
HAL Id: hal-00930499
https://hal.science/hal-00930499

Submitted on 11 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Salinity stress alleviation using arbuscular mycorrhizal
fungi. A review

Porcel, Aroca, Juan Ruiz-Lozano

To cite this version:
Porcel, Aroca, Juan Ruiz-Lozano. Salinity stress alleviation using arbuscular mycorrhizal fungi. A
review. Agronomy for Sustainable Development, 2012, 32 (1), pp.181-200. �10.1007/s13593-011-0029-
x�. �hal-00930499�

https://hal.science/hal-00930499
https://hal.archives-ouvertes.fr


REVIEW PAPER

Salinity stress alleviation using arbuscular mycorrhizal
fungi. A review

Rosa Porcel & Ricardo Aroca &

Juan Manuel Ruiz-Lozano

Accepted: 2 November 2010 /Published online: 15 March 2011
# INRA and Springer Science+Business Media B.V. 2011

Abstract Salinity is one of the most severe environmental
stress as it decreases crop production of more than 20% of
irrigated land worldwide. Hence, it is important to develop
salt-tolerant crops. Understanding the mechanisms that
enable plant growth under saline conditions is therefore
required. Acclimation of plants to salinized conditions
depends upon activation of cascades of molecular networks
involved in stress sensing, signal transduction, and the
expression of specific stress-related genes and metabolites.
The stress signal is first perceived at the membrane level by
the receptors and then transduced in the cell to switch on
the stress-responsive genes which mediate stress tolerance.
In addition to stress-adaptative mechanisms developed by
plants, arbuscular mycorrhizal fungi have been shown to
improve plant tolerance to abiotic environmental factors
such as salinity. In this review, we emphasize the
significance of arbuscular mycorrhizal fungi alleviation of
salt stress and their beneficial effects on plant growth and
productivity. Although salinity can affect negatively arbus-
cular mycorrhizal fungi, many reports show improved
growth and performance of mycorrhizal plants under salt
stress conditions. These positive effects are explained by
improved host plant nutrition, higher K+/Na+ ratios in plant
tissues and a better osmotic adjustment by accumulation of
compatible solutes such as proline, glycine betaine, or
soluble sugars. Arbuscular mycorrhizal plants also improve
photosynthetic- and water use efficiency under salt stress.
Arbuscular mycorrhizal plants enhance the activity of
antioxidant enzymes in order to cope with the reactive

oxygen species generated by salinity. At the molecular
level, arbuscular mycorrhizal symbiosis regulates the
expression of plant genes involved in the biosynthesis of
proline, of genes encoding aquaporins, and of genes
encoding late embryogenesis abundant proteins, with
chaperone activity. The regulation of these genes allows
mycorrhizal plants to maintain a better water status in their
tissues. Gene expression patterns suggest that mycorrhizal
plants are less strained by salt stress than non-mycorrhizal
plants. In contrast, scarce information is available on the
possible regulation by the arbuscular mycorrhizal symbiosis
of plant genes encoding Na+/H+ antiporters or cyclic
nucleotide-gated channels. These genes encode proteins
with a key role in the regulation of uptake, distribution and
compartimentation of sodium and other ions within the
plant, and are major determinants for the salt sensitiveness
of a plant. Thus, we propose that investigating the
participation of cation proton antiporters and cyclic
nucleotide-gated channels on arbuscular mycorrhizal
symbiosis under salinity is a promising field that should
shed further light on new mechanisms involved in the
enhanced tolerance of mycorrhizal plants to salt stress.
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PIP Plasma membrane intrinsic protein
P5CS Δ1-pyrroline-5-carboxylate-synthetase
ROS Reactive oxygen species
RWC Relative water content
TIP Tonoplast intrinsic protein
SIP Small and basic intrinsic protein
Ψleaf Leaf water potential

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Morphological features and development of arbuscular

mycorrhizal symbiosis. . . . . . . . . . . . . . . . . . . . . . . .3
3. Ecological significance of arbuscular mycorrhizal

symbiosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
4. Salinity effects on plants. . . . . . . . . . . . . . . . . . . . . .5
5. Salinity effects on arbuscular mycorrhizal fungi. . . . . .6
6. Arbuscular mycorrhizal effects on plant biomass and

nutrient uptake. . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
7. Biochemical changes. . . . . . . . . . . . . . . . . . . . . . . .8

7.1. Proline and other osmolytes. . . . . . . . . . . . . . . .8
7.2. ABA content. . . . . . . . . . . . . . . . . . . . . . . . . .9
7.3. Antioxidant system. . . . . . . . . . . . . . . . . . . . . . .9

8. Physiological changes. . . . . . . . . . . . . . . . . . . . . . .10
9. Molecular changes. . . . . . . . . . . . . . . . . . . . . . . . . .11

9.1. P5CS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
9.2. Aquaporins. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
9.3. Late embryogenesis abundant proteins. . . . . . . .12
9.4. Cation channels and transporters. . . . . . . . . . . . .13

9.4.1. Na+/H+ antiporters. . . . . . . . . . . . . . . . . . .13
9.4.2. Cyclic nucleotide-gated channels. . . . . . .14

10. Perspectives for future studies. . . . . . . . . . . . . . . .15
11. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1 Introduction

Salinization of soil is a serious land degradation problem
and is increasing steadily in many parts of the world, in
particular in arid and semiarid areas (Giri et al. 2003; Al-
Karaki 2006). Increased salinization of arable land is
expected to have devastating global effects, resulting in
30% land loss within the next 25 years and up to 50% by
the middle of twenty-first century (Wang et al. 2003).
High soil salinity causes both hyperionic and hyper-
osmotic stress and can lead to plant demise. Salinity in a
given land area depends upon various factors like amount
of evaporation (leading to increase in salt concentration),
or the amount of precipitation (leading to decrease in salt
concentration) (Mahajan and Tuteja 2005). High salt
concentration (Na+) in particular which deposit in the soil

can alter the basic texture of the soil resulting in decreased
soil porosity and consequently reduced soil aeration and
water conductance. High salt depositions in the soil
generate a low water potential zone in the soil, making it
increasingly difficult for the plant to acquire both water as
well as nutrients. The basic physiology of high salt stress
and drought stress overlaps with each other. Therefore,
salt stress essentially results in a water-deficit condition in
the plant and takes the form of a physiological drought
(Mahajan and Tuteja 2005). In plants, both drought and
salinization are manifested primarily as osmotic stress,
resulting in the disruption of homeostasis and ion
distribution in the cell (Serrano et al. 1999; Zhu 2001).
Plants differ greatly in their tolerance to salinity, as
reflected in their different growth responses (Fig. 1). Salt
sensitive plants, also known as glycophytes include rice
(Oryza sativa), maize (Zea mays), soybean (Glycine max)
or beans (Phaseolus vulgaris), while some halophytes
plants are saltbush (Atriplex amnicola), alfalfa (Medicago
sativa), or pepercress (Lepidium sp.).

Plants, in their natural environment are colonized
both by external and internal microorganisms. Arbuscu-
lar mycorrhizal fungi (AMF) are ubiquitous among a
wide array of soil microorganisms inhabiting the
rhizosphere. These fungi constitute an important integral
component of the natural ecosystem and are known to
exist in saline environments (Giri et al. 2003). The
proportion of vascular plant species forming AM is
commonly overestimated (Trappe 1987), probably as a
result of the low proportion of species and environments
surveyed (Brundett and Abbott 1991). Although AMF
exist in saline soils, the growth and colonization of plants
may be affected by the excess of salinity, which can
inhibit the growth of microbes due to osmotic and/or toxic
effects of salts (Juniper and Abbott 2006). AM symbiosis
has been demonstrated to increase resistance to soil salinity in
a variety of host plants such as maize, clover, tomato,
cucumber, and lettuce (Rosendahl and Rosendahl 1991;
Ruiz-Lozano and Azcón 1996; Al-Karaki et al. 2001; Feng
et al. 2002).

Although it is clear that AM fungi mitigate growth
reduction caused by salinity, the mechanism involved
remains unresolved. So far, studies on salt stress tolerance
in mycorrhizal plants have suggested that AM plants grow
better due to improved mineral nutrition and physiological
processes like photosynthesis or water use efficiency, the
production of osmoregulators, higher K+/Na+ ratios and
compartmentalization of sodium within some plant tissues
(Ruiz-Lozano et al. 1996; Giri et al. 2003; Al-Karaki 2006).
In this review, we present a comprehensive analysis of
nutritional, biochemical, physiological, and molecular
changes that occur in plants when colonized by AM and
subjected to salt stress.
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2 Morphological features and development
of arbuscular mycorrhizal symbiosis

The arbuscular mycorrhizal fungi are the most complex group
of mycorrhizas which forms intraradical and extraradical
structures (Fig. 2): (1) intracellular hyphae forming coils,

often found in the outer layers of cortical parenchyma, (2)
the intercellular hyphae, (3) the intracellular hyphae with
numerous ramifications, i.e., the arbuscules, (4) the inter or
intracellular hypertrophied hyphae, i.e., the vesicles, (5) the
extracellular ramified hyphae, i.e., branched-absorbing struc-
tures (BAS), and (6) resistance propagules, i.e., the spores.

Fig. 2 a Schematic representation of arbuscular mycorrhizal symbi-
osis. Courtesy of Dr. A. Bago (CSIC, Spain). b Part of a clover root
showing the distribution of fungal structures in the root. The main
features shown are root hairs (rh) an entry point with a characteristic

diamond-shaped swelling equivalent to an appressorium, large
swollen vesicles, and “fuzzy” arbuscules. Courtesy of Dr. Jim Deacon
(The University of Edinburgh)

Fig. 1 Diversity in the salt
tolerance of various cultivated
and non-cultivated species. In
the figure, species growing at
less than 300 mM NaCl are
considered glycophytes while
those growing over 300 mM
NaCl are considered halophytes.
Pictures represent a arabidopsis
(Arabidopsis thaliana), b rice
(Oryza sativa), c saltbush
(Atriplex amnicola), d alfalfa
(Medicago sativa), e prickly
saltwort (Salsola kali), f barrier
saltbush (Enchylaena
tomentosa), g fringed redmaid
(Calandrinia ciliata),
h pepercress (Lepidium sp.)
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Arbuscular mycorrhizal fungal spores are able to
germinate in the absence of the host, but are unable to
produce extensive mycelia and to complete their life cycle
without establishing a functional symbiosis with a host
plant. The lack of host-regulated spore germination did not
represent a selective disadvantage, since AM fungi co-
evolved with heir host plants for more than 360 and
400 million years (Remy et al. 1994; Redecker et al. 2000).
Different efficient survival strategies have been inferred to
be active in these ancestral organisms to compensate for the
lack of host-regulated spore germination, e.g., a wide host
range (Smith and Read 1997), the regulation of infection
structure differentiation (Giovannetti et al. 1994), the ability
of multiple germination (Koske 1981), an energy-saving
mechanism operating when spores germinate in the absence
of the host (Logi et al. 1998). In addition to these strategies,
the ability to form wide hyphal networks by both pre-
symbiotic and symbiotic mycelia may represent a funda-
mental mechanism for increasing the chances of AM
symbionts to contact host roots (Giovannetti et al. 1999).

The establishment of the AM symbiosis begins with the
colonization of a compatible root by the hyphae produced
by AM fungal soil propagules, asexual spores or mycor-
rhizal roots. Even dead roots from annual plants might be a
good source of inoculum because they protect the fungus
from environmental hazards until the time when new
hyphae can grow out of the roots and colonize other plants
(Requena et al. 1996). After attachment of a hypha to the
root surface by means of an appressorium, the fungus
penetrates into the cortex and forms distinct morphologi-

cally specialized structures: Inter- and intracellular hyphae,
coils, and arbuscules. Arbuscules are specialized hyphae
similar to haustoria from plant pathogenic fungi. They are
presumed to be the main site of nutrient exchange between
the plant and the fungus (He and Nara 2007). After host
colonization, the fungal mycelium grows out of the root
exploring the soil in search of mineral nutrients, and it can
also colonize other susceptible roots (Breuninger and
Requena 2004). The fungal life cycle is completed after
formation of asexual chlamydospores on the external
mycelium (Fig. 3).

3 Ecological significance of arbuscular mycorrhizal
symbiosis

Ecological consequences of the interactions between plants
and the AMF for plant nutrition, growth, competition, stress
tolerance and fitness, as well as for soil structuring have
been often addressed. The key effects of AM symbiosis can
be summarized as follows: (1) enhancing uptake of low
mobile ions, (2) improving quality of soil structure, (3)
enhancing plant community diversity, (4) improving root-
ing and plant establishment, (5) improving soil nutrient
cycling, and (6) enhancing plant tolerance to (biotic and
abiotic) stress (Smith and Read 2008).

The contribution of AMF to plant nutrient uptake is
mainly through the acquisition of nutrients (especially
phosphorous, which is extremely immobile element in
soils) from the soil by the extraradical fungal hyphae,

Fig. 3 Schematic representation
of distinct morphological
stages identified during the
life cycle of arbuscular
mycorrhizal fungi
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especially from root-distant soil not depleted of nutrients by
the root. Fungal hyphae are functionally analogous to fine
root hairs, as both are nutrient uptake organs. Mycelium
extends the plant’s effective absorption surfaces beyond the
nutrient depleted zone that develops around the root caused
by direct root uptake processes (George 2000).

As a result of degradation/desertification processes,
disturbance of natural plant communities is often accom-
panied, or preceded by lost of physicochemical and
biological properties of the soil, such as soil structure,
plant nutrient availability, organic matter content, and
microbial activity. Therefore, in degraded and contaminated
soils, that are often poor in nutrients and with low water-
holding capacities, management of AM fungi is of great
importance (Jeffries and Barea 2001). The effect of the AM
fungi in cooperation with other microbes in the formation of
water-stable soil aggregates is evident in different ecological
situations (Andrade et al. 1995, 1998; Bethlenfalvay and
Schüepp 1994; Bethlenfalvay et al. 1999; Requena et al.
2001), and the involvement of glomalin, a glycoprotein
produced by the external hyphae of AM fungi, has been
demonstrated (Wright and Upadhyaya 1998). Because of its
glue-like hydrophobic nature, glomalin participates in the
initiation and stabilization of soil aggregates (Miller and
Jastrow 2000).

The influence of mycorrhizas on plant competition can
be expected to lead to changes in plant coexistence and
biodiversity. The microcosm experiment of Grime et al.
(1987) provided one of the first clear demonstrations that
AM fungi are potentially major determinants both of the
structure and diversity of plant assemblages. Similar results
have been obtained more recently by Van der Heijden et al.
(1998) showing not only increased diversity, but also
increased productivity, which was not observed in the
experiments of Grime et al. (1987). The effect of arbuscular
mycorrhizal in increasing diversity was the result of
improved growth and survivorship of AM subordinates,
associated with dominants that actually had their own
competitive ability reduced by AM colonization.

The well-known activities of nitrogen-fixing bacteria and
phosphate-solubilizing microorganisms improving the bio-
availability of the major plant nutrients N and P, are very
much enhanced in the rhizosphere of mycorrhizal plants
where synergistic interactions of such microorganisms with
mycorrhizal fungi have been demonstrated (Barea et al.
2002). AM mycelia have been shown to affect not only root
morphology and functioning but also improve mycorrhizo-
sphere soil properties.

AM symbiosis has been shown to increase tolerance
to biotic and abiotic stresses. Regarding abiotic stress,
several studies for years have demonstrated that AM
symbiosis confers tolerance to drought (for reviews see
Ruiz-Lozano 2003; Miransari 2010), heat (Compant et al.

2010), salinity (Evelin et al. 2009; Miransari 2010) or
osmotic stress (Ruiz-Lozano 2003). On the other hand,
early works on mycorrhizas and biotic stresses were
mostly descriptive (for review, see Linderman 2000). A
recent review by Pozo and Azcón (2007) summarizes the
data on AM-induced protection against biotic stress and
the possible mechanisms involved, with special emphasis
on the role of plant defense responses. Generally, reports
have focussed on beneficial effects of the symbiosis,
aiming at using AM as potential biocontrol agents in
integrated management programmes for disease control
(Mukerji and Ciancio 2007). AM symbiosis has also been
shown to occur in almost all habitats, including disturbed
soils contaminated with heavy metals, and plays an
important role in metal tolerance. A number of different
mechanisms may be involved, including tissue dilution of
the toxic element due to interactions with P nutrition and
growth, sequestration of the toxic metal in the fungus and
development of tolerance by the fungi (for reviews, see
Hildebrandt et al. 2007; Gamalero et al. 2009). Thus, we
can conclude that some plants are unable to endure
habitat-imposed abiotic and biotic stresses in the absence
of fungal endophytes.

4 Salinity effects on plants

Soil salinity affects the establishment, growth, and devel-
opment of plants leading to huge losses in productivity
(Evelin et al. 2009). Plants growing in saline soil are
subjected to three distinct physiological stresses. First, the
toxic effects of specific ions such as sodium and chloride,
prevalent in saline soils, disrupt the structure of enzymes
and other macromolecules, damage cell organelles, disrupt
photosynthesis and respiration, inhibit protein synthesis,
and induce ion deficiencies (Juniper and Abbott 1993).
Second, plants exposed to the low osmotic potentials of
saline soil are at risk of physiological drought because they
must maintain lower internal osmotic potentials to prevent
water moving from the roots into the soil. Finally, salinity
also produces nutrient imbalance in the plant caused by
decreased nutrient uptake and/or transport to the shoot
(Marschner 1995; Adiku et al. 2001). As a consequence,
salt stress affects all the major processes, such as growth,
photosynthesis, protein synthesis, and energy and lipid
metabolisms (Ramoliya et al. 2004).

A generic stress signal transduction pathway for the
plant stress response is depicted in Fig. 4. The stress signal
is first perceived at the membrane level by the receptor,
which results in the generation of secondary signal
molecules, such as Ca2+, inositol phosphates, reactive
oxygen species (ROS) and abscisic acid (ABA). The stress
signal then transduces inside the nucleus to induce multiple
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stress responsive genes, the products of which ultimately
lead to plant adaptation to stress tolerance. Early genes are
induced within minutes of stress perception, and their
products (e.g., various transcription factors) can activate the
expression of delayed genes (e.g., RD [responsive to
dehydration], KIN [cold induced], COR [cold responsive]).
Overall, gene products are either involved directly in
cellular protection against the stress (e.g., late embryogen-
esis abundant proteins, antifreeze proteins, antioxidants,
chaperons, and detoxification enzymes) or involved indi-
rectly in protection (e.g., transcription factor, enzymes of
phosphatidylinositol metabolism; Tuteja 2007).

5 Salinity effects on arbuscular mycorrhizal fungi

Salinity, not only affects negatively the host plant but also the
AMF. It can hamper colonization capacity, spore germination,
and growth of fungal hyphae. Colonization of plant roots by
some AMF is reduced in the presence of NaCl (Hirrel and
Gerdemann 1980; Ojala et al. 1983; Poss et al. 1985; Duke et
al. 1986; Rozema et al. 1986; Menconi et al. 1995; Juniper
and Abbott 2006; Giri et al. 2007; Sheng et al. 2008)

probably due to the direct effect of NaCl on the fungi (Juniper
and Abbott 2006) indicating that salinity can suppress the
formation of arbuscular mycorrhiza (Tian et al. 2004; Sheng
et al. 2008). The varying levels of AM colonization under
saline conditions may also be related to the different
behaviour of each AM fungal species, even in similar
ecosystems (Kilironomos et al. 1993) or to the influence of
different environmental conditions (Carvalho et al. 2001).

In the presence of NaCl, germination of spores is
delayed rather than prevented (Cantrell and Linderman
2001; Juniper and Abbott 2006). The rate of germination
and maximum germination of AMF spores may also
depend on the salt type. According to Juniper and Abbott
(1993), the different salts NaNO3 and Na2SO4 with similar
osmotic potentials impart differential effects on the rate and
maximum germination of spores. They attributed the
difference to a higher concentration of Na+ in the latter.

Jahromi et al. (2008) studied in vitro the effects of
salinity on the AM fungus, Glomus intraradices. They
observed that there was no significant difference in hyphal
length and BAS between control (no salt) and 50 mM
NaCl, though there was a significant decrease in hyphal
length and the number of BAS at 100 mM NaCl (Table 1).
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sensors?

Stress transduction

Stress induced
gene products

SECONDARY SIGNAL
MOLECULES: 
Ca2+,
inositol phosphate,
abscisic acid
reactive oxygen species

INDUCTION OF EARLY AND 
DELAYED STRESS RESPONSIVE
GENES
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S
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-antifreeze protein
-antioxidant
-chaperones
-reactive oxygen species
-water transport and osmolytes
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Fig. 4 Generic pathway for
plant stress response. The
extracellular stress signal is first
perceived by the membrane
receptor and then activates a
large and complex signalling
cascade intracellularly. The
signal cascade results in the
expression of multiple stress
responsive genes, the products
of which can provide the stress
tolerance directly or indirectly.
Overall, the stress response
could be a coordinated action
of many genes. Adapted from
Tuteja (2007) with kind
permission from Elsevier
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Thus, all these results demonstrate that salinity affects
directly the fungal development, reducing fungal mycelia
formation and host root colonization.

Contrary to the reports above, increased AMF sporula-
tion and colonization under salt stress conditions has also
been reported (Aliasgharzadeh et al. 2001). Recently,
Yamato et al. (2008) reported that colonization rates were
not reduced in all AMF present in coastal vegetation on
Okinawa Island, Japan even when treated with high salinity
of 200 mM. This discrepancy in the results invites
researchers to look out for salt-tolerant AMF species and
to test if these AM isolates maintain colonization capacity
and symbiosis efficiency under saline conditions.

6 Arbuscular mycorrhizal effects on plant biomass
and nutrient uptake

Several studies investigating the role of AMF in protection
against salt stress have demonstrated that the symbiosis
often results in increased nutrient uptake, accumulation of
osmoregulator compounds, and increase in photosynthetic
rate and water use efficiency, suggesting that salt stress
alleviation by AMF results from a combination of nutri-
tional, biochemical, physiological, and molecular effects.
However, this positive effect on plant development depends
on the AMF species involved (Marulanda et al. 2003, 2007;
Wu et al. 2007).

Hence, mycorrhization was found to increase the
fitness of the host plant by enhancing its growth.
Several researchers have reported that AMF-inoculated
plants grow better than non-inoculated plans under salt
stress (Al-Karaki 2000; Cantrell and Linderman 2001;
Giri et al. 2007; Sannazzaro et al. 2007; Zuccarini and
Okurowska 2008). For instance, Hajiboland et al. (2010)
have recently reported that although high salinity reduced
dry matter production by two tomato cultivars, in all
treatments mycorrhizal plants grew better than non-
mycorrhizal plants (Fig. 5).

The mycorrhizal association is well known to increase
host nutrient acquisition, particularly P (Smith and Read
1997). The improved growth of mycorrhizal plants in saline
conditions is primarily related to mycorrhiza-mediated
enhancement of host plant P nutrition (Hanway and Heidel
1952; Hirrel and Gerdemann 1980; Ojala et al. 1983; Pond
et al. 1984; Poss et al. 1985; Al-Karaki 2000).

Fig. 5 Influence of different
salinity levels on shoot and root
dry weights (DW) of tomato
cultivars Behta and Piazar
colonized (+AMF) or not
(−AMF) with an arbuscular
mycorrhizal fungus (AMF).
Bars of each parameter labeled
by different letters indicate
significant differences
assessed by the
Bonferroni test after performing
three-way ANOVA (P<0.05).
Adapted from Hajiboland et al.
(2010) with kind permission
from Springer Science and
Business Media

Table 1 Total hyphal length and number of spores and branched
absorbing structures (BAS) formed by G. intraradices grown in
monoxenic culture and subjected to 0, 50, or 100 mM NaCl

Salt level

0 mM 50 mM 100 mM LSD

Hyphal length (sqrt mm cm−2) 48.4a 42.6a 30.7b 10.9

Number of spores (cm−2) 59.5a 14.0b 11.0b 29.4

Number of Bas 29.1a 21.7ab 13.2b 11.4

Data were subjected to analysis of variance (ANOVA) and followed
by the Fisher’s less significant Differences test (5% of significance).
Table reproduced from Jahromi et al. (2008) with kind permission
from Springer Science and Business Media

Means followed by different letters are significantly different (P<0.05)

LSD less significant difference, sqrt square root
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Beneficial effect of Na+ on growth of nonhalophytes was
reported for some natrophilic crop species such as sugar
beet (Marschner et al. 1981; Hajiboland et al. 2009) and
was attributed mainly to an ability of plants for replacement
of K+ by Na+ (Marschner et al. 1981; Hajiboland and
Joudmand 2009). Elevated Na+ in soil solution inhibits the
uptake of other nutrients by disrupting the uptake of nutrients
directly by interfering with various transporters in the root
plasma membrane, such as K+-selective ion channels, and
inhibiting root growth by the osmotic effects of Na+ on soil
structure (Wild 1988). Thus, the uptake of water and essential
mineral nutrients, such as P, K, Fe, Cu, and Zn, and the
population of soil bacteria can be reduced (Barea et al. 2005).
Certain ion ratios, such as K/Na, are accepted indicators for
evaluation of salinity tolerance in tomato cultivars (Dasgan et
al. 2002). Moreover, high Na+/K+ ratio disrupts various
metabolic processes such as protein synthesis in the cyto-
plasm (Tester and Davenport 2003). Giri et al. (2007) showed
that Acacia nilotica plants colonized by G. fasciculatum had a
higher concentration of K+ in root and shoot tissues at all
salinity levels assayed. Similar increase in the concentration
of K+ has also been reported previously (Hanway and Heidel
1952; Ojala et al. 1983; Mohammad et al. 2003). It seems
that higher K+ accumulation by mycorrhizal plants under salt
stress conditions may help in maintaining a high K/Na ratio,
thus preventing the disruption of various enzymatic processes
and inhibition of protein synthesis.

Apart from P and K, it has been demonstrated that
arbuscular mycorrhizal fungi have a positive influence on
the composition of mineral nutrients of plants grown under
salt stress conditions (Al-Karaki and Clark 1998) by
enhancing and/or selective uptake of nutrients. A number
of studies have shown the effect of salinity on the nutrient
uptake of mycorrhizal plants (Table 2).

7 Biochemical changes

The best characterized biochemical response of plant cells to
osmotic stress is accumulation of some inorganic ions such as
Na+ and compatible organic solutes like proline, glycine
betaine, and soluble sugars (Flowers and Colmer 2008).
These compatible solutes can accumulate to high levels
without disturbing intracellular biochemistry (Bohnert
and Jensen 1996), protecting sub-cellular structures,
mitigating oxidative damage caused by free radicals, and
maintaining the enzyme activities under salt stress (Yokoi
et al. 2002).

7.1 Proline and other osmolytes

One of the main consequences of NaCl stress is the loss of
intracellular water. Plants accumulate manymetabolites that are

also known as “compatible (organic) solutes” in the cytoplasm
to increase their tolerance against salt stress-induced water loss
from the cells. Among these compounds, proline, betaines,
sugars (chiefly fructose, sucrose and glucose) and complex
sugars (trehalose, raffinose, and fructans) have been suggested
to accomplish this function in halophytes.

Proline and glycine betaine (N, N, N-trimethylglycine
betaine) are two major osmoprotectant osmolytes, which
are synthesized by many plants (but not all) in response to
stress, including salinity stress, and thereby help in
maintaining the osmotic status of the cell to ameliorate
the abiotic stress effect. Proline also plays roles in
scavenging free radicals, stabilizing subcellular structures,
and buffering cellular redox potential under stresses. The
salinity stress responsive genes, whose promoters contain
proline responsive elements (ACTCAT), are also known to
be induced by proline (Chinnusamy et al. 2005). In higher
plants, proline is synthesized from glutamic acid by the
actions of two enzymes, pyrroline-5-carboxylate synthetase
(P5CS) and pyrroline-5-carboxylate reductase (P5CR).
Overexpression of the P5CS gene in transgenic tobacco
resulted in increased production of proline and salinity/
drought tolerance (Kishor et al. 1995).

Proline accumulation, in terms of amount, has been
found to increase when the plant is colonized by AMF.
Several authors have reported a higher proline concentra-
tion in AM plants than in non-AM plants at different
salinity levels (Jindal et al. 1993; Sharifi et al. 2007).
However, in contrast to the reports above, other authors
reported that non-MA plants accumulated more proline that
AM plants at various salinity levels (Wang et al. 2004;
Rabie and Almadini 2005; Jahromi et al. 2008), suggesting
that proline accumulation in plants may be a sympton of
stress in less salt-tolerant species or that this accumulation
may be also due to salinity and not necessarily to
mycorrhizal colonization.

On the other hand, betaines can also stabilize the
structures and activities of enzymes and protein com-
plexes and maintain the integrity of membranes against
the damaging effects of excessive salt (Gorham 1995).
Accumulation of betaines under salt stress was found to
increase when the plant is colonized by AMF (Al-Garni
2006).

The increase in sugar content is found to be positively
correlated with mycorrhization of the host plant as reported
by Thomson et al. (1990). Porcel and Ruiz-Lozano (2004)
also reported increased sugar concentrations in soybean
roots colonized by G. intraradices and subjected to drought
stress. The positive correlation between sugar content and
mycorrhization is due to the sink effect of the fungus
demanding sugars from the shoot tissues (Augé 2000).
Moreover, the increased sugar accumulation may also be
due to hydrolysis of starch to sugars in the seedlings
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inoculated with mycorrhiza. Conversely, some authors
reported negative correlations between AMF colonization
and sugar accumulation in host plants. Pearson and
Schweiger (1993) reported a reduction in carbohydrate
content with an increase in the percentage of root
colonization. Sharifi et al. (2007) observed no role of
soluble carbohydrates in the responses of AM (colonized by
Glomus etunicatum) soybean plants to salinity.

7.2 ABA content

ABA is a phytohormone that regulates plant growth and
development and also plays an important role in the response
of the plant to abiotic stress, including salinity stress. It has

been documented that mycorrhization can alter the ABA
levels in the host plant (Duan et al. 1996; Ludwig-Muller
2000; Estrada-Luna and Davies 2003). Jahromi et al. (2008)
reported lower ABA levels in lettuce plants colonized by G.
intraradices than that in the non-AM plants (Fig. 6),
indicating that AM plants are less strained by imposed
salinity stress than non-AM plants and, hence, accumulated
less ABA. It seems that the effects of AMF species on ABA
content vary with the host plants (Evelin et al. 2009).

7.3 Antioxidant system

Many of the degenerative reactions associated with several
biotic, abiotic, and xenobiotic stresses are mediated by

Table 2 Some examples of increased/decreased nutrient uptake in AM plants under salinity stress

Nutrient Range of salinitya Plant Fungus Effect References

Phosphorus 0–24⋅6 dS m−1 (0–200 mM) Glycine max Glomus etunicatum Increase Sharifi et al. (2007)

1⋅2–9 ds m−1 Acacia nilotica Glomus fasciculatum Increase Giri et al. (2007)

0–19⋅12 dS m−1 (0–150 mM) Citrus karma Mixed inoculum of
Glomus sp. and
Gigaspora sp.

Increase Murkute et al. (2006)

0–6⋅10 dS m−1 (0–3 g kg−1) Gossypium arboreum Glomus mosseae Increase Tian et al. (2004)

3–10 ds m−1 (0⋅3–1⋅0 S m−1) Acacia auriculiformis Glomus macrocarpum
and Glomus fasciculatum

Increase Giri et al. (2003)

0–13⋅19 dS m−1 (0–100 mM) Zea mays Glomus mosseae Increase Feng et al. (2002)

1–7⋅4 dS m−1 Lycoperssicon
esculentum

Glomus mosseae Increase Al-Karaki (2000)

Nitrogen 4-8 dS m-1 Cajanus cajan Glomus mosseae Increase Garg and Manchanda (2008)

0–19⋅12 dS m−1 (0-150 mM) Citrus karma Mixed inoculum
of Glomus sp. and
Gigaspora sp.

Increase Murkute et al. (2006)

15⋅8 dS m−1 (1⋅58 S m−1) Sesbania aegyptiaca Glomus macrocarpum Increase Giri and Mukerji (2004)

Potassium 0–7⋅56 dS m−1 (0–3 g L−1) Ocimum basilicum Glomus intraradices Increase Zuccarini and Okurowska (2008)

2–24⋅6 dS m−1 (0–200 mM) Glycine max Glomus etunicatum Increase Sharifi et al. (2007)

Calcium 0–24⋅6 dS m−1 (0–200 mM) Glycine max Glomus etunicatum Increase Sharifi et al. (2007)

0⋅72–7⋅39 dS m−1 Musa sp. Glomus clarum Increase Yano-Melo et al. (2003)

Magnesium 15⋅8 dS m−1 (1.58 S m−1) Sesbania aegyptiaca Glomus macrocarpum Increase Giri and Mukerji (2004)

Sodium 1⋅2–9⋅5 dS m−1 Acacia nilotica Glomus fasciculatum Increase Giri et al. (2007)

0–6⋅10 dS m−1 (0–3 g kg−1) Gossypium arboreum Glomus mosseae Increase Tian et al. (2004)

0⋅12 S m−1 Acacia auriculiformis Glomus macrocarpum
and Glomus fasciculatum

Increase Giri et al. (2003)

0–7⋅56 dS m−1 (0–3 g L−1) Ocimum basilicum Glomus intraradices Decrease Zuccarini and Okurowska (2008)

0–24⋅6 dS m−1 (0–200 mM) Glycine max Glomus etunicatum Decrease Sharifi et al. (2007)

1⋅4–7⋅4 dS m−1 Lycopersicon esculentum Glomus mosseae Decrease Al-Karaki (2000)

Chloride 0–6⋅10 dS m−1 (0–3 g kg−1) Gossypium arboreum Glomus mosseae Increase Tian et al. (2004)

0–7⋅56 dS m−1 (0–g L−1) Ocimum basilicum Glomus intraradices Decrease Zuccarini and Okurowska (2008)

Copper 1⋅2–9⋅5 dS m−1 Acacia nilotica Glomus fasciculatum Increase Giri et al. (2007)

1⋅4–7⋅4 dS m−1 Lycopersicon esculentum Glomus mosseae Decrease Al-Karaki (2000)

Zinc 0–24⋅6 ds m−1 (0–200 mM) Glycine max Glomus etunicatum Increase Sharifi et al. (2007)

1⋅4–7⋅4 ds m−1 Lycopersicon esculentum Glomus mosseae Decrease Al-Karaki (2000)

Reproduced from Evelin et al. (2009) with kind permission from Oxford University Press
a The range of salinity within brackets is the actual salt concentrations used by the authors
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ROS. The term ROS is generic, embracing not only free
radicals such as superoxide (O2−) and hydroxyl radicals
(OH−), but also hydrogen peroxide (H2O2) and singlet
oxygen (1ΔgO2). While it is generally assumed that the
hydroxyl radical and singlet oxygen are so reactive that
their production must be minimized (Jakob and Heber
1996), O2− and H2O2 are synthesized at very high rates
even under optimal conditions (Noctor and Foyer 1998).
The chief toxicity of O2− and H2O2 is thought to reside in
their ability to initiate cascade reactions that result in the
production of the hydroxyl radicals. These radicals (and
their derivatives) are among the most reactive species
known to chemistry, capable of reacting indiscriminately to
cause oxidative damage to biomolecules such as lipid
peroxidation, denaturation of proteins, and mutation of
DNA (Gutteridge and Halliwell 1989; Bowler et al. 1992).
Plant cells contain an array of protective and repair systems
that minimize the occurrence of oxidative damage. Accord-
ing to Smirnoff (1993), these can be divided into two
categories: systems that react with active forms of oxygen
and keep them at a low level [i.e., superoxide dismutases,
catalase, or peroxidases], and systems that regenerate
oxidized antioxidants [glutathione (GSH), glutathione
reductase (GR), ascorbate, and mono- and dehydroascorbate
reductases]. The first group of enzymes are involved in the
detoxification of O2– radicals and H2O2, thereby preventing
the formation of OH- radicals. The GR, as well as the GSH,
are important components of the ascorbate glutathione
pathway (Fig. 7) responsible for the removal of H2O2 in
different cellular compartments (Dalton 1995; Jiménez et al.
1997). Other non-enzymatic compounds which scavenge
activated oxygen species include carotenoids, gluthatione,
tocopherols and ascorbic acid (Alguacil et al. 2003; Wu and
Xia 2006; Wu et al. 2006).

Like other abiotic stresses, salinity also induces oxida-
tive stress in plants (Santos et al. 2001; Hajiboland and
Joudmand 2009). A correlation between antioxidant capac-
ity and NaCl tolerance has been demonstrated in several
plant species (Gossett et al. 1994; Benavides et al. 2000;
Núñez et al. 2003). Several studies suggested that AM
symbiosis helps plants to alleviate salt stress by enhancing
the activities of antioxidant enzymes (Alguacil et al. 2003;
Zhong et al. 2007).

8 Physiological changes

Salt stress inhibits photosynthetic ability and induces
physiological drought in plants, which leads to a decrease
in crop production (Pitman and Läuchli 2002). However,
there have been very few attempts to study the influence of
AMF inoculation on photosynthesis and particularly leaf
photochemical properties under salt stress (Sheng et al.
2008). Salinity can affect several physiological mechanisms
in the plant such as photosynthetic efficiency, membrane
disruption, gas exchange, or water status. Some studies
(Aroca et al. 2006; Porcel et al. 2006) have shown that
colonization of plant roots by the AM fungus G. intraradices
prevented leaf dehydration caused by salinity. Lower water
saturation deficit and higher turgor potential in AM plants
also improves the water status of the plant (Al-Garni 2006;
Sheng et al. 2008).

AMF colonization induces an increase in root hydraulic
conductivity of the host plants under osmotic stress conditions
(Sánchez-Blanco et al. 2004; Aroca et al. 2007). AMF-
colonized plants are able to fix more CO2 than non-
inoculated plants and hence their growth is improved
(Querejeta et al. 2007). In addition, in some cases, also their
water use efficiency is stimulated independent of changes in
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Fig. 7 Ascorbate-gluthation pathway. SOD superoxide dismutase, CAT
catalase, APX ascorbate peroxidase, MDHAR monodehydroascorbate
reductase, DHAR dehydroascorbate reductase, GR gluthation reductase,
MDHA monodehydroascorbate, GSSG oxidized gluthation, GSH
reduced gluthation

Fig. 6 Abscisic acid content (nmol g dry weight−1) in lettuce roots.
Black columns represent non-inoculated control plants and white
columns represent plants inoculated with G. intraradices. Plants were
subjected to 0. 50 and 100 mM NaCl. Columns with different letters are
significantly different (P<0.05). Columns represents means±SE (n=6).
DW dry weight. Data reproduced from Jahromi et al. (2008) with kind
permission from Springer Science and Business Media
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transpiration rate (Bolandnazar et al. 2007). These changes
described in transpiration rate by AM symbiosis are
correlated with changes in the ABA/cytokinins ratio
(Goicoechea et al. 1997). At the same time, AMF-
colonized plants, by the action of the fungal hyphae, are
able to explore more soil and therefore to take up more water
from it than noninoculated plants (Marulanda et al. 2003;
Khalvati et al. 2005; Bolandnazar et al. 2007).

9 Molecular changes

The beneficial effects of the AM symbiosis on plant salinity
tolerance have not been only assessed by measuring plant
growth or plant water status. At the same time, these beneficial
effects have been evidenced by measuring the expression of
some plant genes related to salt stress responses.

9.1 P5CS

As mentioned previously, proline is probably the most
widespread osmoprotectant in plants. Accumulation of
proline is mainly due to de novo synthesis, although a
reduced rate of catabolism has also been observed (Kishor
et al. 1995). The first two steps of proline biosynthesis are
catalyzed by P5CS by means of its γ-glutamil-kinase and
glutamic-γ-semialdehyde-deshydrogenase activities (Fig. 8).
Subsequently, the Δ1-pyrroline-5-carboxylate formed is
reduced by P5CR to proline (Hu et al. 1992). In Arabidopsis,
the P5CS-encoding gene is induced by drought stress,
salinity, and ABA, but P5CR is not (Yoshiba et al. 1995).
The overexpression of the P5CS-encoding gene in transgenic
tobacco plants has been shown to increase proline production
and to confer tolerance of such plants to osmotic stress
(Kishor et al. 1995). Hence, the P5CS-encoding gene is of
key importance for the biosynthesis of proline in plants
(Ábrahám et al. 2003).

Investigations carried out so far on osmoregulation in the
AM symbiosis are scarce and somewhat contradictory.
Moreover, information regarding P5CS gene expression in
mycorrhizal plants subjected to salt stress is really limited.
Jahromi et al. (2008) reported a higher expression of
Lactuca sativa P5CS gene in non-MA plants that in AM

plants at 50 mM NaCl, although at 100 mM, the levels were
similar (Fig. 9).

9.2 Aquaporins

The negative water potential in drying or saline soils
obliges plants to face with the problem of acquiring
sufficient amount of water (Ouziad et al. 2006), a process
in which aquaporins participate (Luu and Maurel 2005).
Aquaporins are water channel proteins that facilitate and
regulate the passive movement of water molecules down a
water potential gradient (Kruse et al. 2006). Plants aqua-
porins are divided in four groups based on their sequence
homology. These four groups are called plasma membrane
intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs),
noduline like intrinsic proteins (NIPs), and small and basic
intrinsic proteins (SIPs). The localization and function of
SIPs are not clear at the moment (Luu and Maurel 2005),
although the membrane of endoplasmic reticulum seems to
contain SIPs (Ishikawa et al. 2005). Each subgroup is also
subdivided, and for example there are PIP1 and PIP2
subgroups, having each subgroup several different proteins.
In fact, in Arabidopsis, maize and rice, there are over 30
different aquaporins genes (Chaumont et al. 2001; Johanson
et al. 2001; Sakurai et al. 2005). At the same time, each
aquaporin group differs in their capacity of transporting
water and other small and neutral solutes and in their
subcellular localization. For recent reviews, see (Heinen et
al. 2009; Maurel et al. 2009; Wudick et al. 2009).

Expression analysis of aquaporin genes in salt-stressed AM
plants revealed contrasting results. Aroca et al. (2007) studied
four aquaporin genes from P. vulgaris in mycorrhizal and
nonmycorrhizal plants subjected to three different osmotic
stresses: drought, cold, or salinity. Three of these PIP genes
showed differential regulation by AM symbiosis under the
specific conditions of each stress applied. Salt-treatment
induced a higher expression of three P. vulgaris PIP genes in
both groups of plants, especially in AM ones (Fig. 10).

P5CS

GLUTAMATE GSA
γGK GSADH

P5CDH

P5C PROLINE
P5CR

ProDH

P5CS

Fig. 8 Pathway of proline biosynthesis. GSA glutamyl-γ-semialdehyde,
P5C Δ1-pyrroline-5-carboxylate, P5CS Δ1-pyrroline-5-carboxylate
synthetase, P5CR P5C reductase, γGK γ-glutamyl kynase, GSADH
glutamyl-γ-semialdehyde deshydrogenase, P5CDH P5C deshydro-
genase, ProDH proline deshydrogenase

Fig. 9 Northern blot of total RNA (15 μg) from lettuce roots using
Lsp5cs gene probe. Treatments are designed as NI, noninoculated
control, or Gi, plants inoculated with G. intraradices. Plants were
subjected to 0, 50, or 100 mM NaCl. The lower panels show the
amount of 26 S rRNA loaded for each treatment. Numbers close to each
Northern represent the relative gene expression (after normalization to
26 S rRNA) as a percentage of the value for control plants cultivated
under nonsaline conditions. Data adapted from Jahromi et al. (2008)
with kind permission from Springer Science and Business Media
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On the other hand, Jahromi et al. (2008) reported that in
the absence of salinity the expression of L. sativa PIP1 and
PIP2 genes was inhibited by mycorrhization, while under
saline conditionsmycorrhizal plants maintained the expres-
sion of LsPIP2 gene, which was almost unaffected, whereas
the expression of LsPIP1 gene was upregulated, mainly at
100 mM NaCl. A differential effect of AM symbiosis on
aquaporin isoforms under salinity has also been described
by Ouziad et al. (2006). In this study, the amount of
Lycopersicon esculentum TIP and PIP1 transcripts was

found to be downregulated in roots and upregulated in
leaves of tomato plants subjected to salt stress (Fig. 11).

Hence, results by Aroca et al. (2007), Jahromi et al.
(2008), and Ouziad et al. (2006) clearly illustrate that each
aquaporin gene may respond differently to AMF coloniza-
tion and stress imposed. Such differences may be a
consequence of the mode of the salt stress set, the
differences between plant species tested and the complexity
in expression pattern of different members of the large
family of aquaporins (Sarda et al. 1999). This highlights the
complex regulation of aquaporin genes in response to the
AM symbiosis and to different abiotic stresses with an
osmotic component (Table 3).

9.3 Late embryogenesis abundant proteins

These are a group of proteins that accumulate in plants seeds
during their maturation phase, when tolerance to desiccation is
required (Close 1996). It seems that during cellular dehydra-
tion, late embryogenesis abundant (LEA) proteins play an
important role in maintenance of the structure of other
proteins, vesicles, or endomembrane structures in the
sequestration of ions such as calcium, in binding or
replacement of water, and functioning as molecular chaper-
ones (Close 1996; Koag et al. 2003). The overexpression of
LEA proteins in plants and yeast confers tolerance to osmotic
stresses (Imai et al. 1996; Xu et al. 1996; Babu et al. 2004).
Dehydrins belong to LEA group 2 and represent the most
conspicuous soluble proteins induced by a dehydration
stress. They have been observed in over 100 independent
studies of drought stress, cold acclimation, salinity stress,
embryo development, and responses to ABA. However, the
existence of multiple targets for dehydrins (euchromatin,
cytosol, cytoskeleton) suggests that the direct consequences
of dehydrin activity are biochemically diverse.

It is known that LEA gene expression increases under
salt stress; however, there are not many studies relating
LEA gene expression and MA symbiosis under salt stress
conditions. Regarding drought stress, Porcel et al. (2005)
cloned two dehydrin-encoding genes from G. max (gmlea8
and gmlea10) and one from L. sativa (lslea1) and analyzed
their contribution to the response against drought in
mycorrhizal soybean and lettuce plants. Results demon-
strate that the levels of lea transcript accumulation in
soybean and lettuce plants colonized by either G. mosseae
or G. intraradices were considerably lower than those of
the corresponding nonmycorrhizal plants, suggesting that
the accumulation of LEA proteins is not a mechanism by
which the AM symbiosis protects their host plant. More-
over, results also suggested that mycorrhizal plants were
less strained by drought due to primary drought-avoidance
mechanisms. Regarding salinity, Jahromi et al. (2008)
reported that LsLea was expressed under conditions of salt

Fig. 10 Northern blot analyses using 3′ untranslated region as probes
of Phaseolus vulgaris PIP1;1 (a), PIP1;3 (b), and PIP2;1 (c) in total
RNA of P. vulgaris roots not inoculated (nonAM) or inoculated (AM)
with the arbuscular mycorrhizal fungus Glomus intraradices. Treat-
ments: control plants kept at 23°C and watered at full capacity with
tap water; drought plants kept at 23°C and not watered for 4 days;
cold plants transferred to 4°C for 2 days and watered at full capacity
with tap water; salinity plants kept at 23°C and watered every 2 days
during a 6-day period with 10 ml of 0.5 M NaCl solution.
Quantification of the gene expression was performed by dividing the
intensity value of each band by the intensity of corresponding rRNA
stained with ethidium bromide. Control value of nonAM roots was
referred as 100. Treatments with different letters are significantly
different (P<0.05) after analysis of variance and Fisher less significant
differences test; n=3. Data reproduced from Aroca et al. (2007) with
kind permission from John Wiley and Sons
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stress and the induction of this gene was also lower in AM
plants than in non-MA plants (Fig. 12).

9.4 Cation channels and transporters

9.4.1 Na+/H+ antiporters

Sodium uptake and distribution within the plant is a major
determinant for the salt sensitiveness of a plant. Prevention of

Na+ entry into the root, transport to, and allocation within the
leaf, and sequestration into the vacuole are strategies by
which plants cope with high salt environment. The Na+/H+

antiporters mediate the transfer of Na+ out of the cytoplasm
into either vacuole or apoplast. Transgenic plants with
overexpressed Na+/H+ antiporters were reported to be more
salt tolerant than the controls as shown for Arabidopsis
(Gaxiola et al. 1999; Sottosanto et al. 2004) or rice
(Fukuda et al. 1999). In Arabidopsis, transporters contributing

Table 3 Summary of the different effects of the mycorrhizal symbiosis on aquaporin gene expression under non stressed or under osmotic stress
conditions

The consequences on plant water relations (when measured) and the proposed hypothesis are also included. Reproduced from Ruiz-Lozano and
Aroca (2010) with kind permission from Springer Science and Business Media

Fig. 11 Northern hybridizations
using total mRNA and the
different digoxigenin-labelled
riboprobes for three L.
esculentum aquaporins. Lowest
signal intensity of one lane was
arbitrary set to 1 to allow a
comparison of the signal
strengths within one blot (bloc
of four lanes) for each gene
expressed. Signal strengths were
adjusted to the amount of 18 S
rRNA blotted onto each lane. a
Root and b leaf. M mycorrhizal
plants, NM non-mycorrhizal
plants, control plants not
stressed with NaCl. Adapted
from Ouziad et al. (2006) with
kind permission from Elsevier
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to Na+ homeostasis include plasma membrane (SOS1) and
vacuolar Na+/H+ antiporters (e.g., NHX1), and the plasma
membrane uniporter HKT1 (Zhu 2003). Loss-of-function
mutations in AtHKT1 render plants Na+ hypersensitive and
disturb the distribution of Na+ between roots and shoots.

Ouziad et al. (2006) analyzed the expression of two Na+/H+

antiporter genes in dependence on salt and mycorrhizal
colonization (Fig. 13). They observed that under the
conditions employed, no significant alterations by mycorrh-
ization were detected in the expression of LeNHX1 and
LeNHX2, the latter of which had previously been shown to be
also a K+/H+ antiporter (Venema et al. 2003).

9.4.2 Cyclic nucleotide-gated channels

Ion influx is central to signal transduction, and one of the
potential pathways for the uptake of these ions is via cyclic
nucleotide-gated ion channels (CNGCs) (Talke et al. 2003).

Cyclic nucleotides monophosphate (NMP) have only
recently been accepted as important secondary messengers
in plants and they have been suggested to be involved in
plant responses to both biotic and abiotic stresses. It is well
known that salt and osmotic stress cause rapid increases in
cGMP levels in Arabidopsis thaliana (Donaldson et al.
2004), and these studies are consistent with findings that
cAMP and cGMP improve tolerance to salt stress (Maathuis
and Sanders 2001). Interestingly, improved salt tolerance
correlated with cNMP-dependent decrease of channel open
probability and reduced influx of Na+ (Maathuis and
Sanders 2001; Rubio et al. 2003). Furthermore, cNMPs
participate in various developmental processes in addition
to photomorphogenesis.

Members of the CNGC family belong to the group of
nonselective cation channels and enable the uptake of Na+, K+,
and Ca2+ (Kaplan et al. 2007). They were first identified in
vertebrate visual and olfactory signal transduction cascades
(Zagotta and Siegelbaum 1996; Craven and Zagotta 2006),
however, much less is known about them in plants. CNGCs
are composed of six transmembrane domains and a pore
region between the fifth and sixth domains (Fig. 14). The
fourth transmembrane domain has similarities to the Shaker-
type voltage sensor (Köhler et al. 1999; Rehmann et al.
2007). The N-terminal domain extends into the cytosol and is
believed to bind calmodulin (CaM), while the C-terminal
domain binds cNMPs. Plants, on the other hand, possess a
slightly different structure where both the CaM and cyclic
nucleotide binding domains occur in the cytosolic C-terminus
in overlapping regions.

The Arabidopsis CNGC gene family comprises 20
members (Mäser et al. 2001). Studies on some Arabidopsis
CNGCs have so far revealed their ability to transport cations
that play a role in mediating various environmental stresses

Fig. 12 Northern blot of total RNA (15 μg) from lettuce roots using
Lslea gene probe. Treatments are designed as NI, noninoculated
control, or Gi, plants inoculated with G. intraradices. Plants were
subjected to 0, 50, or 100 mM NaCl. The lower panels show the
amount of 26 S rRNA loaded for each treatment. Numbers close to
each Northern represent the relative gene expression (after normali-
zation to 26 S rRNA) as a percentage of the value for control plants,
which were set at 100% in those plants subjected to 50 mM NaCl, nq,
not quantifiable. Data adapted from Jahromi et al. (2008) with kind
permission from Springer Science and Business Media

Fig. 13 Northern hybridizations using total mRNA and the different
digoxigenin-labelled riboprobes for two L. esculentum Na+/H+

antiporters. Lowest signal intensity of one lane was arbitrary set to 1
to allow a comparison of the signal strengths within one blot (bloc of
four lanes) for each gene expressed. Signal strengths were adjusted to

the amount of 18 S rRNA blotted onto each lane. a Root and b leaf.
M mycorrhizal plants, NM non-mycorrhizal plants, control plants not
stressed with NaCl. Adapted from Ouziad et al. (2006) with kind
permission from Elsevier
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including salt stress, plant defense responses and develop-
ment (Clough et al. 2000; Balagué et al. 2003; Chan et al.
2003; Gobert et al. 2006; Ma et al. 2006; Yoshioka et al.
2006; Borsics et al. 2007), summarized in Table 4.

Recently, Kugler et al. (2009), have reported that both
AtCNGC19 and AtCNGC20 were upregulated in the shoot
in response to elevated NaCl but not to mannitol concen-
trations. While in the root, CNGC19 did not respond to
changes in the salt concentration, in the shoot it was
strongly upregulated. Salt induction of CNGC20 was also
observed in the shoot. No differences in K and Na contents
of the shoots were measured in homozygous T-DNA
insertion lines for CNGC19 and CNGC20, respectively,
which developed a growth phenotype in the presence of up
to 75 mM NaCl similar to that of the wild type. All these
results suggest that both channels are involved in the

salinity response of different cell types in the shoot. Hence,
CNGC19 and CNGC20 could assist the plant to cope with
toxic effects caused by salt stress, probably by contributing
to a reallocation of sodium within the plant.

In spite of the importance of CNGCs in plant cation
homeostasis, there are no investigations about CNGCs in
mycorrhizal plants. Thus, this is another key to understanding
CNGC function in plants subjected to salt stress in future
studies. Indeed, it seems apparent that CNGCs play important
roles for plant survival and adaptation by mediating multiple
stress responses and developmental pathways.

10 Perspectives for future studies

The complexion of the Arabidopsis genome-sequencing
project revealed a large family of CNGCs composed of 20
members with overall sequence similarities ranging
between 55% and 83% (Mäser et al. 2001). While
mammalian genomes (in which they were discovered) have
so far been found to contain six CNGC-encoding genes, the
large number and diversity of their plant counterparts
suggests important and perhaps very specialized physio-
logical roles of CNGCs in plants. In the case of Na+/H+

antiporters, six fully sequenced members and at least 40
potential other candidates have been recognized (Xia et al.
2002). Although numerous studies have shown that over-
expression of some Na+/H+ antiporters results in more salt
tolerant plants (Gaxiola et al. 1999; Sottosanto et al. 2004)
and it is known that some CNGCs such as AtCNGC19 and

Fig. 14 Structure of plant cyclic-nucleotide-gated ion channels
(CNGC). CNGCs are composed of six transmembrane domains (S)
and a pore region (P) between the fifth and sixth domains. The
cytosolic C-terminus has a C-linker followed by the cyclic nucleotide
binding domain (CNBD) with an overlapping calmodulin bindig
domain (CAMBD)

Gene Ion selectivity Suggested physiological role

Arabidopsis thaliana

AtCNGC1 K+, Na+, Ca2+, Pb2+ Cation uptake from soil

Heavy metal uptake

AtCNGC2 K+, Ca2+,Li+ Cs+, Rb2+ Developmental cell death and senescence

Growth and development

Pathogen resistance

AtCNGC3 K+, Na+ Distribute and translocate ion from xylem

Translocate Na+ within embryo

AtCNGC4 K+, Na+ Pathogen resistance

AtCNGC10 K+ Light modulated development

AtCNGC11 K+, Ca2+ Pathogen resistance

AtCNGC12 K+, Ca2+ Pathogen resistance

AtCNGC18 Ca2+ Polarized pollen tube growth

Nicotiana tabacum

NtCPB4 Pb2+ Heavy metal uptake

Hordeum vulgare

HvCBT1 Unknown Ion transport in aleurona

NEC1 Unknown Pathogen resistance

Table 4 Ion selectivity and
physiological roles identified in
plant cyclic-nucleotide-gated
channels
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AtCNGC20 could assist the plant to cope with toxic effects
caused by salt stress (Kugler et al. 2009), much remains
unknown on this topic.

In relation to arbuscular mycorrhizal symbiosis, it is
interesting to note that there are no studies regarding
CNGCs and only a few investigations have been carried out
with cation:proton antiporters (Ouziad et al. 2006). Thus,
we propose that investigating the participation of cation
proton antiporters and cyclic nucleotide-gated channels
on arbuscular mycorrhizal symbiosis under salinity is a
promising field that should shed further light on new
mechanisms involved in the enhanced tolerance of AM
plants to salt stress. Indeed, these studies would allow
understanding if the AM symbiosis affects sodium
uptake, distribution, and compartimentation within the
plant cell. Overall, these investigations should open new
research lines aimed at obtaining maximum benefit from
the AM symbiosis under salinity or other osmotic stress
conditions.
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