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Abstract
& Context Clustering forest harvest stands reduces the move-
ments of the harvesters, forwarders and staff. Moreover, it
simplifies the subsequent log transport, when compared with
dispersed stands.
& Aims Harvesting activities are generally based on silvicul-
tural motivated planning data. The development of an analyt-
ical method to cluster harvest stands with respect to the spatial
network of roads should improve the harvesting effort.
& Material and method The clustering of harvest stands was
developed for Aracruz (Brazil) in 2004, where it is used there
successfully since. The hierarchical method ‘single linkage
cluster analysis’ is applied. As a distance function, the Euclid-
ian distance was substituted by the shortest path on the spatial
network.
& Result The clustering method is based on the minimum
spanning tree, which is the spatial equivalent to the dendrogram

of an ordinary cluster analysis. Applying the Delaunay trian-
gulation to fill the distance matrix reduces the distance calcu-
lation time from O(n2) to O(n). The method is illustrated by a
planning district of the Aracruz enterprise.
& Conclusion Harvesting units are properly clustered spatially
by the discussed method. Topographic obstacles are automat-
ically avoided and the need to relocate machinery is reduced
as well as the total driving distance.

Keywords Clustering harvest stands . Optimising harvest
operations . Cluster analysis . Spatial network of roads

1 Introduction

The planning staff in a forest enterprise continuously attempts
to devise methods for optimising the individual processes in-
volved in timber production to ensure that these are as efficient
as possible. This may relate to the operations themselves such
as timber felling and log transport. The aim of this investigation
is to develop an optimisation method for clustering the stands
scheduled for harvesting during the planning phase.

Stands selected for harvest may be distributed irregularly
across an entire forest area. However, the efficiency of timber
harvesting, involving the organisation of machinery deploy-
ment and finally log transport, is significantly enhanced when
harvest stands are clustered. By clustering the harvest stands the
concentration of timber harvest activities saves time and costs.

A formal procedure to cluster harvest stands is often
unnecessary in small forest enterprises. Here a forester suc-
cessfully clusters stands according to distances estimated
from forest maps or from local experience under simplified,
comprehensible conditions. However, conventional methods
become prone to error once the number of harvest stands
increases.
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An analytical method to cluster harvest stands has not yet
been described. The unfavourable topographic conditions and
the great number of harvest stands at the Eucalyptus planta-
tions of Aracruz, Brazil, stimulated the search for and the
development of an approach for clustering harvest stands.
The typical land use of this region is characterised by a
complex spatial pattern of mutually nested plantations, gallery
and alluvial forests. Rivers often separate the harvest stands.
Despite Euclidian distances between the different stand loca-
tions, the actual road travel distances are much longer in order
to circumnavigate the topographic obstacles (Fig. 1). The
length of these routes affects the deployment of equipment
and log transport considerably.

A cluster analysis method is presented in the following
section, where the distances between harvest stands are the
shortest paths on the spatial network of roads. Harvest stands
are combined to a cluster if the distance between them is
below a defined maximum distance. The size of this maxi-
mum distance depends on local conditions and the applied
harvest technology. The method described was developed for
the forest area at Aracruz, Brazil, in 2004.

The company provided the stand polygons, the line geom-
etry for the forest roads and a list of stands scheduled for
harvest. The data are represented as geodata sets of the geo-
graphic information system ArcGIS (ESRI). The implemen-
tation of the numerical methods as described later in this paper
is a straightforward procedure using the programming inter-
faces of the extension technology of ArcGIS.

2 The development of cluster analysis on spatial
networks

In the forest planning process, the selection of harvest stands
is mainly motivated by customer demand or similar purpo-
ses and is usually carried out in a non-spatial way. Chen and
von Gadow (2002) included the spatial distribution of har-
vest stands directly in the long-term planning process. Dif-
ferent stand treatment options result in different spatial
patterns of thinning or clear-cut stands, with respect to
regeneration areas, at a given point in time. Each spatial
arrangement of a specific treatment option has an economic
benefit. The combination of spatial arrangements and timber
production is considered simultaneously, using the heuristic
‘Simulated Annealing’.

With respect to a multi-objective long-term planning,
Öhman and Lämas (2003) examined the spatial influence
of clustered harvest activities. By clustering they identified
several advantages such as habitat conservation and reduc-
tion of road maintenance and entry costs. In addition to this,
dispersed stands are more expensive to harvest than clus-
tered stands. The developed model is determined by two
objectives: (1) maximizing the net present value from forest

management over an infinite time horizon and (2) maximis-
ing the clustering of harvest activities in space and time.

The introductory cluster procedures do not agree with an
ordinary cluster analysis. Here clustering is only one weighted
component among others of the whole objective function.
Furthermore Euclidian distances are used as distance measure
between the harvest stands. Obstacles, such as those shown in
Fig. 1, can imply distorted clusters for operational planning.
The movements of harvest equipment, piling and the subse-
quent wood transport are constrained by the spatial network
of roads.

In a cluster analysis, events or data objects are arranged
according to their relative similarity. A similarity cannot easily
be expressed in numeric terms. It is usually substituted by a
proximity measure, which is derived from metric parameters
of the data objects. By clustering the data according to their
closest proximity and by defining a cluster’s proximity thresh-
old, it is possible to obtain a defined maximum of mutual
similarity.

For a given set of vectors {x1 … xn}, the elements xi,
i01…n, are coordinates of a multidimensional metric vector
space of dimension m. The distance between two elements is
denoted by d(xi, xj) or more specifically dij. The distance
measure between two coordinates has the general form
(Steinhausen and Langer 1977: 61)

dij ¼ ½ðx i � x jÞ0ðx i � x jÞ�1=r ¼
Xm

k¼1

xik � xjk
�� ��

r
" #1=r

dij; r 2 R

ð1Þ
For a plane of dimension m02, the distance function (1)

results in the Euclidian distance for r02 and it corresponds to
the ‘taxi-driver’- or ‘city-block’-distance for r01. Distance
functions similar to Eq. (1) with different values of r usually
do not represent a forest road network, where topographic
obstacles require detours (Fig. 1). The shortest path between
spatial locations xi and xj located on a spatial network of roads
can be calculated by the Dijkstra algorithm (1959). For this
purpose, the spatial network of roads must form a connected
graph. The following distance function dd is called the Dijkstra
distance that corresponds to the shortest path between two
points (xi, xj) on the spatial network of roads

dd xi; xj
� � ¼ ddij ð2Þ

Generally the calculation procedure of a cluster analysis
is independent of the chosen Eq. (1) or (2).

The analysis of objects or events on spatial networks was
deduced from the analysis and description of point distribu-
tions in the 1950s. Clark and Evans (1954) investigated the
Euclidian distances from points to nearest neighbours as a
measure of spatial relationship in populations such as trees or
seedlings in a forest. The distribution of points in a plane can
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be regular, random, clustered or a combination these different
distributions.

Applying the ideas from Clark and Evans (1954), Okabe
et al. (1995) analysed points on spatial networks such as car
accidents or the distribution of stores, using the shortest path
(2) between points on the spatial network of roads. With
respect to the distribution of the points (regular, random or
clustered), Okabe and Kitamura (1996) developed a method
for optimising the catchment areas of stores. Later Okabe and
Yamada (2001) described the distribution of accidents on
spatial networks using the ‘K-function’ derived by Ripley
(1976) that more accurately describes spatial distributions of
stationary point processes.

Urban and Keitt (2001) explored the habitat patches of the
Mexican Spotted Owl (Strix occidentalis lucida) by ‘single
linkage cluster analysis’ using Euclidian distances (1). The
authors refereed to the application of the distance function (2)
when considering transportation networks or routing applica-
tions. Yiu andMamoulis (2004) presented a cluster analysis on
a spatial network of roads using (2) as distance function and
were able to identify clusters of objects, points or events. They
analysed three clustering methods: partitioning-based cluster-
ing by the ‘k-Medoid’method, the ‘∈-Link’ algorithm by local
selection of neighbouring points with a chosen search radius ∈
and the hierarchical ‘single linkage cluster analysis’ method.
For the analysed spatial networks the ‘k-Medoid’ method was
not effective, the ‘∈-Link’ algorithm traverses the whole net-
work only with an appropriate search radius, but the method
‘single linkage cluster analysis’ led to correct clusters. Okabe
et al. (2006) integrated these methods in the software package
SANET (Software for spatial Analysis on a Network).

Sughihara et al. (2008; 2011) transferred the approach of
Yiu and Mamoulis (2004) to other hierarchical methods of
cluster analysis, e.g. the closest-pair distance, the farthest-pair
distance, the diameter distance, the average-pair distance, the
median-pair distance and radius distance. The authors pointed

out three differences to a conventional cluster analysis with a
distance Eq. (1):

– An object or event is tied to a geographic location,
– a measure of distance between events agrees to Eq. (2)

and
– a cluster analysis of events on networks is oriented to

geometric computations and is not determined by algebraic
operations on attribute vectors.

They assumed that the spatial network of roads is planar,
the number of network nodes largely exceeds the number of
events and the distances between clusters X, Yand Z fulfil the
following equation: min d X;Zð Þ; d Y;Zð Þf g � dðX [ Y;ZÞ.

There are many other studies for the analysis of spatial
networks of roads. In these studies, rather the pattern of point
distributions on the network has been studied as the formation
of clusters (e.g. Yamada and Thill 2004; Okabe et al. 2006;
Scheurer and Curtis 2008; Shiode and Shiode 2009; Dai et al.
2010).

3 Applied method

The harvest stands should be grouped into clusters in a way
that the distances between stands within a cluster do not exceed
a definedmaximum distance. This maximum distance depends
on the costs for moving the harvesting machines between the
stands and on the road trafficability. Following the suggestions
of Yiu and Mamoulis (2004) the hierarchical ‘single linkage
cluster analysis’ method has been applied. Using this method
the proximity measure is determined by the distances between
the harvest stands with respect to the spatial network.

The ‘distance between stands’ is an ambiguous measure.
The spatial network of roads corresponds to an undirected
weighted graph consisting of edges and nodes. The Dijkstra
distance (2) can be calculated only if its start and end points

1 km   

Fig. 1 Map of a section of the
Aracruz forest: forest
stands denoted in grey, rivers
in black, road systems in light
grey and gallery and protected
alluvial forests in white.
The shortest path on the spatial
network of roads between
two stands is shown as an
example in bold black
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lie on the edges of the graph. The harvest stands are poly-
gons without connection to the graph. Therefore, stand
identifiers are calculated as points, which represent the
harvest stands and lie on the edges of the graph according
to Okabe et al. (2006). For this purpose, first all edges
adjacent to a given harvest stand are selected. After that,
the point of the closest edge with shortest distance to the
stand’s centroid is taken as stand identifier and is allocated
the same identification as the stand. The stand identifiers are
simply referred to as xi, i01…n, where the selected harvest
stand is denoted by the index i.

Generally, the distances between all stand identifiers are
to be stored in the distance matrix D0(ddij) with n(n−1)/2
independent values. The computing time to fill the matrix D
increases by O(n2) (Yiu and Mamoulis 2004). Because of
this quadratic relation, the distance matrix grows rapidly
with increasing number of harvest stands. Therefore, the
method is not very feasible for any kind of application with
a substantial number of harvest stands.

By using the ‘single linkage cluster analysis’ method it is
possible to reduce the just quoted amount of distance calcula-
tion. The dendrogram as the result of this method is a subset of
the geometries from the Delaunay triangulation using Euclid-
ian distances (1) (Steinhausen and Langer 1977) and is equiv-
alent to the minimum spanning tree (Gower and Ross 1969;
Urban and Keitt 2001; Kruskal 1956). This binary tree con-
nects all the harvest stands with a minimum total length. A
weak-filled matrix D by triangulation is sufficient to perform
the ‘single linkage cluster analysis’method or to calculate the
minimum spanning tree respectively.

Concerning these considerations the described procedure
of the ‘single linkage cluster analysis’ method using the Eu-
clidian distances (1) can be transformed to a method with the
distance measure shortest path on a spatial network of roads
(2). The filling process of the matrix D with distances (2)
comprises the following three steps:

Step 1. Calculation of stand identifiers representing the
harvest stands

First, all stand identifiers of the harvest stands
are to be calculated as described above.

Step 2. Delaunay triangulation of these stand identifiers
The stand identifiers are meshed by a Delaunay

triangulation using Euclidian distances (1) (Delaunay
1934). The neighboured stand identifiers of the tri-
angles are called natural neighbours (Gower and
Ross 1969).

Step 3. Adding distances to D for adjacent stand identifiers
The natural neighbours to each stand identifier

are used only for the selection of presumed natural
neighbours on the spatial network and are examined
with consideration of the distance function (2). To
this, all shortest paths are computed on the spatial

network from a stand identifier to its natural neigh-
bours. Subsequently it is checked, if a shortest path
intersects other stand identifiers. If other stand iden-
tifiers were intersected, the shortest path ddij is
decomposed into partial paths ddi1, dd12 … ddkj that
are entered in the matrix D. Otherwise the shortest
path ddij is stored in the matrix D. The partial paths
themselves are part of the shortest connections be-
tween the stand identifiers.

The advantage of this approach is a remarkable
reduction of distance calculations (2). The number
of natural neighbours calculated for 5,000 analysed
harvest stands in Aracruz varied between 3 and 12.
In average only six shortest paths from each stand
identifier to other stand identifiers were required.
This resulted in an almost linear processing time
during calculation. The time required increased
roughly by a factor of O(n) instead of O(n2).

The identification of the minimum spanning tree
for a given distance matrix D is the result of the
‘single linkage cluster analysis’ method and was
derived quantitatively by the following procedure
according to Kruskal (1956). The n stand identifiers
result initially in the set of sets C00{{1}, {2}… {n}}
with n clusters. The elements of the distance matrix D
are sorted by increasing distance and saved in a
distance list. Furthermore, the indices of the rows
and columns are included in the sorted list. In any
case, the first element of this list with the stand
identifiers (p, q), (p<q) ∧ p, q ∈ {1 … n} is an
element of the minimum spanning tree. The union
of the two individual sets or clusters {p} and {q}
results in the new cluster {p, q}. C0 then converts to
C10{… {p, q}…}. Three cases can arise for the next
list element:

(a) {r} and {s} remain individual clusters in C1 and
are united in the cluster

r; sf g : C2 ¼ . . . p; qf g . . . : r; sf g . . .f g:
(b) {r} or {s} already belong to a cluster with more

than one element. Should, for instance, s ∈{p, q},
then the union {p, q} ∪ {r} is part of the minimum
spanning tree. This then results in the quantity:
C20{… {p, q, r} …}.

(c) r and s already belong to a set (cluster).

In the cases (a) and (b), the elements of the sorted
distance list are marked and case (c) prevents from creating
cycles. The sorted distance list is searched until the set {{1,
2, … n}} is reached. The marked elements in the distance
list form the minimum spanning tree from which the clusters
are generated. Deleting all the distances greater than the
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chosen maximum distance from the minimum spanning tree
leaves only those groups, in which the distance to each other
is smaller than the chosen maximum distance.

In the following, the presented method is illustrated by an
example.

4 Result of a clustering in practice

The forest area of Aracruz comprises nearly 200,000 ha Eu-
calyptus plantations with nearly 24,000 stands. Every year,
about 3,000 stands are harvested.

From these stands, an example is given here with n047
harvest stands (Fig. 2) to apply the method ‘single linkage
cluster analysis’ using distance Eq. (2). In the Aracruz
forests, the quality and state of roads allow a maximum
distance of 3,000 m for the movements of the crawler
harvester between the stands. Therefore, the quantity of
the chosenmaximum distance depends on the local conditions
and the applied harvest technology. The calculations are based
on the locations of harvest stands and on the spatial network of
roads.

At first the point geometries of the stand identifiers, repre-
senting the harvest stands on the spatial network, are calcu-
lated (Fig. 3).

The natural neighbours of stand identifiers can be deter-
mined by triangulation to calculate the reduced number of the
shortest paths or the shortest partial paths respectively be-
tween stand identifiers. The shortest paths are stored in the
attribute table of a line-layer instead of a distance matrix D.
The attribute table of this layer contains the dd values and the
identifications of the affected harvest stands. For the 47 har-
vest stands, only 99 distances, instead of 1,081 (0 n (n−1)/2),
needed to be computed to derive the minimum spanning tree.
The lines representing the minimum spanning tree are shown
in bold (Fig. 4).

Harvest stands can only be part of a cluster if the distances
between them are below a definedmaximum distance. For this
example, a maximum distance of 3,000 m has been chosen.
The clusters of harvest stands are generated by removing all
the edges greater than 3,000 m of the minimum spanning tree
(Fig. 5).

1 km

Fig. 2 Spatial network of roads (grey lines) and a selected set of 47
harvest stands (black polygons)

1 km

Fig. 3 Spatial network of roads (grey lines) and the calculated stand
identifiers (black points) representing the harvest stands as point-layer

1 km

Fig. 4 The reduced distance matrix D of the distances by Eq. (2) (black
lines) as a line-layer and the minimum spanning tree (bold black lines)

1 km

Fig. 5 The deletion of distances greater than 3,000 m from the min-
imum spanning tree results in clusters (bold black lines) of stand
identifiers or harvest stands respectively. Three of them are individual
clusters (black points)
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In Fig. 5, the bold lines indicate how five harvest clusters
might be connected. Within these harvest clusters the dis-
tances between the stand identifiers are less than the chosen
3,000 m using distance equation (2).

In addition to the harvest clusters, single stand identifiers can
be seen (Fig. 5). They represent stands that do not fulfil the
distance requirements. These stands must be harvested sepa-
rately, according to the distance requirements.

5 Discussion

The advantage of the presented method is the modification of
the standard distance (1) in favour of a more realistic measure
(2). This is achieved by using the shortest path between two
points on the existing network of roads instead of the Euclid-
ian distance. Consequently, the access to an accurately digi-
tised road network as digital dataset is required. The method
programmatically developed in the years 2003–2004 has been
tested and evaluated at Aracruz (Brazil), where it has been
used successfully since then.

The presented method is appropriate for larger enterprises
that need to schedule a large number of stands for harvesting
in a given planning period and want to concentrate harvesting
in specific areas due to the technically complex nature of
operations. A plan intended harvest stands can be checked
with respect to their spatial distribution and the mutual dis-
tances. Individual stands (Fig. 5) can be removed from the
plan and replaced by stands with better spatial location. The
clustering of harvest stands and the concentration of harvest-
ing operations include significant logistical advantages. Yet
smaller enterprises may also benefit from harvesting in groups
wherever topographic obstacles prevail in the forest area. The
method can be applied to improve multi-objective long-term
planning models with spatial objectives (Chen and von
Gadow 2002; Öhman and Lämas 2003).

Generating clusters of harvest stands leads to a reduction
of timber harvesting costs mainly because the time for site
transfers and total driving distances can be reduced. The site
transfer times and the related costs vary and depend on the
type of transfer: self-driving of the machine or transporting
the machine by a flatbed trailer.

In the meantime it has become obvious that the clustering
of harvest stands is necessary also in other countries. In
Germany for example 2009 the contractors worked in an area
with a mean radius of 143 km. The average transport cost by
flatbed trailer is 8.50 €/km (Narjes 2009). Therefore, the
economic break-even-point for using a flat-bed trailer as op-
posed to driving the machine itself is 15 km. Thus, a contrac-
tor who has an action radius of more than 140 km can use the
method for clustering stands when planning his harvest activ-
ities and may decide to take 15 km as the maximum distance
for clustering the stands.

After the harvest stands are successfully divided in clus-
ters, it is possible to further optimise machinery deployment
within a harvest cluster. This corresponds to the classical
‘Travelling Salesman Problem’ or the ‘Chinese Postman
Problem’. Heuristic procedures like ‘simulated annealing’,
‘tabu search’ or ‘genetic algorithms’ are available to identify
the optimal circuit within and between the clusters (Pirlot
1996; Michalewicz 1999).

Clustering harvest stands is a sub-process of the whole
wood supply chain. The optimisation of a sub-process, how-
ever, does not necessarily lead to the optimisation of the whole
process. As timber harvesting procedures involve felling, for-
warding, storing and transporting logs to the mill, these pro-
cesses need to be coordinated in order to optimise the whole
wood supply chain.
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