSE is additionally averaged over the Ny dimensions i of the output.

The basic procedure to generate ESN (Figure 1) comprises following steps (Jaeger, 2005):

1. Generate a large random reservoir (Win,W, α);

2. Run it using the training input u(n) and collect the corresponding reservoir activation states x(n);

3. Compute the linear readout weights Wout from the reservoir using linear regression, minimizing the

MSE between y(n) and ytarget(n);

4. Use the trained network on new input data u(n), computing y(n) by employing the trained output

weights Wout.

In case of unsupervised learning the target output ytarget(n) is not available and therefore only steps 1

and 2 are performed.

The annotation and the detailed procedures of the single steps are explained in the following.
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The basic discrete-time, sigmoid-unit echo state network with N reservoir units, K inputs and L outputs

is governed by the state update equation

x(n) = f (Winu(n) +Wx(n − 1)), n = 1, . . . ,T, (2)

where x(n) ∈ R
Nx is a vector of reservoir neuron activations at a time step n; f (·) is the neuron activation

function, usually the symmetric tanh(·), whereby tanh(·) is applied element-wise; Win ∈ RNx×Nu is the input

weight matrix and W ∈ R
Nx×Nx is a weight matrix of the internal network connections. The network is

usually started in the initial state x(0) = 0. Bias values are omitted in Equation 2.

It is also possible to include memory in the single neurons by performing leaky integration of its ac-

tivation from previous time steps. Usually, the leaky integration is performed before the activation f (·) is

applied.

x(n) = (1 − α)x(n − 1) + αf(Winu(n) +Wx(n − 1)), (3)

where α ∈ [0, 1] is the leaking rate. If α = 1, the leaky integration is not applied. Equation 3 corresponds

to the exponential moving average.

The readout from the reservoir is usually linear and is defined by (Lukosevicius, 2012):

y(n) = f out(Wout[u(n)|x(n)]), (4)

where Wout ∈ RNy×(Nu+Nx) is the learned output weight matrix, f out(·) is the output activation function (which

is usually identity function). f out(·) is applied component-wise, whereby ·|· stands for a vertical vector (or

matrix) concatenation. Feedback connections W f b from y(n − 1) to x(n) in Equation 2 can be additionally

applied.

In batch learning, output weights Wout (Equation 4) can be obtained by solving a system of linear

equations:

WoutX = Ytarget, (5)

with respect to Wout. In this equation, X ∈ R
N×T and Ytarget ∈ R

Ny×T are matrices of x(n) and ytarget(n)

over the training period n = 1, . . . ,T . Linear regression is applied to minimize the error E(Ytarget,WoutX).

Moore-Penrose pseudoinverse X+ of X can be applied to calculate Wout:

Wout
= YtargetX+ (6)

Although pseudoinverse show high numerical stability, they are expensive memory-wise. To solve this

normal equations the following approach can be applied:

WoutXXT
= YtargetXT (7)

This equation can be solved as follows:

Wout
= YtargetXT (XXT )−1 (8)

It is worth noting that YtargetXT ∈ RNy×N and XXT ∈ RN×N do not depend on the length T of the training

sequence, and can be calculated incrementally while the training data are passed through the reservoir.

A regularization factor can be added to the Equation 8 to impose rigidity (Hoerl and Kennard, 1970):

Wout
= YtargetXT (XXT

+ β2I)−1 (9)

where I ∈ RN×N is the identity matrix and β is the regularization factor.

3.3. Conditional Restricted Boltzmann Machines

3.3.1. General Concepts of CRBM

Restricted Boltzmann machines (RBM) comprise symmetrically connected neuron-like units, composed

to network structures. RBM are also referred to as stochastic neural networks. They consist of two layers:

a visible layer and a hidden layer. Each unit in the visible layer is connected to all units in the hidden

layer and vice versa. The visible layer contains the input parameters; the hidden layer contains the latent



Published in Journal of Expert Systems with Applications 40 (2013) 6033–6040 7

parameters that the networks learn (Ackley et al., 1985). The hidden layer learns to model the distribution

of the visible layer of variables. However, the units within one layer are not interconnected. Therefore, the

networks are called restricted. This restriction simplifies the learning process.

Hidden units in RBM learn the structure and features that are contained in the data. The extracted

features can be, for example, parameters that influence the input data and cause a higher-order correlation

between the input dimensions but cannot be observed or measured.

The conditional restricted Boltzmann machines (CRBM) extend the concept of RBM. They enable

capturing temporal dependencies (Salakhutdinov et al., 2007). Furthermore, it is possible not only to use

the information of visible variables but also to include context variables and thereby to enrich the content of

information in the model. CRBM are particularly suitable for time series applications and have been applied

to different kinds of problems, such as collaborative filtering (Salakhutdinov et al., 2007), classification and

modeling motion capture data (Taylor and Hinton, 2009).

CRBM are capable of learning and reproducing complex dynamics directly from data (Zeiler et al.,

2009). Their concept regarding hidden layers is similar to Hidden Markov Models, which also have hidden

states (Zeiler et al., 2009). However, the binary hidden state of CRBM is much more powerful, which

enables the CRBM capturing longer-term dependencies (Zeiler et al., 2009).

3.3.2. Mathematical Background of RBM and CRBM

The concepts of RBM and CRBM are closely related. The difference between the methods is the

integration of context variables in CRBM. Therefore, first the background of RBM and subsequently the

additional concepts of CRBM are introduced . The theoretical concepts and the training algorithms for the

RBM and CRBM were derived from (Ackley et al., 1985), (Taylor and Hinton, 2009), (Salakhutdinov et al.,

2007), (Zeiler et al., 2009) and are presented in the following.

A RBM network consists of visible and hidden units. Hidden units can be either modeled as binary or

as Gaussian units (Taylor and Hinton, 2009).

A joint configuration (v,h) of the visible and hidden units has an energy given by

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

b jh j −
∑

i, j

vih jwi j (10)

where vi, h j are the binary states of visible unit i and hidden unit j, ai, b j are their biases and wi j is the

weight between them. The network assigns a probability to every pair of a visible and a hidden vector via

the following energy function:

p(v,h) =
1

Z
e−E(v,h) (11)

where the partition function Z is a normalization term given summing over all possible pairs of visible and

hidden vectors:

Z =
∑

v,h

e−E(v,h) (12)

The probability that the network assigns to a visible vector, v, is given by summing over all possible hidden

vectors:

p(v) =
1

Z

∑

h

e−E(v,h) (13)

Given a training set of state vectors (the data), learning consists of finding the pertinent parameters (weights

and biases) that define a Boltzmann distribution in which the training vectors have high probability.

∂ log p(v)

∂wi j

= 〈vih j〉data − 〈vih j〉model (14)

where 〈·〉data is an expected value in the data distribution and 〈·〉model is an expected value when the Boltz-

mann machine is sampling state vectors from its equilibrium distribution. This leads to a very simple

learning rule for performing stochastic steepest ascent in the log probability of the training data:

△wi j = ǫ
∂ log p(v)

∂wi j

= ǫ(〈vih j〉data − 〈vih j〉model) (15)
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where ǫ is a learning rate.

Because there are no direct connections between hidden units in an RBM, it is very easy to get an

unbiased sample of 〈vih j〉data. Given a randomly selected training pattern, v, the binary state, h j, of each

hidden unit, j, is set to 1 with probability

p(h j = 1|v) = σ(b j +

∑

i

viwi j) (16)

where σ(x) is the logistic sigmoid function 1/(1 + exp(−x)). vih j is then an unbiased sample.

Because there are no direct connections between visible units in an RBM, it is also very easy to get an

unbiased sample of the state of a visible unit, given a hidden vector

p(vi = 1|h) = σ(ai +

∑

j

h jwi j) (17)

To get an unbiased sample of 〈vih j〉model an approach to reconstruct 〈vih j〉model has been proposed. In

this case, 〈vih j〉model is replaced by 〈vih j〉recon. In this case firstly, the states of the visible units to a training

vector are set. Secondly, the binary states of the hidden units are computed by applying Equation 16. Once

binary states have been chosen for the hidden units, a reconstruction is produced by setting each vi to 1 with

a probability given by Equation 17. Therefore, an incremental learning process is required.

For Gaussian hidden units Equation 10 is adjusted to:

E(v,h) = −
∑

i

aivi +

∑

j

(h j − b j)

2σ2
j

−
∑

i, j

vi

h j

σ j

wi j (18)

where σ2
j

is the variance of the hidden unit j. The variances of all hidden units are usually fixed to σ2
j
= 1.

The difference between a RBM and a CRBM is that CRBM takes additional context information into

account. The model defines a joint probability distribution over v and h, conditional on the context variables

c and the model parameters, θ:

p(v,h|c, θ) =
e−E(v,h|c,θ)

Z
(19)

where Z is again the partition function. However, in this case it is exponentially expensive to compute

exactly. The energy term can be computed similarly to Equation 18.

The same learning rule as for RBM applies (Equation 15), with the difference that in the case of CRBM

it maximizes the log probabilities of the observed output vectors conditional on the input vectors.

3.4. Principal Component Analysis

Variables are often correlated in large datasets. This means that the content of information in the corre-

lated variables is lower than in uncorrelated variables. Furthermore, high dimensional input data increases

computational resources needed for data analysis. The process of principle component analysis (PCA) can

be applied to reduce the dimensionality of a dataset with many correlated variables, without any significant

loss of information (Jolliffe, 2004). In the PCA process, the original data is converted by orthogonal trans-

formation into a set of uncorrelated variables referred to as principle components (PC) without inducing

any significant loss in variation compared to the original dataset. Principal components can be considered

as a lower dimensional representation of the input data.

The principal component analysis is based on the principle of the change of basis, in which a basis in

obtained that is a linear combination of the original basis and that re-expresses the data optimally, with

a maximal independence between the single components. The independence is in this case defined by

considering the variance of the data in the original basis and the PCA seeks to de-correlate the original

data. This is performed by finding the directions in which the variance is maximised. Subsequently these

directions are used to define the new basis.

Given X a m × n matrix, where the n columns represent the samples and the m rows represent the

variables, the principal components of X are given by the eigenvectors of the covariance matrix CX =
1
n
XXT .
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3.5. Combining CRBM with ESN and PCA

CRBM have proven to have benefits for uncovering time dependencies in data, especially for long-

term dependencies (Salakhutdinov et al., 2007). ESN have proven to be powerful in extracting dynamical

features (Jaeger and Haas, 2004). These two methods are, then, here originally combined for binary time

series predictions. While CRBM is an unsupervised algorithm, ESN is applied in this approach both in an

unsupervised and in a supervised way. Principle component analysis is applied to extract the uncorrelated

features and to reduce the dimensionality of the data.

Generally, the input of CRBM consists of visible data and additional explanatory input. Explanatory

influencing parameters can be used to create a context, and to enrich and facilitate the pattern extraction.

The context variables are usually variables that directly or indirectly influence the output values. These can

be, for instance, complementary environmental parameters. For this case study, it is assumed that ESN are

able to extract relevant dynamic features of the time series in an unsupervised way. The extracted dynamic

features are used as context variables for the CRBM. Therefore, the binary time series was presented to

the reservoir of the ESN to extract complementary features. The applied ESN consisted of a reservoir with

leaky integrator neurons, which enable integrating memory in single neurons. The applied leak rate was

0.88. The applied activation function within the neurons was a standard sigmoid function. No explicit bias

was included in the model. The reservoir size was set to 500 neurons. Nonlinear responses are induced in

each of the neurons by presenting the input to the reservoir (Equation 2).

In the next step, principal components of the output of the ESN were extracted. Principal components

are uncorrelated features of the inputs. By applying PCA, a part of variability within the dataset is lost.

However, this is accepted in this case study. The dimension of the temporal features extracted by the ESN

could be reduced from 500 features to 150 principal components. The lower dimensional representation of

the dynamic responses of the ESN reservoir were then used used as complementary inputs to the CRBM.

The observed time series patterns with the input dimension of 1216 were used as visible input to the CRBM

(Figure 2). The one-layer CRBM contained 600 hidden units, which were trained for 10 epochs. In the

learning process of CRBM, the logarithms of the probabilities of the hidden and visible variables are maxi-

mized conditional on the context variables (Equations 19 and 15).

In the successive step, the output of the CRBM was presented to an echo state reservoir, where the output

of the CRBM was induced in 500 neurons of the ESN reservoir. Similarly to first reservoir, leaky integrator

neurons with a leak rate of 0.88 and standard sigmoid activation function were applied. No explicit bias

was included in the model. The ESN learned to extract the dynamic patterns from the presented input

in a supervised way (Equation 9). Target output was the binary time series pattern of occurring speed

restrictions in the last seven days of the time pattern. Ridge regression with a regularization term was

applied to determine the optimal combination of reservoir signals that generate the desired output signal. In

this case study a regularization factor of 0.01 was applied.

In this research the network parameters were determined by performing a hyperparameter optimization

with grid search (Bengio, 2000). Cross-validation with 10 folds was applied within the grid search process.

The steps of the procedure are presented in Figure 2.

original data set
unsupervised

echo state network

conditional restricted Boltzmann 

machine

visible data context data

principal compo-
nent analysis

supervised

echo state network

Figure 2: Applied combination of algorithms

Through the combination of these steps, the learning of the process is very efficient, because only the
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last layer is trained in a supervised way. Additionally, for an ESN only the weights between the reservoir

and the output are trained by a linear regression with a regularization term.

4. Results

Holdout has been used to evaluate the generalization ability of the algorithm (Haykin, 2009). The

dataset is divided in two subsets. Both subsets are assumed to be independent and representative of the

underlying data distribution of the entire dataset. In this research, 90% of data were used for training and

10% for testing.

In total, 451 patterns were applied for training and 50 were kept for testing.

Figure 3 shows a part of the patterns of the testing dataset (only 25 patterns with 28 time intervals (the

intervals to be predicted) are visualized). In the Figure, each of the squares represents a time interval of six

hours for a selected coach. The time intervals when speed restrictions occurred are marked grey; when no

speed restrictions occurred the patterns are marked white.

Figure 3: Example of data patterns in the testing dataset

For the testing dataset, the algorithm had to make in total 1400 binary decisions (28 six-hour time

intervals in the foresight period of seven days ×50 data patterns in the testing dataset), if a speed restriction

would occur within the considered time interval of six hours or not. The overall prediction precision of the

algorithm is very good: all of the time intervals without speed restrictions were recognized correctly by

the algorithm and only one speed restriction was not recognized. With 1400 six-hour time intervals in the

foresight period for all the considered coaches in the testing dataset, this resulted in 0.07% of incorrectly

predicted occurring events. Considering only the prediction precision of the algorithm for the occurrence

of speed restrictions in the foresight period of seven days, 98% of all the speed restrictions were recognized

correctly by the algorithm.

The results confirm a very good generalization ability of the algorithm. As the data is sparse, the

parameter defining the performance of the algorithm is the sensitivity, which is high in this case study.

This shows that the algorithm does not purely assign no occurring speed restrictions to each of the discrete

time intervals, but is able to precisely allocate the occurring speed restrictions to the specific time intervals.

Usually, overfitting occurs when the algorithm fits the training data perfectly but is not able to generalize

and transfer the patterns to data that have not yet been presented to the algorithm. However, the proposed

combination of algorithms was able to extract the patterns within the binary time series and transfer these

patterns to previously unseen patterns. The performance of the algorithm on the testing dataset was very

good.

Additionally to the proposed algorithm, the same dataset was analysed with a MLP for comparison. A

MLP with two hidden layers was chosen with 50 neurons in the first layer and 30 neurons in the second

layer. MLP with only a single hidden layer have been proven to be universal approximators (Hornik et al.,

1989). However, the number of neurons required to achieve the desired performance can be substantial.
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MLP with two hidden layers have been proven to be capable of approximating functions with the desired

precision with a finite number of neurons (Huang, 2003).

The MLP was trained with a Newton conjugate gradient algorithm, which has been shown to have

superior performance over a standard backpropagation learning algorithm (Johansson et al., 1991). The

optimally trained MLP could correctly predict 98.8% of all the occurring events within the foresight period

of the testing dataset: this corresponds to 1.2% of incorrectly predicted events, compared to 0.07% predicted

by the proposed algorithm. Considering only the occurring speed restrictions within the foresight period,

MLP could predict 77.8% of the occurring events correctly, compared to 98% correctly predicted occurring

events by the proposed algorithm.

5. Discussion and Conclusions

In this paper, we have proposed to combine ESN and CRBM for binary time series predictions. Com-

plementarily, the hidden distribution of the variables is processed with a principal component analysis. The

proposed approach has been applied for predicting the occurrence of train speed restrictions caused by the

tilting system. In the case study analysed, the combination of algorithms proposed shows a very good ability

to generalize the patterns in the binary time series, with a superior performance compared to MLP.

The interval of six hours selected appears to be a good level of aggregation, balancing the requirements

of the application perspective, providing a sufficient resolution given operational and planning conditions,

and the requirements of the algorithms, providing a sufficient number of informative patterns to learn from.

The proposed approach is applicable for dynamic time series patterns with an adequately frequent oc-

currence of events or a sufficiently long observation period, in order to ensure that a sufficient quantity of

informative patterns is presented to the algorithm. As shown in the case study, even though the occurrence

of speed restricting events is seldom, so that the dataset contained a lot more time intervals in which no event

occurred, the combination of algorithms was capable of learning to predict the occurring speed restrictions

on a foresight period of seven days.
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