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Abstract
& Introduction Wildfires are considered the most important
disturbance in the Mediterranean Basin, and some are
propagated over long distances due to lift-off and ignition of
firebrands.
& Objectives To improve our knowledge of firebrands in-
volved in spotting fires, flammability characteristics of eight
types of firebrands commonly generated by wildfires in
Southern Europe were determined under laboratory conditions.
& Results All the firebrands tested showed 100% ignition
frequency but with a wide range of time to ignition and
flaming duration. Weight loss during combustion was
exponentially related to time, and there was a decrease in
the ratio of the weight at temperature T to the initial weight
with increasing temperatures. In our experimental condi-
tions, there was a significant effect of fuel moisture content
on time to ignition, flaming duration, combustion and
thermal decomposition. On the basis of the characteristics
analysed, three firebrand groups have been identified in

relation to spotting: heavy firebrands with ability to sustain
flames, efficient for long-distance spotting (pine cones);
light firebrands with high surface-to-volume ratio, efficient
for short-distance spotting (leaves and thin barks); and light
firebrands with low surface-to-volume ratio, efficient for
short and, occasionally, long-distance spotting (all the other
types of firebands).

Keywords Firebrand . Fire behaviour . Flammability
parameters .Wildfire . Ember

1 Introduction

In the Mediterranean Basin, wildfires alter thousands of
hectares of forest and shrubland ecosystems (JRC 2009).
Some of these wildfires are propagated over long distances
due to the spotting mechanism. Spotting is frequently
related to crown fires; it complicates wildland fire control
and is one of the main causes of loss of homes in wildland-
urban interface areas. Spotting is a fire propagation
mechanism which spreads fire by producing firebrands that
are carried up in the rising convection column and then drift
and fall on remote sites. Despite its important role in fire
spread, spotting has rarely been modelled. McArthur (1967)
produced an empirical model that predicts mean spotting
distance for Eucalyptus forests. Albini developed several
mathematical models to predict potential spot fire distance
from torching trees (Albini 1979), a burning pile (Albini
1981) and a wind-driven surface fire (Albini 1983).
Gardner et al. (1999) reviewed the main fire models and
showed that most simulations do not include the influence
of firebrands on fire pattern. Hargrove et al. (2000)
developed a fire model (EMBYR) incorporating the effects
of fuel moisture and wind on fire ignition and spread,

Handling Editor: David Hibbs

Electronic supplementary material The online version of this article
(doi:10.1007/s13595-011-0056-4) contains supplementary material,
which is available to authorized users.

A. Ganteaume (*) :M. Jappiot : C. Lampin-Maillet
Cemagref, UR EMAX,
3275 Route de Cézanne, CS 40061,
13182 Aix-en-Provence, France
e-mail: anne.ganteaume@cemagref.fr

M. Guijarro :C. Hernando
INIA, CIFOR,
28040 Madrid, Spain

P. Pérez-Gorostiaga : J. A. Vega
CIF Lourizán,
36153 Pontevedra, Spain

Annals of Forest Science (2011) 68:531–541
DOI 10.1007/s13595-011-0056-4

http://dx.doi.org/10.1007/s13595-011-0056-4


including the role of firebrands in the spread and spatial
pattern of crown fires.

Spotting comprises three phases: (a) the generation of
firebrands from burning vegetation and structures, (b) their
subsequent transport through the atmosphere by external and
heat generated winds, and (c) potential spot fire ignition after
the firebrand has landed. Production of firebrands from
burning vegetation has rarely been studied (but see Manzello
et al. 2007, 2008), whereas transport of embers has received
more attention (e.g. Tarifa et al. 1967; Albini 1983;
Woycheese et al. 1999; Himoto and Tanaka 2005; Anthenien
et al. 2006). Research to quantify the transport of firebrands
made of burning vegetation has mainly concentrated on
spherical and cylindrical firebrands. Some experimental
studies have also been conducted on the ignition of fuel beds
due to firebrand impact (e.g. Waterman and Takata 1969; Ellis
2000; Pérez-Gorostiaga et al. 2002; Manzello et al. 2006a,
2006b; Ganteaume et al. 2009), but little empirical data are
available on firebrands and their burning characteristics.

Firebrands lofted into the atmosphere may be carried by
winds over long distances (up to several kilometres). So,
knowledge of their physical characteristics is useful for
improving models that deal with firebrand trajectories. Hot
firebrands with a significantly long burn-out time can land
on fuel sources far removed from the initial fire, resulting in
spot fire ignition and increased rates of spread (Manzello et
al. 2007). Thus, firebrand flammability characteristics such
as ignitability (assessed by time to ignition or ignition
frequency), sustainability (assessed by the duration of
flames), combustibility (assessed by gross heat combustion)
or thermal decomposition have been studied because of
their importance in quantifying firebrand efficiency in the
ignition of spot fires. Digital simulations of weight loss by
the firebrands as a function of time (combustion) and of
temperature (thermal decomposition) will be useful to
assess the temperatures involved in the decomposition of
the vegetation and to analyse variations between plant
species that generate firebrands.

The aim of the present study was to assess the efficiency
of firebrands commonly encountered in forest ecosystems
of Southern Europe to ignite spot fires based on physical
and flammability characteristics. This study was part of the
experimental work conducted in the SALTUS Project, a
more comprehensive research project on the mechanisms
involved in spot fires (SALTUS 2001). It was based on the
assumption that the selected firebrands are amongst those
most commonly involved in spot fires in the study regions.

2 Materials and methods

Experiments on firebrand characteristics were carried out
under laboratory conditions by three research teams (INIA

and CIF in Spain; Cemagref in France). The three teams
used similar methodologies for testing the most common
species from each study region: Central and North-western
Spain and Southern France (Quézel and Médail 2003).

2.1 Types and physical characteristics of firebrands

Eight kinds of firebrands from different parts of trees and of
various shapes were studied: pine twigs (Pinus halepensis
and Pinus pinea), pine bark plates (P. halepensis, Pinus
pinaster, P. pinea and Pinus radiata), Eucalyptus bark
(Eucalyptus globulus), leaves (E. globulus and Quercus
ilex), pine cone scales (P. halepensis, P. pinaster and P.
pinea), pine cones (P. halepensis), acorns (Q. ilex) and bark
cubes (Quercus suber).

Because particle geometry is an important factor in
determining the transport and combustion of firebrands
(Anthenien et al. 2006), their dimensions (in centimetres)
and weights were measured. Dimensions were measured
using a 10−4-m accuracy micrometre. For pine twigs and
cone scales, only thickness was measured. For the bark
samples, a rectangular shape (2×3 to 5 cm) was chosen, but
small cubes (roughly 1 cm3) were cut in the Q. suber bark.
To characterize the leaf surface exposed to hot gases and fire
during combustion, leaf width and length were measured
along the central vein (without taking the petiole into account)
and leaf thickness was measured avoiding thick veins. To
obtain relatively stable weight data, the samples were oven-
dried at 60°C for 24 h. For all the firebrands, depending on
their shape (cylindrical, rectangular or spherical), the surface
of contact (in square centimetres) with the fuel bed, the total
surface (in square centimetres), the volume (in cubic
centimetres) and the total surface-to-volume ratio were
calculated using geometrical formulae.

2.2 Ignition frequency, time to ignition and duration
of flames

We assessed flammability of the firebrands using an
experimental device partially based on the “flammability
measurement method” (Delabraze and Valette 1974) used
by other authors (Valette 1988; Hernando et al. 1994). The
device consists of a 500-W electric radiator with a 10-cm
diameter radiant disk; the surface temperature was 420°C at
steady-state regime. After weighing and measuring, each
firebrand was exposed to the heat source. Firebrands longer
than the electric radiator were trimmed to fit it. Firebrand
samples were in direct contact with the electric radiator, the
surface of contact depended on their type (see Table 1). The
surface touching the radiator was assumed to be close
enough to the heat source to undergo heat transfer effects in
a homogeneous way. Once samples were placed on the
electric radiator, the time to ignition (TTI) and flame
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extinction (enabling the calculation of the flaming duration
(FD) of the firebrand) were recorded for each firebrand.
The ignition frequency of the firebrand was calculated as
the percentage of tests in which firebrands ignited. Each
firebrand was classified according to its ignition frequency
and its mean time to ignition following Valette’s classifica-
tion (Valette 1988): 0=very difficult to ignite; 1=difficult to
ignite; 2=flammable; 3=moderately flammable; 4=highly
flammable; and 5=extremely flammable. It should be noted
that the above classification was established for tests
performed with a heat source and a pilot flame while in
the present study, no pilot flame was used. We nevertheless
selected this classification because it enabled us to compare
different firebrands.

2.3 Loss of weight with time

The experimental device was the same electric radiator
described above, but included simultaneously monitoring
weight loss of the firebrands during combustion, measured at
1 s intervals. This test was only conducted on P. halepensis
bark plates, P. halepensis cone scales and Q. suber bark
cubes as the flaming combustion of needles and leaves was
too rapid and the weight was too low to be monitored in the
selected timeframe. For each firebrand, two levels of fuel
moisture content (FMC) were selected: air-dried samples
and oven-dried samples (dried at 60°C for 24 h).

For each firebrand and each FMC, 50 samples were
tested and the following parameters were measured: TTI
(time elapsed from the moment the firebrand was placed on
the radiator to the moment of ignition), FD (time during
which combustion of the firebrand continued with visible
flame), combustion duration (CD; time during which
combustion of the firebrand continued without flame, i.e.
the glowing time of the firebrand), initial weight before
ignition (M1), weight after combustion with flame (M2),
weight after combustion without flame (M3) and weight
losses (M1–M2)/M1 and (M1–M3)/M1.

2.4 Loss of weight depending on temperature

To study thermal decomposition, weight loss had to be
analysed as a function of temperature. The furnace used in
the experiment heated to 1,100°K. Thermal decomposition
was measured on eight firebrands: needles of Pinus
eldarica, P. halepensis, P. pinaster and P. pinea; twigs of
P. halepensis; bark plates of P. halepensis; cone scales of P.
halepensis; and bark cubes of Q. suber.

First, each sample was oven-dried at 60°C for 24 h, then
weighed with a precision of 0.001 g (initial weight of 5 g).
Five samples for each temperature were analysed without
opening the furnace, i.e. without a supply of oxygen.
Temperatures ranged from 373.15°K to 973.15°K, at 50°K

increments. Changes in the MT/MI ratio (weight at
temperature T/initial weight), which is a function of
temperature where MT is the weight (milligrammes) at
temperature T (°K) and MI is the initial weight (milli-
grammes), were analysed.

2.5 Gross heat of combustion

To estimate the gross heat of combustion of the firebrands,
we used standard methods (Spanish Standard UNE 23103–
78 and International Standard ISO 1716 of 1973). All fuel
samples were ground individually to 5.10−4 m in a mill.
From the ground material, pellets of about 1 g were
prepared using a hand press, oven-dried at 100±5°C for
24 h and then weighed. Measurements were made with an
adiabatic bomb calorimeter with a platinum resistance
sensor (PT-100). Both mill and bomb calorimeter were
manufactured by IKA® and were located in the Forest Fire
Laboratory of INIA-CIFOR, Spain. For each type of
firebrand, the same measurements were made on two
samples. A third sample was included whenever the
difference between the first two values was more than 2%
of the mean value.

According to the classification proposed by Elvira and
Hernando (1989), one class of forest fuel corresponds to
each gross heat of combustion (GHC) measured: medium:
18,810 kJ kg−1 < GHC < 20,900 kJ kg−1 , h igh:
20,900 kJ kg−1<GHC<22,990 kJ kg−1 and very high:
22,990 kJ kg−1<GHC.

2.6 Data analysis

As according to the Kolmogorov–Smirnov test, the data
distributions were not normal, so a one-factor non-
parametric analysis of variance (ANOVA; Kruskal–Wallis
test) was used to test the significance of the relationship
between the type of firebrands (predictor variable) and the
response variables TTI, FD and MT/MI. In the combus-
tion experiment, the distributions were not normal
(Kolmogorov–Smirnov test), so means were compared
using the Mann–Whitney non-parametric test, which tests
the significance of the effects of the predictor variables
“moisture content” and “firebrand type” on the response
variables TTI, FD, CD, (M1–M2)/M1 and (M1–M3)/M1.
As the gross heat of combustion experiments were carried
out on two or three samples of each type of firebrand, a one-
way non-parametric ANOVA (Kruskal–Wallis test) was used
to validate the significance of the relationship between ‘type
of firebrand’ (predictor variables) and ‘gross heat of
combustion’ (response variable). A significant relationship
between the variables was assumed when the probability was
less than 0.05. The number of replicates of each test is shown
in Tables SI and SII, available at www.afs-journal.org. Non-
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linear regression analysis (exponential model) was used to
show the correlation between temperature and the ratio MT/
MI during thermal decomposition of different firebrands.
The firebrand thermal decomposition can be modelled
using a non-linear statistical analysis of the following
equation:

y ¼ expðaþb»xÞ ¼ expðaÞ»expð�b»xÞ

where

y mean proportion of weight remaining (MT/MI)
x temperature
a intercept
b thermal decomposition loss rate.

Finally, to identify groups of particles or species with
common characteristics in relation to spotting, a hierarchi-
cal cluster analysis was carried out by using Ward’s method
(Johnson and Wichern 1982). All analyses were performed
using Statgraphics Centurion XV.

3 Results

3.1 Physical characteristics of firebrands

Mean and standard deviation of weight, surface of contact,
total surface, volume and surface-to-volume ratio of the
firebrands are presented in Table 1. Range is listed in Table
SI, available at www.afs-journal.org. The cones of P.
halepensis were the heaviest firebrands (31.31 g) used in
the experiment and bark cubes of Q. suber were amongst
the bulkiest (L=1.5 cm; w=1.3 cm; t=1.1 cm). The
firebrand with the smallest surface area to volume ratio
was P. halepensis cone (0.88 cm−1); indeed, it presented the
highest surface of contact (48.27 cm2) and volume
(194.17 cm3). Results revealed high variability within each
type of firebrand (see Table SI), but given the large number
of samples (n>200), this variability may be due to
ecological and physiological mechanisms.

3.2 Ignition frequency, time to ignition and flaming
duration

All the firebrands showed 100% ignition frequency. Results
of time to ignition and flaming duration (mean and standard
deviation) of the firebrands are shown in Table 1. Range is
presented in Table SI, available at www.afs-journal.org.
Both TTI and FD showed a wide range of variability. The
type of firebrand had a significant effect on TTI and FD,
and this effect was independent of the part of the tree or the
species from which the sample was taken (Kruskal–Wallis
test: KW>100 and p<0.0001). Q. ilex leaves presented the

shortest time to ignition and the shortest flaming duration.
P. radiata bark plates had the longest TTI and P. halepensis
cones the longest FD (Table 1).

3.3 Loss of weight with time

Firstly, it should be noted that temperatures reached in
combustion tests were much lower than those observed in
wildfires, but nevertheless enabled us to record the
flammability parameters particular to each firebrand.
Indeed, as fires are heterogeneous, sustained temperatures
are rarely observed and can vary significantly over small
spatial scales. In addition, if the particles land on fuels, lags
in ignition will be important in determining fire behaviour.

The values recorded during combustion are presented in
Table 2 and Table SII (available at www.afs-journal.org).
The air-dried Quercus suber bark underwent the greatest
weight losses (M1–M2)/M1 (0.86) and (M1–M3)/M1
(0.90). The oven-dried P. halepensis bark underwent the
smallest weight loss after flaming combustion (M1–M2)/
M1 (0.72) and the oven-dried P. halepensis cone scales
underwent the smallest weight loss after glowing combus-
tion (M1–M3)/M1 (0.83). It was not possible to record the
weight loss of Q. ilex leaves as the initial weight of this
firebrand was too light. Air-dried P. halepensis cone scales
and bark presented the longest time to ignition (19.49 s and
16.76 s). The most ignitable firebrands were Q. ilex leaves
(regardless of the FMC). Q. suber bark presented the
longest flaming and combustion durations and Q. ilex
leaves the shortest.

3.3.1 The effect of fuel moisture content

Regarding time to ignition, the effect of FMCwas significant
in all the firebrands tested (Mann–Whitney test: U>2.5 and
p<0.01). With the exception of Q. suber bark (Fig. 1), time
to ignition decreased with decreasing FMC. Regarding
flaming duration, moisture content was significant only in
P. halepensis bark, Q. suber bark and Q. ilex leaves (Mann–
Whitney test: U>2.2 and p<0.05), flaming duration
decreased with a decrease in FMC. An increase in fuel
moisture resulted in an increase in flaming duration
except in P. halepensis cone scales and needles (Fig. 1).
Regarding combustion duration, only Q. suber bark and
Q. ilex leaves showed a significant decrease in combustion
duration at the lowest FMC values (Mann–Whitney test:
U>4 and p<0.0001).

Regarding weight loss following flaming combustion,
FMC had a significant effect on all the firebrands (Mann–
Whitney test: U>2 and p<0.05). Regarding weight loss
following glowing combustion, the effect was not signifi-
cant in Q. suber bark cubes (Mann–Whitney test: U=1.55
and p=0.12).
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3.3.2 The effect of the type of firebrand

In the case of air-dried firebrands, time to ignition differed
significantly (Mann–Whitney test: U>2.23 and p<0.05)
except between P. halepensis bark and P. halepensis cone
scales (Mann–Whitney test: U=1.58 and p=0.11). For
oven-dried firebrands, time to ignition differed significantly
only between Q. ilex leaves and P. halepensis bark and
between P. halepensis bark and Q. suber bark (Mann–
Whitney test: U>3.8 and p≤0.0001).

Regardless of the FMC, the flaming duration differed
significantly among the firebrands tested (Mann–Whitney
test: U>2.4 and p<0.05).

The combustion duration differed significantly regard-
less of the FMC (Mann–Whitney test: U>3.9 and p<
0.0001) except between P. halepensis bark and cone scales
and between P. halepensis bark and Q. suber bark.

Regarding weight loss following flaming combustion,
values differed significantly regardless of the FMC (Mann–
Whitney test: U>8.2 and p<0.0001).

Regarding weight loss following glowing combustion,
the values of the air-dried firebrands differed significantly
(Mann–Whitney test: U>2.18 and p<0.05). Regarding
oven-dried firebrands, the values of Q. suber bark differed
significantly from the other firebrands (Mann–Whitney test:
U=16.72 and p<0.0001).

The ranking orders of the different firebrands for both
FMCs are presented in Fig. 1.

3.4 Loss of weight depending on temperature

For each type of firebrand, changes in the MT/MI ratio (%)
are presented in Fig. 2. There was a decrease in the MT/MI
ratio with an increase in temperature. The greatest weight loss
occurred in Q. suber bark (MT/MI varying from 98.66% to
1.63%) and P. halepensis cone scales (from 97.69% to
0.54%). The type of firebrand did not have a significant
effect on thermal decomposition (Kruskal–Wallis test: KW=
5.39, p=0.61). Moreover, firebrands such as needles of
different Pinus species displayed similar behaviour in their
thermal decomposition. P. pinea had the lowest MT/MI ratio
(2.23%) at the highest temperature (973°K). This ratio was
the highest amongst the pine needles when the temperature
was the lowest (373°K). P. pinea underwent faster thermal
decomposition than the other species. Variations were
observed between different firebrands such as P. halepensis
twigs, bark or bark plates. Cone scales underwent the fastest
thermal decomposition, and needles the slowest (Fig. 2).

Non-linear regression analyses revealed that there was a
strong negative relationship between temperature and
weight loss (% MT/MI) for all the firebrands (Fig. 2). P.
elderica needles presented the highest correlation (correla-
tion coefficient=−0.989) and P. halepensis cone scales theT
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lowest correlation (correlation coefficient=−0.956) (see
equations that give the loss of the weight (y) depending
on temperature (x) for each type of firebrand, in Table SIII,
available at www.afs-journal.org).

3.5 Gross heat of combustion

The gross heat of combustion of each type of firebrand
(average of two or three samples) as well as the class of
forest fuel is presented in Table 3. The type of firebrand
had a significant effect on gross heat of combustion (GHC;
KW=37.15, p=0.0007) and the bark cubes of Q. suber had
the highest value (GHC=27613 kJ kg−1). When only bark
and cone scale were tested, the plant species had a
significant effect on GHC (KW=10.58, p=0.032, maxi-
mum GHC for P. radiata and KW=6.25, p=0.044,
maximum GHC for P. halepensis). Plant species and
geographical origin of Q. ilex leaves had a significant
effect on GHC (KW=6.25, p=0.044, maximum GHC for

E. globulus leaves). The GHC of Q. ilex leaves from Spain
and France differed significantly (Table 3).

3.6 Cluster analysis

The hierarchical cluster analysis based on the values of the
physical characteristics of firebrands, and their time to
ignition and flaming duration identified three groups (see
Fig. S1, available at www.afs-journal.org): (1) P. halepensis
cone, (2) leaves of E. globulus and Q. ilex and bark of E.
globules and (3) all the other types of firebrands.

4 Discussion

The burning characteristics of the different types of
firebrands tested in this study address important aspects of
their flammability and hence their capability to ignite spot
fires (Ganteaume et al. 2009). Physical characteristics such
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loss following flaming combustion and weight loss following glowing
combustion according to the type and moisture content of firebrand (Phn
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as firebrand weight, surface-to-volume ratio or surface
contact revealed differences in the flammability character-
istics of these firebrands.

Of all the firebrands, P. halepensis cones were the
heaviest and had the lowest surface-to-volume ratio. These
characteristics may explain flammability parameters such as
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their long flaming duration compared with the other
firebrands. The average flaming duration of this type of
firebrand (415 s) is within the range (207 to 740 s) recorded
for burning characteristics of cones from eight American
pine species (Fonda and Varner 2004). Because of their
ability to sustain flames, P. halepensis cones were thought
to be one of the most efficient firebrands in a spotting fire.
This was confirmed in laboratory tests (Ganteaume et al.
2009). However, a field study (SALTUS 2001) showed that
conifer cones are not a very common firebrand. Conversely,
in our study, Q. ilex leaves were the lightest firebrands with
a high surface-to-volume ratio and burned the most rapidly.
Generally speaking, in our experiments, regardless of their
FMC, needles and leaves burned most rapidly but for the
shortest time because of their low weight and high surface-
to-volume ratio. Because of their short time to ignition,
these firebrands were the most ignitable, the thinnest leaves
being the most ignitable (Montgomery and Cheo 1971).
According to Alessio et al. (2008), the ignitability of Q. ilex

leaves and P. halepensis needles was of the same order.
These firebrands did not sustain flames (very short flaming
and combustion durations) and even if they had a high
gross heat of combustion, they were too rapidly consumed
to be efficient firebrands for long-distance fire spotting.
Kane et al. (2008), analysing the burning characteristics of
oak leaves from southeastern USA, found flaming durations
ranging from 50.4 to 91.4 s and combustion durations
ranging from 216 to 399.8 s. These values are much higher
than those we found for Q. ilex leaves in our study, mainly
because the burning methods used in the two studied were
different. Kane et al. (2008) followed the method outlined
in Fonda et al. (1998) and Fonda (2001) and burned
samples of litter bed (15 g of oven-dried leaves) in a 35×
35-cm grid formed by eight xylene-soaked cotton strings,
whereas in our experiment, only one leaf per trial was
burned on an electric radiator. In our study, P. halepensis
needles had short flaming and combustion durations (at the
most 1.39 and 5 s) due to the direct contact of the needle on
the electric radiator whereas Fonda (2001) found much
longer durations for eight American pine species (respec-
tively, 63.5 to 195.4 s and 69.9 to 360.1 s) certainly due to
the increased packing ratio of the needles. This difference
in flaming durations was, indeed, mainly due to the above-
mentioned difference in experimental methods. In Mutch’s
(1970) study of the burning duration of P. ponderosa needles,
in which the author found an intermediate value (16.7 s), a
different experimental method was also used. In his work,
Mutch conducted laboratory combustion tests on 45.4 g fuel
samples placed in wire mesh baskets and ignited by xylene-
dipped string. In our study, using an epiradiator, the time to
ignition of P. halepensis needles was very short (less than
3 s). This result was also highlighted by Ormeño et al.
(2009), who also used an electric radiator as burning device.

Even with a bad ignitability but with a good sustainabil-
ity, Q. suber bark cubes underwent the greatest weight loss
with time at both fuel moisture contents (air-dried and
oven-dried). Consequently, this firebrand would not be very
efficient in igniting a spot fire over long distances.
Conversely, P. halepensis bark had the lowest weight losses
with time, with a short flaming duration but very long
combustion duration. Regarding thermal decomposition, P.
halepensis bark was also the most efficient firebrand amongst
the species studied; its ability to sustain combustion would
enable it to be effective even after being lofted over greater
distances. In our experimental conditions, most of the thermal
decomposition followed a charring combustion pathway that
would not occur in these fuels in natural conditions.

As can be seen in Table 3, only Q. suber bark presented
a very high gross heat of combustion; this characteristic
should favour its efficiency as a firebrand. P. halepensis
needles and cone scales, P. radiata bark and E. globulus
leaves showed a high gross heat of combustion, whereas

Table 3 Gross heat of combustion of firebrands (average of two or
three samples and standard deviation) and forest fuel class

Type of firebrand Gross heat of
combustion (kJ kg−1)

Class

Needles

Pinus halepensis 22,940 High

Twig

Pinus pinea 20,183 (98.91) Medium

Bark plates

P. halepensis 19,469 (35.76) Medium

Pinus pinaster 20,548 (94.56) Medium

P. pinea 20,040 (8.80) Medium

Pinus radiata 21,583 (17.96) High

Bark

Eucalyptus globulus 18,870 (118.4) Medium

Leaves

E. globulus 22,665 (44.4) High

Quercus ilex (France) 20,690 (105.09) Medium

Q. ilex (Spain) 19,345 (135.34) Medium

Cone scales

P. halepensis 20,962 (106.91) High

P. pinaster 20,537 (29.60) Medium

P. pinea 20,153 (285.95) Medium

Cone

P. halepensis 20,650 (63.34) Medium

Acorn

Q. ilex 19,067 (118.40) Medium

Bark cube

Quercus suber 27,654 (262.90) Very high

n=2 or 3
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that of the other firebrands was medium. The high GHC
recorded with P. halepensis needles could be attributed to
its higher production of essential oils and resins (Liodakis
and Kakardakis 2006). Núñez-Regueira et al. (1996)
predicted the risk of wildfire for different geographical zones
in Galicia (NW Spain) using the different heat of combustion
values of different species over a year. The values we
obtained with E. globulus bark as well as with the bark plate
and cone scale of P. pinaster are in the range of the values
measured by these authors over a period of a year (17,539
to 20,760 kJ kg−1 and 19,481 to 20,659 kJ kg−1). However,
E. globulus leaves presented higher GHC (22,665 kJ kg−1)
than the values obtained by the previous authors. Using
ground samples of needles collected during the dry season,
Liodakis and Kakardakis (2006) found a lower GHC for P.
halepensis than the value obtained in our experiments
(20,841 versus 22,940 kJ kg−1).

On the basis of these results and of the cluster analysis
(Fig. S1), three firebrand groups could be distinguished in
relation to spotting:

1. Heavy firebrands with ability to sustain flames. This
type of firebrands is more difficult to transport through
the atmosphere, but they have a high potential to ignite
spot fires after they have landed. Therefore, they would
be efficient firebrands for long-distance spotting. Pine
cones, as P. halepensis ones, are included in this group.

2. Light firebrands with high surface-to-volume ratio and
low ability to sustain flames. This type of firebrands is
easy to transport in the second phase of spotting, but they
are rapidly consumed. So they would only be efficient for
short-distance spotting. This group comprises leaves and
thin barks (e.g. E. globulus and Q. ilex leaves and E.
globulus bark). It must be noticed that Eucalyptus bark is
classically considered to be an effective firebrand (Pyne
et al. 1996), because it is easily lifted from the trees and
the curled shapes gives it aerodynamic features that allow
it to be carried out for long distance. But in our study, this
aerodynamic characteristic has not been analysed.

3. Light firebrands with low surface-to-volume ratio and
higher ability to sustain flames. This type of firebrands
has intermediate characteristics between groups 1 and 2,
but they are closer to group 2. They would be efficient
for short and, occasionally, long-distance spotting. All
the other types of firebrands, different from the pine
cones, leaves and thin barks, are included in this group.

5 Conclusions

To improve our knowledge of firebrands involved in fire
spotting, physical (weight, surface of contact, total surface,
volume and surface-to-volume ratio) and flammability

characteristics (ignition frequency, time to ignition, flaming
duration, combustion, thermal decomposition and gross
heat of combustion) of several types of firebrands com-
monly encountered in Southern Europe were determined in
laboratory conditions. The firebrands studied showed an
exponential loss of weight with time and a decrease in
thermal decomposition as a function of temperature.

On the basis of the characteristics analysed, three
firebrands groups have been identified in relation to
spotting: heavy firebrands with ability to sustain flames,
which would be efficient firebrands for long-distance
spotting (pine cones); light firebrands with high surface-
to-volume ratio, which would be effective for short-distance
spotting (leaves and thin barks) and light firebrands with
low surface-to-volume ratio which would be efficient for
short and, occasionally, long-distance spotting (all the other
types of firebands).

Fire spotting results from a complex interplay between
the numbers of firebrands produced, firebrand dispersal
distances, ignition probabilities of the recipient fuel class,
and the spatial arrangement of fuel types at the landscape
scale. The number of firebrands produced by each fuel type
and the probability of ignition may have compensating
effects on spotting behaviour; greater numbers of less-
successful firebrands may produce the same pattern as
fewer, more-successful ones (Hargrove et al. 2000).

Therefore, no strict recommendations could be derived
from the results obtained in this study. Nevertheless, these
results provide complementary information for potential
spotting analysis in forest and fuel management plans and
community wildfire protection strategies. Spotting poten-
tial, combined with forest structure data and fuel modelling,
would improve fire hazard assessment (Fernandes 2009).

In future works, the results presented in this paper could
be used as inputs for models describing the capability of
firebrands to be carried up in the rising convection column
or their capability to ignite secondary fires.
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