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Abstract. We study verification problems for a model of network with
the following characteristics: the number of entities is parametric, com-
munication is performed through broadcast with adjacent neighbors, en-
tities can change their internal state probabilistically and reconfiguration
of the communication topology can happen at any time. The semantics
of such a model is given in term of an infinite state system with both non
deterministic and probabilistic choices. We are interested in qualitative
problems like whether there exists an initial topology and a resolution of
the non determinism such that a configuration exhibiting an error state
is almost surely reached. We show that all the qualitative reachability
problems are decidable and some proofs are based on solving a 2 player
game played on the graphs of a reconfigurable network with broadcast
with parity and safety objectives.

1 Introduction

Providing methods to analyze and verify distributed systems is a complex task
and this for several reasons. First there are different families of distributed sys-
tems depending on the communication means (shared memory or message pass-
ing), on the computing power of the involved entities, on the knowledge of the
system provided to the entities (full knowledge, or local knowledge of their neigh-
bors, or no knowledge at all) or on the type of communication topology that is
considered (ring, tree, arbitrary graph, etc). Second, most of the protocols devel-
oped for distributed systems are supposed to work for an unbounded number of
participants, hence in order to verify that a system behaves correctly, one needs
to develop methods which allow to deal with such a parameter.

In [11], the authors propose a model which allows to take into account the
main features of a family of distributed networks, namely ad-hoc networks. It
characterizes the following aspects of such systems: the nodes in the network can
only communicate with their neighbors using broadcast communication and the
number of participants is unbounded. In this model, each entity behaves similarly
following a protocol which is represented by a finite state machine performing
three kinds of actions (1) broadcast of a message, (2) reception of a message and
(3) internal action. Furthermore, the communication topology does not change
during an execution and no entity is deleted or added during an execution. The



control state reachability problem consists then in determining whether there
exists an initial number of entities in a communication topology such that it
is possible to reach a configuration where at least one process is in a specific
control state (considered for instance as an error state). The main difficulty
in solving such a problem lies in the fact that both the number of processes
and the initial communication topology are parameters, for which one wishes
to find an instantiation. In [11], it is proven that this problem is undecidable
but becomes decidable when considering non-deterministic reconfiguration of
the communication topology, i.e. when at any moment the nodes can move and
change their neighborhood. In [10] this latter problem is shown to be P-complete.
An other way to gain decidability in such so called broadcast networks consists in
restricting the set of communication topologies to complete graphs (aka cliques)
or bounded depth graphs [12] or acyclic directed graphs [1].

We propose here to extend the model of reconfigurable broadcast networks
studied in [10] by allowing probabilistic internal actions, that is, a process can
change its internal state according to a probabilistic distribution. Whereas the
semantics of reconfigurable broadcast networks was given in term of an infinite
state system with non-determinism (due to the different possibility of sending
messages from different nodes and also to the non-determinism of the proto-
col itself), we obtain here an infinite state system with probabilistic and non-
deterministic choices. On such a system we study the probabilistic version of
the control state reachability by seeking for the existence of a scheduler resolv-
ing non-determinism which minimizes or maximizes the probability to reach a
configuration exhibiting a specific state. We focus on the qualitative aspects of
this problem by comparing probabilities only with 0 and 1. Note that another
model of broadcast networks with probabilistic protocols was defined in [6]; it
was however different: the communication topologies were necessarily cliques and
decidability of qualitative probabilistic reachability only holds when the network
size evolves randomly over time.

For finite state systems with non-determinism and probabilities (like finite
state Markov Decision Processes), most verification problems are decidable [5],
but when the number of states is infinite, they are much harder to tackle. The
introduction of probabilities might even lead to the undecidability, for problems
that are decidable in the non-probabilistic case. For instance for extensions of
pushdown systems with non-deterministic and probabilistic choices, the model-
checking problems of linear time or branching time logic are undecidable [13,7].
On the other hand, it is not always the case that the introduction of probabilistic
transitions leads to undecidability but then dedicated verification methods have
to be invented, as it is the case for instance for nondeterministic probabilistic
lossy channel systems [4]. Even if for well-structured infinite state systems [2,14]
(where a monotonic well-quasi order is associated to the set of configurations),
a class to which belong the broadcast reconfigurable networks of [11], a general
framework for the extension to purely probabilistic transitions has been proposed
in [3], it seems hard to adapt such a framework to the case with probabilistic
and non-deterministic choices.
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In this paper, we prove that the qualitative versions of the control state reach-
ability problem for reconfigurable broadcast networks with probabilistic internal
choices are all decidable. For some of these problems, like finding a scheduler
such that the probability of reaching a control state is equal to 1, our proof tech-
nique is based on a reduction to a 2 player game played on infinite graphs with
safety and parity objectives. This translation is inspired by a similar translation
for finite state systems (see for instance [8]). However when moving to infinite
state systems, two problems raise: first whether the translation is correct when
the system has an infinite number of states, and then whether we can solve the
game. In our translation, we answer the first question in Section 3 and the second
one in Section 4. We also believe that the parity game we define on broadcast
reconfigurable networks could be used to verify other properties on such systems.
Due to lack of space, omitted proofs can be found in Appendix.

2 Networks of probabilistic reconfigurable protocols

2.1 Preliminary definitions

For a finite or denumerable set E, we write Dist(E), for the set of discrete
probability distributions over E, that is the set of functions δ : E 7→ [0, 1] such
that Σe∈Eδ(e) = 1. We now give the definition of a 1 − 1

2 player game, which
will be later used to provide the semantics of our model.

Definition 1 (1 − 1
2 player game). A 1 − 1

2 player game is a tuple M =

(Γ, Γ (1), Γ (p),→, prob) where Γ is a denumerable set of configurations (or ver-
tices) partitioned into the configurations of Player 1 Γ (1) and the probabilistic
configurations Γ (p); →: Γ (1) × Γ is the non deterministic transition relation;
prob : Γ (p) 7→ Dist(Γ (1)) is the probabilistic transition relation.

For a tuple (γ, γ′) ∈→, we will sometimes use the notations γ → γ′. A finite
path in the game M = (Γ, Γ (1), Γ (p),→, prob) is a finite sequence of configura-
tions γ0γ1 . . . γk such that for all 0 ≤ i ≤ k − 1, if γi ∈ Γ (1) then γi → γi+1 and
otherwise prob(γi)(γi+1) > 0; moreover we will say that such a path starts from
the configuration γ0. An infinite path is an infinite sequence ρ ∈ Γω such that
any finite prefix of ρ is a finite path. Furthermore we will say that a path ρ is
maximal if it is infinite or it is finite and there does not exist a configuration γ
such that ργ is a finite path (in other words a finite maximal path ends up in a
deadlock configuration). The set of maximal paths is denoted Ω.

A scheduler in the game M = (Γ, Γ (1), Γ (p),→, prob) is a function π : Γ ∗ ·
Γ (1) 7→ Γ that assigns, to a finite sequence of configurations ending with a
configuration in Γ (1), a successor configuration such that for all ρ ∈ Γ ∗, γ ∈ Γ (1)

and γ′ ∈ Γ , if π(ρ · γ) = γ′ then γ → γ′. We denote by Π the set of schedulers
for M. Given a scheduler π ∈ Π , we say that a finite path γ0γ1 . . . γn respects
the scheduler π if for every i ∈ {0 . . . n − 1}, we have that if γi ∈ Γ (1) then
π(γ0 . . . γi) = γi+1. Similarly we say that an infinite path ρ = γ0γ1 . . . respects
the scheduler π if every finite prefix of ρ respects π.
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Remark 1. Alternatively, a scheduler in the game M = (Γ, Γ (1), Γ (p),→, prob)
can be defined as what is often called a scheduler with memory. It is given by a
set M called the memory together with a strategic function πM : Γ (1)×M → Γ ,
an update function UM : Γ (1)×M ×Γ → M , and an initialization function IM :
Γ (0) → M . Intuitively, the update function updates the memory state given the
previous configuration, the current memory state and the current configuration.
The two definitions for schedulers coincide, and we will use one or the other,
depending on what is more convenient.

The set of paths starting from a configuration and respecting a scheduler
represents a stochastic process. Given a measurable set of paths A ⊆ Ω, we
denote by P(M, γ, π,A) the probability of event A for the infinite paths starting
from the configuration γ ∈ Γ and respecting the scheduler π. We define then
extremal probabilities of the event A starting from configuration γ as follows:

Pinf(M, γ,A) = inf
π∈Π

P(M, γ, π,A) and Psup(M, γ,A) = sup
π∈Π

P(M, γ, π,A)

2.2 Networks of probabilistic reconfigurable protocols

We introduce in this section our model to represent the behavior of a communi-
cation protocol in a network. This model has three main features : the commu-
nication in the network is performed via broadcast communication, each node
in the network can change its internal state probabilistically and the communi-
cation topology can change dynamically. This model extends the one proposed
in [10] with probability and can be defined in two steps. First, a configuration of
the network is represented thanks to a labelled graph in which the edges char-
acterize the communication topology and the label of the nodes give the state
and whether they are the next node which will perform an action or not.

Definition 2 (L-graph). Given L a set of labels, an L-graph is a labelled
undirected graph G = (V,E, L) where: V is a finite set of nodes, E ⊆ V × V \
{(v, v) | v ∈ V } is a finite set of edges such that (v, v′) ∈ E iff (v′, v) ∈ E, and
L : V 7→ L is a labelling function.

We denote by GL the infinite set of L-graphs and for a graph G = (V,E, L),
let L(G) ⊆ L be the set of all the labels present in G, i.e. L(G) = {L(v) | v ∈ V }.
For an edge (v, v′) ∈ V , we use the notation v ∼G v′ to denote that the two
vertices v and v′ are adjacent in G. When the considered graph G is made clear
from the context, we may omit G and write simply v ∼ v′.

Then, in our model, each node of the network behaves similarly following a
protocol whose description is given by what can be seen as a finite 1− 1

2 player
game labelled with a communication alphabet.

Definition 3 (Probabilistic protocol). A probabilistic protocol is a tuple
P = (Q,Q(1), Q(P ), q0, Σ,∆,∆int) where Q is a finite set of control states par-
titioned into Q(1), the states of Player 1, and Q(P ) the probabilistic states;
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q0 ∈ Q(1) is the initial control state; Σ is a finite message alphabet; Υ is a finite
set of internal actions; ∆ ⊆ (Q(1) ×{!!a, ??a | a ∈ Σ}×Q(1))∪ (Q(1) ×{ε}×Q)
is the transition relation; ∆int : Q(P ) 7→ Dist(Q(1)) is the internal probabilistic
transition relation.

The label !!a [resp. ??a] represents the broadcast [resp. reception] of the mes-
sage a ∈ Σ, whereas ε represents an internal action. Given a state q ∈ Q
and a message a ∈ Σ, we define the set Ra(q) = {q′ ∈ Q | (q, ??a, q′) ∈ ∆}
containing the control states that can be reached in P from the state q af-
ter receiving the message a. We also denote by ActStates the set of states
{q ∈ Q | ∃(q, !!a, q′) ∈ ∆ or ∃(q, ε, q′) ∈ ∆} from which a broadcast or an
internal action can be performed.

The semantics associated to a protocol P = (Q,Q(1), Q(P ), q0, Σ,∆,∆int) is
given in term of an infinite state 1− 1

2 player game. We will represent the network
thanks to labelled graphs. The intuition is that each node of the graph runs the
protocol and the semantics respect the following rules: first the Player 1 chooses
non deterministically a communication topology (i.e. the edge relation) and a
node which will then perform either a broadcast or an internal change; if the
node broadcasts a message, all the adjacent nodes able to receive it will change
their states, and if the node performs an internal move, then it will be the only
one to change its state to a new state, if it’s probabilistic state a probabilistic
move will then follow. Observe that the topology can hence possibly change at
each step of the Player 1. Finally, in our model, there is no creation neither
deletion of nodes, hence along a path in the associated game the number of
nodes in the graphs is fixed. We now formalize this intuition.

Let P = (Q,Q(1), Q(P ), q0, Σ,∆,∆int) be a probabilistic protocol. The set of
configurations ΓP of the network built over P is a set of (Q × {⊥,⊤})-graphs

formally defined as follows: Γ
(1)
P = {(V,E, L) ∈ GQ(1)×{⊥,⊤} | card({v ∈ V |

L(v) ∈ Q(1) × {⊤}}) ≤ 1} and Γ
(p)
P = {(V,E, L) ∈ GQ×{⊥} | card({v ∈ V |

L(v) ∈ Q(P ) × {⊥}}) = 1} and ΓP = Γ (1) ∪ Γ (p). Hence in the configurations
of Player 1, there is no node labelled with probabilistic state and at most one
node labelled with ⊤ (it is the chosen node for the action to be performed) and
in the probabilistic configurations no node is labelled with ⊤ and exactly one
node is labelled with a probabilistic state. For this last set of configurations, the
intuition is that when in the network one node changes its state to a probabilistic

one then the network goes in a configuration in Γ
(p)
P from which it performs a

probabilistic choice for the next possible state of the considered node.
The semantics of the network built over P is then given in term of the 1− 1

2

player game MP = (ΓP , Γ
(1)
P , Γ

(p)
P ,→P , probP) where:

– →P⊆ Γ
(1)
P × ΓP is defined as follows, for all γ = (V,E, L) in Γ

(1)
P , all γ′ =

(V ′, E′, L′) in ΓP , we have γ →P γ′ iff one of the following conditions hold:

Reconfiguration and process choice: γ ∈ GQ(1)×{⊥}, V
′ = V and there

exists a vertex v ∈ V and a state q ∈ ActStates such that L(v) = (q,⊥)
and L′(v) = (q,⊤) and for all v′ ∈ V \ {v}, L(v′) = L′(v′);
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Internal: γ ∈ Γ
(1)
P , V ′ = V , E′ = E and there exists v ∈ V , q ∈ Q(1) and

q′ ∈ Q such that L(v) = (q,⊤), L′(v) = (q′,⊥) and (q, ε, q′) ∈ ∆, and
for all v′ ∈ V \ {v}, L′(v′) = L(v′);

Communication: γ′ ∈ Γ
(1)
P , V ′ = V , E′ = E and there exists v ∈ V , q, q′ ∈

Q(1) and a ∈ Σ such that L(v) = (q,⊤), L′(v) = (q′,⊥), (q, !!a, q′) ∈ ∆
and for every v′ ∈ V \{v} with L(v′) = (q′′,⊥), if v ∼ v′ and Ra(q

′′) 6= ∅
then L′(v′) = (q′′′,⊥) with q′′′ ∈ Ra(q

′′) and otherwise L′(v′) = L(v′);

– probP : Γ
(p)
P 7→ Dist(Γ

(1)
P ) is defined as follows, for all γ = (V,E, L) ∈ Γ

(p)
P ,

we have : if v ∈ V is the unique vertex such that L(v) ∈ Q(P ) × {⊥} and if
∆int(L(v)) = µ, then for all γ′ = (V ′, E′, L′) ∈ ΓP , if V

′ = V and E′ = E
and for all v′ ∈ V \ {v}, L′(v′) = L(v) and then probP(γ)(γ

′) = µ(q′) where
(q,⊥) = L(v) and (q′,⊥) = L′(v) , and otherwise probP(γ)(γ

′) = 0.

Finally we will denote by ΓP,0 the set of initial configurations in which all the
vertices are labelled with (q0,⊥). We point out the fact that since we do not
impose any restriction on the size of the Q-graphs, the 1− 1

2 player gameMP has
hence an infinite number of configurations. However the number of configurations
reachable from an initial configuration γ ∈ ΓP,0 since the number of states in a
probabilistic protocol is finite.

A simple example of probabilistic protocol is represented on Figure 1. The
initial state is q0 and the only probabilistic state is qp. From qr the broadcast of
a message a leads back to q0, and this message can be received from ql to reach
the target qf .

q0 qp

ql

qr

qf

ε

1

2

1

2

ε

!!a

??a

Fig. 1: Simple example of probabilistic protocol

2.3 Qualitative reachability problems

The problems we propose to investigate are qualitative ones where we will com-
pare the probability of reaching a particular state in a network built over a proba-
bilistic protocol with 0 or 1. Given a probabilistic protocol P = (Q,Q(1), Q(P ), q0,
Σ,∆,∆int) and a state qf ∈ Q, we denote by ✸qf the set of all maximal paths of
MP of the form γ0 · γ1 · · · such that there exists i ∈ N verifying (qf ,⊥) ∈ L(γi),
i.e. the set of paths which eventually reach a graph where a node is labelled with
the state qf . It is well known that such a set of paths is measurable (see [5] for
instance). We are now ready to provide the definition of the different qualitative
reachability problems that we will study. Given opt ∈ {min,max}, b ∈ {0, 1}
and ∼∈ {<,=, >}, let Reach

∼b
opt be the following problem:
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Input: A probabilistic protocol P , and a control state qf ∈ Q.
Question: Does there exists an initial configuration γ0 such that
Popt(MP , γ0,✸qf ) ∼ b ?

Remark that this problem is parameterized by the initial configuration and this
is the point that make this problem difficult to solve (and that leads to unde-
cidability in the case with no probabilistic choice and no reconfiguration in the
network [11]). However for a fixed given initial configuration, the problem boils
down to the analysis of a finite 1 − 1

2 player game as already mentioned. As a
consequence, the minimum and maximum (rather than infimum and supremum)
probabilities are well-defined when an initial configuration γ0 is fixed; moreover,
these extremal values are met for memoryless schedulers.

3 Networks of parity reconfigurable protocols

3.1 Parity, safety and safety/parity games

We first introduce 2 player turn-based zero-sum games with various winning ob-
jectives. For technical reasons that will become clear in the sequel, our definition
differs from the classical one: colors (or parities) label the edges rather than the
vertices.

Definition 4 (2 player game). A 2 player game is a tuple G = (Λ,Λ(1), Λ(2), T,
col, safe) where Λ is a denumerable set of configurations, partitioned into Λ(1)

and Λ(2), configurations of Player 1 and 2, respectively; T ⊆ Λ × Λ is a set of
directed edges; col : T → N is the coloring function such that col(T ) is finite;
safe ⊆ T is a subset of safe edges.

As in the case of 1 − 1
2 player game, we define the notions of paths and

the equivalent to schedulers: strategies. A finite path ρ is a finite sequence of
configurations λ0λ1 · · ·λn ∈ Λ∗ such that (λi, λi+1) ∈ T for all 0 ≤ i < n. Such a
path is said to start at configuration λ0. An infinite path is an infinite sequence
ρ ∈ Λω such that any finite prefix of ρ is a finite path. Similarly to paths in 1− 1

2
player game, maximal paths in G are infinite paths or finite paths ending in a
deadlock configuration.

A strategy for Player 1 dictates its choices in configurations of Λ(1). More
precisely, a strategy for Player 1 in the game G = (Λ,Λ(1), Λ(2), T, col, safe) is
a function σ : Λ∗Λ(1) 7→ Λ such that for every finite path ρ and λ ∈ Λ(1),
(λ, σ(ρλ)) ∈ T . Strategies τ : Λ∗Λ(2) → Λ for Player 2 are defined symmetrically,
and we write S(1) and S(2) for the set of strategies for each player. A strategy
profile is a pair of strategies, one for each player. Given a strategy profile (σ, τ)
and an initial configuration λ0, the game G gives rise to the following maximal
path, aka the play, ρ(G, λ0, σ, τ) = λ0λ1 · · · such that for all i ∈ N, if λi ∈ Λ(1)

then λi+1 = σ(λ0 . . . λi), otherwise λi+1 = τ(λ0 . . . λi).
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Remark 2. Similarly to the case of schedulers in 1 − 1
2 player game, (see Re-

mark 1), when convenient the players’ strategies can be alternatively defined as
strategies with memory. In this case, a strategy for Player 1 with memory M is
given by means of a strategic function σM : Λ(1) ×M → Λ, an update function
UM : Λ(1) ×M × Λ → M , and an initialization function IM : Λ → M .

The winning condition for Player 1 is a subset of plays Win ⊆ Λ∗ ∪ Λω. In
this paper, we characterize winning conditions through safety, parity objectives
and combinations of these two objectives, respectively denoted by Wins, Winp

and Winsp, and defined as follows:

Wins = {ρ ∈ Λ∗ ∪ Λω | ∀0 ≤ i < |ρ| − 1.(ρ(i), ρ(i+ 1)) ∈ safe and ρ is maximal}

Winp = {ρ ∈ Λω | max{n ∈ N | ∀i ≥ 0.∃j ≥ i.col((ρ(j), ρ(j + 1))) = n}is even}

Winsp = (Winp ∩Wins) ∪ (Λ∗ ∩Wins)

The safety objective denotes the maximal path that use only edges in safe, the
parity objective denotes the infinite paths for which the maximum color visited
infinitely often is even and the safety-parity objective denotes the set of safe
maximal paths which have to respect the parity objectives when they are infinite.
We say that a play ρ is winning for Player 1 for an objective Win ⊆ Λ∗ ∪ Λω

if ρ ∈ Win, in the other case it is winning for Player 2. Last, a strategy σ for
Player 1 is a winning strategy from configuration λ0 if for every strategy τ of
Player 2, the play ρ(G, λ0, σ, τ) is winning for Player 1.

3.2 Networks of parity reconfigurable protocols

We now come to the definition of networks of parity reconfigurable protocols,
introducing their syntax and semantics. The main differences with the probabilis-
tic protocol introduced previously lies in the introduction of states for Player 2,
the use of colors associated to the transition relation and the removal of the
probabilistic transitions.

Definition 5 (Parity protocol). A parity protocol is as a tuple P = (Q,Q(1),
Q(2), q0, Σ,∆, col, safe) where Q is a finite set of control states partitioned into
Q(1) and Q(2); q0 ∈ Q(1) is the initial control state; Σ is a finite message alphabet;
∆ ⊆

(

Q(1) ×
(

{!!a, ??a | a ∈ Σ} ∪ {ε}
)

×Q
)

∪
(

Q(2) × {ε} ×Q
)

is the transition
relation; col : ∆ → N is the coloring function; safe ⊆ ∆ is a set of safe edges.

Note that the roles of Player 1 and Player 2 are not symmetric: only Player 1
can initiate a communication, and Player 2 performs only internal actions. As
for probabilistic protocols, given a state q ∈ Q and a message a ∈ Σ, we define
the set Ra(q) = {q′ ∈ Q | (q, ??a, q′) ∈ ∆} containing the control states that can
be reached in P from the state q after receiving the message a. We also denote
by ActStates the set of states {q ∈ Q | ∃.(q, !!a, q′) ∈ ∆ or ∃.(q, ε, q′) ∈ ∆} of
states from which a broadcast or an internal action can be performed.
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The semantics associated to a parity protocol is given in term of a 2 player
game whose definition is similar to the 1− 1

2 player game associated to a proba-
bilistic protocol. Here also the Player 1 has the ability to choose a communication
topology and a node which will perform an action, and according to the con-
trol state labelling this node either Player 1 or Player 2 will then perform the
next move. Let P = (Q,Q(1), Q(2), q0, Σ,∆, col, safe) be parity protocol. The set
of configurations ΛP of the network built over P is defined as follows: ΛP =
{(V,E, L) ∈ GQ×{⊥,⊤} | card({v ∈ V | L(v) ∈ Q×{⊤}}) ≤ 1} and then we have

Λ
(1)
P

= GQ×{⊥} ∪ {(V,E, L) ∈ ΛP | card({v ∈ V | L(v) ∈ Q(1) × {⊤}}) = 1}and

Λ(2) = {(V,E, L) ∈ ΛP | card({v ∈ V | L(v) ∈ Q(2) × {⊤}}) = 1}. We observe
that Player 1 owns vertices where no node is tagged ⊤, and Player i owns the
vertices where the node tagged ⊤ is in a Player i control state.

The semantics of the network built overP is then given in term of the 2 player

game GP = (ΛP, Λ
(1)
P

, Λ
(2)
P

, TP, colP, safeP) where TP ⊆ ΛP×ΛP, colP : TP → N

and safeP ⊆ TP are defined as follows: for all λ = (V,E, L) and λ′ = (V ′, E′, L′)
in ΛP, we have (λ, λ′) ∈ TP iff one the following conditions is satisfied:

Reconfiguration and process choice λ ∈ GQ×{⊥} and there exists a vertex
v ∈ V and a state q ∈ ActStates such that L(v) = (q,⊥) and L′(v) = (q,⊤)
and for all v′ ∈ V \ {v}, L(v′) = L′(v′); in this case, colP(λ, λ

′) = 0 and
(λ, λ′) ∈ safeP;

Internal V ′ = V , E′ = E and there exists v ∈ V , q, q′ ∈ Q such that L(v) =
(q,⊤), L′(v) = (q′,⊥) and (q, ε, q′) ∈ ∆, and for all v′ ∈ V \ {v}, L′(v′) =
L(v′); in this case, colP(λ, λ

′) = col(q, ε, q′) and (λ, λ′) ∈ safeP iff (q, ε, q′) ∈
safe;

Communication V ′ = V , E′ = E and there exists v ∈ V , q, q′ ∈ Q and a ∈ Σ
such that L(v) = (q,⊤), L′(v) = (q′,⊥), (q, !!a, q′) ∈ ∆ and for every v′ ∈
V \ {v} with L(v′) = (q′′,⊥), if v ∼ v′ and Ra(q

′′) 6= ∅ then L′(v′) = (q′′′,⊥)
with q′′′ ∈ Ra(q

′′) and otherwise L′(v′) = L(v′) ; in this case, colG(λ, λ
′) =

col(q, !!a, q′) and (λ, λ′) ∈ safeP iff we have (q, !!a, q′) ∈ safe and for all the
reception transitions (q′′, ??a, q′′′) used, (q′′, ??a, q′′′) ∈ safe.

Finally, we will say that a configuration λ = (V,E, L) is initial if L(v) = (q0,⊥)
for all v ∈ V and we will write ΛP,0 the set of initial configurations. Note that
here also the number of initial configuration is infinite. We are now able to define
the game problem for parity protocol as follows:

Input: A parity protocol P, and a winning condition Win.
Question: Does there exists an initial configuration λ0 ∈ ΛP,0 such that
Player 1 has a winning strategy in GP from λ0?

3.3 Restricting the strategies of Player 2

In order to solve the game problem for parity protocols, we first show that we
can restrict the strategies of Player 2 to strategies that always choose from a
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given control state the same successor, independently of the configuration, or
the history in the game.

In the sequel we consider a parity protocolP = (Q,Q1, Q2, q0, Σ,∆, col, safe).
We begin by defining what are the local positional strategies for Player 2 in GP. A
local behavior for Player 2 in GP is a function b : (Q2∩ActStates) 7→ ∆ such that
for all q ∈ Q2∩ActStates, b(q) ∈ {(q, ε, q′) | (q, ε, q′) ∈ ∆}. Such a local behavior
induced what we will call a local strategy τb for Player 2 in GP defined as follows:
let ρ be a finite path in Λ∗

P
and λ = (V,E, L) ∈ Λ(2), if v is the unique vertex in

V such that L(v) ∈ Q(2) × {⊤} and if L(v) = (q,⊤), we have τb(ρλ) = λ′ where
λ′ is the unique configuration obtained from λ by applying accordingly to the
definition of GP the rule corresponding to b(q) (i.e. the internal action initiated

from vertex v). We denote by S
(2)
l the set of local strategies for Player 2. Note

that there are a finite number of states and of edges in P, the set S
(2)
l is thus

finite and contain at most card(∆) strategies. The next lemma shows that we
can restrict Player 2 to follow only local strategies in order to solve the game
problem for P when considering the previously introduced winning objectives.

Lemma 1. For Win ∈ {Wins,Winp,Winsp}, we have ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈

S(2), ρ(GP, λ0, σ, τ) ∈ Win ⇐⇒ ∀τ ∈ S
(2)
l

. ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1), ρ(GP, λ0,
σ, τ) ∈ Win

3.4 Solving the game against local strategies

In this section, we explain how to decide whether there exists an initial con-
figuration and a strategy for Player 1 which is winning against a fixed lo-
cal strategy. We consider a parity protocol P = (Q,Q1, Q2, q0, Σ,∆, col, safe)
and a local behavior b. From this parity protocol we build a parity protocol
P′ = (Q, q0, Σ,∆′, col′, safe′) by removing the choices of Player 2 not corre-
sponding to b and by merging states of Player 1 an states of Player 2; this
protocol is formally defined as follows: ∆′ ⊆ ∆ and (q, a, q′) ∈ ∆′ iff q ∈ Q(1)

and (q, a, q′) ∈ ∆′, or, q ∈ Q(2) and b(q) is defined and equal to (q, a, q′), fur-
thermore col

′ is the restriction of col to ∆′ and safe
′ = ∆′ ∩ safe. The following

lemma states the relation between P and P′.

Lemma 2. For Win ∈ {Wins,Winp,Winsp}, there exists a path ρ in GP′ start-
ing from an initial configuration and such that ρ ∈ Win iff ∃λ0 ∈ ΛP,0. ∃σ ∈
S(1), ρ(GP, λ0, σ, τb) ∈ Win.

We will now show how to decide the two following properties on GP′ : whether
there exists a maximal finite path in Wins starting from an initial configuration
in GP′ and whether there exists an infinite path ∈ Winp ∩Wins starting from an
initial configuration. Once, we will have shown how to solve these two problems,
this will provide us, for each winning condition, an algorithm to decide whether
there exists a winning path in GP′ .

We now provide the idea to solve the first problem. By definition, a finite
path ρ = λ0λ1 · · ·λn in the game GP′ is maximal if there does not exist a
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configuration λ ∈ ΛP′ such that (λn, λ) ∈ T ′
P
and according to the semantics of

the parity protocol P′, this can be the case if and only if λn = (V,E, L) where
L(λn) ⊆ (Q×{⊥})\(ActStates×{⊥}). In [10], it is shown that, for reconfigurable
broadcast protocol, one can decide in NP whether, given a set of protocol states,
there exists a path starting from an initial configuration reaching a configuration
in which no vertices are labelled by the given states. We deduce the next lemma.

Lemma 3. The problem of deciding whether there exists in GP′ a finite maximal
path belonging to Wins starting from an initial configuration is in NP.

We now show how to decide in polynomial time whether there exists an
infinite path in Winp ∩ Wins starting from an initial configuration. The idea is
the following. We begin by removing in P′ the unsafe edges. Then we compute in
polynomial time all the reachable control states using an algorithm of [10]. Then
from [10] we also know that there exists a reachable configuration exhibiting as
many reachable states as we want. Finally, we look for an infinite loop respecting
the parity condition from such a configuration. This is done by using a counting
abstraction method which translates the system into a Vector Addition System
with States (VASS) and then by looking in this VASS for a cycle whose effect
on each of the manipulated value is 0 (i.e. a cycle whose edge’s labels sum to 0)
and this is can be done in polynomial time thanks to [15].

Lemma 4. The problem of deciding whether there exists an infinite path ρ start-
ing from an initial configuration in GP′ such that ρ ∈ Winp ∩Wins is in Ptime.

By Lemma 2 we know hence that: there is anNP algorithm to decide whether
∃λ0 ∈ ΛP,0. ∃σ ∈ S(1), ρ(GP, λ0, σ, τb) ∈ Wins (in fact this reduces to looking
for a finite maximal path belonging to Wins and use Lemma 3 or an infinite
safe path, in this case we put all the colors to 0 and we use Lemma 4); there is
a polynomial time algorithm to decide the same problem with Winp instead of
Wins (use Lemma 3 with all the transitions considered as safe) and there is an
NP algorithm for the same problem with Winsp (here again we look either for a
finite maximal safe path and use Lemma 3 or for an infinite safe path satisfying
the parity condition and we use Lemma 4).

So now since the number of local strategies is finite, this gives us non deter-

ministic algorithms to solve whether ∃τ ∈ S
(2)
l . ∀λ0 ∈ ΛP,0. ∀σ ∈ S(1), ρ(GP, λ0,

σ, τ) /∈ Win with Win ∈ {Wins,Winp,Winsp}. Note that for Winp we will have
an NP algorithm and for Wins and Winsp, an NP algorithm using an NP oracle
(i.e. an algorithm in NP

NP = ΣP
2 ). Hence thanks to Lemma 1, we are able to

state the main result of this section.

Theorem 1. For safety and safety-parity objectives, the game problem for parity
protocol is decidable and in ΠP

2 (=co-NP
NP), and in co-NP for parity objectives.

4 Solving probabilistic networks

In this section we solve the qualitative reachability problems for probabilistic
reconfigurable broadcast networks. The most involved case is Reach

=1
max for

which we reduce to games on parity protocols with a parity winning condition.
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4.1 Reach=1

max

Let us now discuss the most involved case, Reach
=1
max, and show how to reduce it

to the game problem for parity protocols with a parity winning condition. From
P = (Q,Q(1), Q(P ), q0, Σ,∆,∆int) a probabilistic protocol and qf ∈ Q a control

state, we derive the parity protocol P = (QP, Q
(1)
P

, Q
(2)
P

, q0P, ΣP, ∆P, col, safe)

as follows: QP = Q
(1)
P

∪ Q
(2)
P

, Q
(1)
P

= Q(1) ∪ Q(P ) × {1}, Q
(2)
P

= Q(P ) ×
{2}, and q0P = q0; ΣP = Σ; ∆P =

(

Q(1) × {!!a, ??a | a ∈ Σ} ×Q(1) ∩∆
)

∪
{(qf , ε, qf )} ∪ {(q, ε, (q′, 2)), ((q′, i), ε, q′), ((q, 2), ε, (q, 1)) | (q, ε, q′) ∈ ∆, i ∈
{1, 2}} ∪ {((q, i), ε, q′) | ∆int(q)(q′) > 0, i ∈ {2, 3}}; and last col((qf , ε, qf )) = 2,
col(((q, 2), ε, q′) = 2 and otherwise col(δ) = 1.

Intuitively, all random choices corresponding to internal actions in P are
replaced in P with choices for Player 2, where either he decides the outcome
of the probabilistic choice, or he lets Player 1 choose. Only transitions where
Player 2 makes the decision corresponding to a probabilistic choice and the self
loop on the state qf have parity 2. Figure 2 illustrates this reduction on the
example probabilistic protocol from Figure 1. This construction ensures:

q0 qp, 2 qp, 1

ql

qr

qf

ε:1

ε:2

ε:2

ε:1

ε:1

ε:1

ε:1

!!a:1

??a:1
ε:2

Fig. 2: Parity protocol for the probabilistic protocol from Figure 1.

Proposition 1. ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winp if
and only if ∃γ0 ∈ ΓP,0. Pmax(MP , γ0,✸qf ) = 1.

Proof (sketch). The easiest direction is from left to right. Assuming that some
scheduler π ensures to reach qf with probability 1, one builds a winning strategy
σ for the parity objective as follows. When Player 2 makes a decision correspond-
ing to a probabilistic choice in P , the strategy chooses to play this probabilistic
transition. Now, when Player 1 needs to make a decision in some configuration λ
where there is a vertex v labelled by ((q, 1),⊤) ∈ Q(P )×{1}×{⊤}, the strategy
is to play along a shortest path respecting π from γ to a configuration containing
qf , where γ is defined as λ but the label of v is q. Assuming that π reaches qf
with probability 1, such a path must exist for every reachable configuration in the
game. This definition of σ ensures to eventually reach qf under the assumption
that Player 2, from some point on, always lets Player 1 decide in configurations
corresponding to probabilistic states of P .

Let us now briefly explain how the right to left implication works. Notice
that if Player 2 always chooses transitions with parity 1 (thus letting Player 1
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decide the outcome of probabilistic choices), the only way for Player 1 to win
is to reach qf , and from there use the self loop to ensure the parity condition.
As a consequence, from any reachable configuration, the target state qf must be
reachable.
From a winning strategy σ, we define a scheduler π that mimics the choices of σ
on several copies of the network. The difficulty comes from the transformation
of choices of Player 1 in states of the form (q, 1) ∈ Q(P ) × {1} into probabilistic
choices. Indeed, the outcome of these random choices cannot surely match the
decision of Player 1. The idea is the following: when a probabilistic choice in
P does not agree with the decision of Player 1 in P, this “wrong choice” is
attributed to Player 2. The multiple copies thus account for memories of the
“wrong choices”, and a process performing such a choice is moved to a copy
where the choice was made by Player 2. With probability 1, eventually a “good
choice” is made, and the 1-1/2 player game can continue in the original copy of
the network. Therefore, almost-surely the play will end in a given copy, where
Player 1 always decides, and thus qf is reached. ⊓⊔

Theorem 2. Reach
=1
max is co-NP-complete.

Proof (sketch). The co-NP membership is a consequence of Proposition 1 and
Theorem 1, and we now establish the matching lower-bound. To establish the
coNP-hardness we reduce the unsatisfiability problem to Reach

=1
max. From ϕ a

formula in conjunctive normal form, we define a probabilistic protocol Pϕ and a
control state qf such that ϕ is unsatisfiable if and only if there exists an initial
configuration γ0 ∈ ΓP,0 and a scheduler π such that P(MP , γ0, π,✸qf ) = 1.

We provide here the construction on an example in Figure 3, the general
definition is given in Appendix. For simplicity, the initial state q0 of the prob-
abilistic protocol is duplicated in the picture. The idea, if ϕ is unsatisfiable, is
to generate a random affectation of the variables (using the gadgets represented
bottom of the Figure), which will necessarily violate a close of ϕ. Choosing then
this clause in the above part of the protocol allows to reach state r1, and from
there to reach qf with probability half. Iterating this process, the target can be
almost-surely reached. The converse implication relies on the fact that if ϕ is
satisfiable, there is a positive probability to generate a valuation satisfying it,
and then not to be able to reach r1, a necessary condition to reach qf . Therefore,
the maximum probability to reach the target is smaller than 1 in this case. ⊓⊔

4.2 Other cases

The decision problems Reach
=0
min [resp. Reach

<1
min] can be reduced to a game

problem for parity protocols with a safety [resp. safety/parity] winning condition.
From a probabilistic protocol P , for Reach

=0
min, we build a parity protocol P

where all random choices in P are replaced in P with choices for Player 2. The
transitions with target qf are the only ones that do not belong to the safe set
safe. For Reach

<1
min, P consists of two copies of P . In the first copy, all random

choices are replaced with choices of Player 1, whereas in the second copy they
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q0φ x1,0

x0,0

x2,0

x0,1

x1,1

x2,1

x0,2

x1,2

x2,2

x0,3

x1,3

x2,3

r1

rp qf

q0φ a

a1

ā1

a2

ā2

q0φ b

b1

b̄1

b2

b̄2

q0φ c

c1

c̄1

c2

c̄2

??ā ??b̄ ??c

!!ok

??ā ??b ??c̄ !!ok

??a ??b ??c

!!ok

1

2 1

2

1

2

1

2

!!a

!!ā

??ok

??ok

1

2

1

2

!!b

!!̄b

??ok

??ok

1

2

1

2

!!c

!!c̄

??ok

??ok

Fig. 3: Probabilistic protocol for the formula ϕ = (a∨b∨ c̄)∧(a∨ b̄∨c)∧(ā∨ b̄∨ c̄)

are replaced with choices of Player 2. Also, at any time, one can move from the
first to the second copy. The parity of transitions with target in the second copy
is 2, and otherwise it is 1. Moreover, the only unsafe transitions are those with
targer qf . In these two cases, using Theorem 1, we obtain:

Theorem 3. Reach
=0
min and Reach

<1
min are in ΠP

2 .

The decidability and complexity of the remaining cases are established di-
rectly, without reducing to games on parity protocols. First of all, Reach

>0
max

is interreducible to the reachability problem in non-probabilistic reconfigurable
broadcast networks, known to be P-complete [10]. For the other decision prob-
lems we use a monotonicity property: intuitively, with more nodes, the proba-
bility to reach the target can only increase. The problems are then reduced to
qualitative reachability problems in the finite state MDP for the network with
a single process, and thus belong to PTIME.

Theorem 4. Reach
>0
max, Reach

=0
max, Reach

<1
max, Reach

=1
min and Reach

>0
min are

in PTIME.

5 Conclusion

In this paper we introduced probabilistic reconfigurable broadcast networks and
studied parameterized qualitative reachability questions. The decidability of
these verification questions are proved by a reduction to a 2-player games played
on an infinite graphs, for which we provide decision algorithms. The complexities
range from PTIME to coNP

NP, as summarized in the table below.

Problem Reach
=0
min Reach

<1
min Reach

=1
max others

Complexity ΠP
2 ΠP

2 coNP-complete PTIME
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In the future, we would like to find the precise complexity for Reach
=0
min and

Reach
<1
min either by determining matching lower bounds or by improving the

decision procedures. We will also study quantitative versions of the reachability
problem. Finally we also believe that we could use our games played over recon-
figurable broadcast protocols either to decide other properties on this family of
systems or to analyze new models.
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Appendix

A Details for Section 3

A.1 Proof of Lemma 1

We first prove:

∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Win

⇐⇒

∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S
(2)
l , ρ(GP, λ0, σ, τ) ∈ Win

Only the right-to-left implication deserves a proof, since S
(2)
l ⊆ S(2). The

proof shares some similarities with the one to establish that memoryless strate-
gies are sufficient for Player 2 in energy parity games [9]. It is done by induction
on |Q2|, the number of states of Player 2 in the parity protocol.

We assume that there exists an initial configuration λ0 ∈ ΛP,0 and a strategy
σ for Player 1 such that for all local strategies τ of Player 2, ρ(GP, λ0, σ, τ) ∈ Win.

If Q2 = ∅, Player 2 makes no decision in the game, hence, the set of local
strategies agrees with the set of all strategies and they are empty. Therefore, the
base case is obvious.

Assume now that the property holds for |Q2| < n, and let us consider a
parity protocol P with |Q2| = n. We suppose that Q2 = {q1, · · · , qn}. We first
rule out the case where in qn a single internal transition is enabled, since in that
case, Player 2 has no real choice in qn, and qn can as well belong to Q1, so that
the induction hypothesis applies. Without loss of generality, we consider that
two transitions δℓ = (qn, ε, qℓ) and δr = (qn, ε, qr), are enabled in qn. From P,
we derive two variants of the parity protocol Pℓ and Pr, where only the left
transition δℓ (resp. the right transition δr) is present and in which qn belongs
to Q1. We write GPℓ

and GPr
for the corresponding games. Any local strategy

of Player 2 in say GPℓ
is also a local strategy in GP, and similarly for GPr

.
Therefore, the strategy σ wins against all local strategies in both GPl

and GPr

from the initial configuration λ0.
Because the number of Player 2 states in Pℓ [resp. Pr] is at most n− 1, the

induction hypothesis applies, and there exists an initial configuration λ0,ℓ [resp.
λ0,r] and a strategy σℓ [resp. σr] for Player 1 such that σℓ [resp. σr] wins against
all strategies of Player 2 in GPℓ

[resp. GPr
] from the configuration λ0,ℓ [resp.

λ0,r]. We now explain how to define an initial configuration λ′
0 and a winning

strategy σ for Player 1 in the game GP.
First we define λ′

0 as the disjoint union of the two graphs λ0,ℓ and λ0,r, hence
the initial graph is composed of two disconnected graphs to which will refer as
the “left” part and the “right” part. Now we explain how σ is defined, the idea
being that this strategy simulates σℓ on the “left” part of the graph and σr on
the “right” part of the graph. Also, σ sometimes exchanges nodes from each
part: for instance a node labelled with (qn,⊤) present in the “left” part and
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from which Player 2 will choose to perform δr. Note that moving such a node is
possible because the actions of Player 2 are only internal action (labelled with
ε) and consequently they only change the states of a single node; this is not
the case for broadcast actions which change the states of the node performing
the broadcast but also of all the adjacent nodes able to receive the associated
message.

The global strategy σ starts by playing as σr on the processes in the “right”
part, until the decision in σr is to change the label of a node vr ∈ V from
(qn,⊥) to (qn,⊤), meaning that the next move for Player 2 will be to decide
which transition to perform. Note that, if this never happens, the play is clearly
winning for Player 1 since σr is winning in GPr

. Just before to change the label
of vr, the simulation of σr is suspended, and σ changes mode to play as σℓ in the
“left” part. Similarly as above, if σℓ never dictates to change the label of a node
vℓ from (qn,⊥) to (qn,⊤), then σ sticks to σℓ, and the play is winning. Otherwise,
Player 1 has to move one process to a configuration where vℓ is labelled with
(qn,⊤). Assume it does so, in the “left” part. Assuming further that the next
move of Player 2 corresponds to choosing transition δℓ, then σ continues to
simulate σℓ on the processes of the “left” part. Else, if Player 2 chooses to play
transition δr, the vertex vl and the vertex vr are exchanged (remember that vr is
labelled as vℓ just before this sequence of actions i.e. with (qn,⊥)) and σ changes
mode and now simulates σr on the right part.

If we consider now a strategy τ for player 2, the play ρ(GP, λ
′
0, σ, τ) can have

the three following forms where we add a superscript (ℓ) or (r) to denote whether
for each state whether the game is played as in GPℓ

or in GPr
:

1. λ
′(r)
0 . . . λ

(ℓ)
i . . . λ

(r)
j λ

(r)
j+1λ

(r)
j+2 . . . in which after some points σ plays only as

σr in GPr
;

2. λ
′(r)
0 . . . λ

(ℓ)
i . . . λ

(ℓ)
j λ

(ℓ)
j+1λ

(ℓ)
j+2 . . . in which after some points σ plays only as σℓ

in GPℓ
;

3. λ
′(r)
0 . . . λ

(ℓ)
i λ

(ℓ)
i+1λ

(ℓ)
i+2 . . . λ

(r)
j λ

(r)
j+1λ

(r)
j+2 . . . λ

(ℓ)
k λ

(ℓ)
k+1λ

(ℓ)
k+2 . . . in which σ plays al-

ternatively infinitely often as σr in GPr
and as σℓ in GPℓ

.

From the fact that σr and σℓ are winning strategies in their respective game,
it is obvious that in the two first cases ρ(GP, λ

′
0, σ, τ) is a winning play. For

the third case, from how we build our strategies σ, it is clear that the play
obtained from ρ(GP, λ

′
0, σ, τ) by removing the configurations with superscripts

(r) correspond to a play in GPℓ
which respects a strategy profile (σℓ, τ

′) for some
strategy τ ′ of Player 2, and consequently the play is winning. Symmetrically, the
play obtained by removing the configurations with superscripts (ℓ) is winning in
GPr

. Consequently the “composition” of these two plays is necessarily winning:
for the safety objective it never uses “unsafe” actions and for the parity objective,
the maximal color seen infinitely often is either in the (ℓ) part or in the (r) part
and in both cases it is even. This shows that ρ(GP, λ

′
0, σ, τ) is a winning play for

Player 1.
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In order to complete the proof of the lemma, we still need to prove:

∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S
(2)
l , ρ(GP, λ0, σ, τ) ∈ Win

⇐⇒

∀τ ∈ S
(2)
l . ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1), ρ(GP, λ0, σ, τ) ∈ Win

Here again only the right-to-left implication deserves a proof.
Without loss of generality, when the winning objective is Win = Winp, we

assume that safe = ∆.
Assume that for every local strategy τ of Player 2 there exists λ0,τ ∈ ΛP,0

and στ ∈ S(1) such that ρ(GP, λ0,τ , στ , τ) ∈ Win. The intuition is to define a
strategy σ for Player 1 that guesses which local strategy Player 2 is playing, and
plays the adequate counter strategy στ . When the guess is incorrect, and the
error is detected, σ starts again on an other graph and guesses an other local
strategy for Player 2.

In order to define σ, we let S
(2)
l,ns denote the set of unsafe local strategies for

Player 2, for which there is no risk for Player 1 to guess them, since they fire

unsafe transitions. Formally, S
(2)
l,ns is the set of strategies τb induced by the local

behaviors b such that ∀q ∈ Q(2) if there exists δ = (q, ε, q′) ∈ ∆ with δ /∈ safe

then b(q) /∈ safe. Hence S
(2)
l,ns is the set of strategies that always choose a non-safe

transition if possible.
We define λ0 as the disjoint union of the graphs λ0,τ for all local unsafe

τ ∈ S
(2)
l,ns. For each strategy τ ∈ S

(2)
l,ns we refer to the corresponding sub-graph as

the graph τ .
The strategy σ for Player 1 is defined as the strategy that starts playing as

στ on the graph τ for some τ ∈ S
(2)
l,ns. When σ detects a wrong guess (when the

last move was (q, ε, q′) whereas τ should have done (q, ε, q′′)), σ changes for an
other graph τ ′ in which he did not play already and switches to στ ′ .

Notice that when σ detects that the current game graph is the wrong one,

since the strategy he is playing wins against some strategy of S
(2)
l,ns, necessarily

the transition (q, ε, q′) is safe. Also notice that before detecting that τ is a wrong
copy, σ is playing a strategy winning for some τ ′ hence never fires a non-safe
transition.

Let τ ∈ S
(2)
l be any strategy that Player 2 plays against σ. Let us con-

sider the play ρ(GP, λ0, σ, τ). It can be written ρ1.ρ2 where ρ2 is the longest
suffix of the play that remains in the same graph, say τ ′ graph. Then, ρ′2 be
defined as the projection of ρ2 on the graph τ ′. Since σ is playing as στ ′ in
this suffix, and since it never detects a wrong guess in this suffix, we know that
ρ′2 = ρ(GP, λ0,τ ′ , στ ′ , τ) = ρ(GP, λ0,τ ′ , στ ′ , τ ′) ∈ Win. Therefore ρ2 ∈ Win. Last,
because ρ1 never uses unsafe transitions, we obtain ρ1.ρ2 ∈ Win.

A.2 Proof of Lemma 3

From P′, we build a broadcast protocol P′′ by deleting all the edges of the
form (q, !!a, q′) or (q, ε, q′) which do not belong to safe. Then using the result of
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Theorem 4.3 of [10], we can decide in NP whether there exists a path in GP′′

such that none of the vertices is labelled with states in (ActStates × {⊥}) (note
that in [10] the semantics is a bit different since the authors do not use labels
with ⊥ and ⊤ but this does not involve any significant changes on the behavior
of the broadcast protocol). Such a path exists if and only if in GP′ there exists a
finite maximal path belonging to Wins starting from an initial configuration in
GP′ .

A.3 Proof of Lemma 4

As in the previous proof we begin to build from P′ a protocol P′′ = (Q, q0, Σ,
∆′′, col′′) obtained by removing from P′ all the edges of the form (q, !!a, q′) or
(q, ε, q′) which do not belong to safe (this because we do not want to consider the
paths obtained by using these edges) and col

′′ is then the restriction of col′ to
∆′′. Note that we do not need to precise a safe set in P′′ since all its transitions
will be considered as safe.

We now introduce the following notation, let RP′′ ⊆ Q be the set of control
states of P′′ reachable in GP′′ which can be defined as: q ∈ RP′′ if and only if
there exists a finite path λ0λ1 · · ·λn ∈ Λ∗

P′′ starting from an initial configuration
such that {(q,⊥), (q,⊤)} ∩ L(λn) 6= ∅. Using Algorithm 1 presented in [10], we
know that this set can be computed in polynomial time and using the proof of
Lemma 1 of the same paper, we also know that for all natural k there is a witness
reachable configurations where each state of RP′′ label at least k vertex. These
two properties are summarized in the following lemma.

Lemma 5. [10]

1. RP′′ can be computed in polynomial time.
2. For all k ∈ N, there exists a finite path λ0λ1 · · ·λn ∈ Λ∗

P′′ such that λn =
(V,E, L) and for all q ∈ RP′′ , card({v ∈ V | L(v) = (q,⊥)}) ≥ k.

In order to detect, if we have an infinite path ρ starting from an initial
configuration in GP′ such that ρ ∈ Winp ∩Wins, we only need to show that in
GP′′ there exists a cycle which begins with a reachable configuration and end up
with this next configuration and so that the maximum color seen on this cycle is
even. To perform this task we will use the counter abstraction techniques which
consists in abstracting away the vertices and remember for each control states
of P′′ how many vertices are labelled with such a vertex in a configuration. Note
that using such a technique in our context is feasible because only the number
of control states matters, the reconfiguration rule allows us in fact to forget
completely the communication topology. For this matter we will translate the
behavior of GP′′ into a VASS.

We begin by recalling what is a VASS of dimension n with parity, it can be
defined as a tuple V = (S, T, col) where S is a finite set of control states, ⇒⊆
S×Z

n×S is the transition relation labelled with vector of integers and col :⇒7→ N

is the coloring function. To a vass of this form we associate a transition system
TS (V) = (S × N

n,⇒, col) where S × N
n is the set of configurations, ⇒⊆ (S ×
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N
n)× (S×N

n) is the transition relation and col :⇒7→ N is the coloring function
which are defined as followed : (s,v) ⇒ (s′,v′) and col((s,v) ⇒ (s′,v′)) = c
if and only if there exists a transition (s,b, s′) ∈ T such that v′ = v + b and
col((s,b, s′)) = c. An infinite run of V starting from a configuration (s0,v0) is an
infinite sequence of the form (s0,v0) ⇒ (s1,v1) ⇒ (s2,v2) . . . and it is valid with
respect to col if max{c ∈ N | ∀i ≥ 0 ∃j ≥ i s.t. col((sj ,vj) ⇒ (sj+1,vj+1))) = c}
is even.

We now provide the construction of a VASS VP′′ with parity from P′′ =
(Q, q0, Σ,∆′′, col′′) such that there will exists a configuration (s0,v0) and a valid
infinite run starting from this configuration if and only if there exists an infinite
path ρ starting from an initial configuration in GP′′ such that ρ ∈ Winp. We
first assume that RP′′ = {q1, . . . , qn}. We build the VASS of dimensions 2n
VP′′ = (SP′′ , TP′′ , col′) as follows:

– SP′′ = {s0} ∪ {s1e, s
2
e | e ∈ ∆′′ is of the form (qi, !!a, qj) or (qi, ε, qj)}

– TP′′ is the smallest relation satisfying the following conditions (and we define
col

′ simultaneously), for all e = (qi, a, qj) ∈ ∆′′:

• if a = ε or a =!!a, then (s0,b, s
1
e), (s

1
e,0, s

2
e), (s

2
e,b

′, s0) ∈ TP′′ (and
col

′(s0,b, s
1
e) = col

′(s1e,0, s
2
e) = col

′(s2e,b
′, s0) = col(e)) with:

∗ b[i] = −1 and b[k] = 0 for all k ∈ {1, . . . , 2n} \ {i};
∗ b′[j] = 1 and b[k] = 0 for all k ∈ {1, . . . , 2n} \ {j};

• if a =??a, then for all edges e′ = (qk, !!a, qℓ) in∆, (s1e′ ,b, s
1
e′), (s

2
e′ ,b

′, s2e′) ∈
TP′′ (and col

′(s1e′ ,b, s
1
e′) = col

′(s2e′ ,b
′, s2e′) = 0) with:

∗ b[i] = −1 and b[n + j] = 1 and b[k] = 0 for all k ∈ {1, . . . , 2n} \
{i, n+ j};

∗ b′[j] = 1 and b′[n + j] = −1 and b[k] = 0 for all k ∈ {1, . . . , 2n} \
{j, n+ j};

The intuition behind this construction is that each vector value in a configuration
of VP′′ characterizes the number of nodes in each state, then if a broadcast
corresponding to an edge e = (qk, !!a, qℓ) is performed we begin by decreasing of
one unit the number of nodes in state qk by taking a transition from s0 to s1e then
we can take some reception rules of the form (qi, ??a, qj) and this is simulated
by decrementing of one unit the number of nodes in qi and incrementing the
number of nodes in qj . Note that here we use the n + j-extra counter, because
we do not want in a same simulation of a reception that a node goes to qj and
then receive again the message a, this is the reason why we cut the simulation
of the broadcast into the state s1e and s2e; and finally, when the simulation of
the reception is over, we increment of one unit the number of nodes in states qℓ
thanks to the transition from q2e to q0. Note that the value of the counter n+ j
is not necessarily put to 0 but this can be done later, this is authorized since
thanks to reconfiguration we do not ask in the simulation the node to react to
the broadcast at the precise moment, it could be some nodes that will then be
completely disconnected and come back later. The next Lemma states the formal
property of this intuition. The proof of this Lemma is a direct consequence of
the transition relation of G′′

P
and of the way we define VP′′ .
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Lemma 6. Let λ = (V,E, L) be a configuration of GP′′ such that L(λ) ∈ RP′′ ×
{⊥} and b ∈ N

2n such that b[i] = card({v ∈ V | L(v) = (qi,⊥)}) for all
i ∈ {1, . . . , n} and b[i] = 0 for all i ∈ {n+1, . . . , 2n}. Then, in GP′′ there exists
an infinite path in Winp starting from λ if and only if in VP′′ there exists an
infinite run starting from (s0,b) valid with respect to col

′.

The definition of VP′′ allows us to state that, there exists a vector b ∈ N
2n

with b[i] = 0 for all i ∈ {n+ 1, . . . , 2n} such that in VP′′ there exists an infinite
run starting from (s0,b) valid with respect to col

′ if and only if there exists a
finite cycle in T+

P′′ of the form (s0,b0, s1)(s1,b1, s2) . . . (sk,bk, sk+1) with sk+1 =
s0 such thatΣi∈{0,...,k}bi ≥ 0 and such that max {col′(si,bi, si+1) | i ∈ {0, . . . , k}}
is even. The following lemma tells us that finding such a cycle can be done in
polynomial time, it uses a result presented in [15] to detect in a graph labeled
with vector of integers a cycle whose sum on the different vectors seen on the
cycle is 0.

Lemma 7. Deciding whether there exists a finite cycle in T+
P′′ of the form

(s0,b0, s1)(s1,b1, s2) . . . (sk,bk, sk+1) with sk+1 = s0 such that Σi∈{0,...,k}bi ≥ 0
and such that max {col′(si,bi, si+1) | i ∈ {0, . . . , k}} is even can be done in poly-
nomial time.

Proof. Let c ∈ N be a color such that there exists an edge (s,b, s′) ∈ TP′′

verifying col
′(s,b, s′) = c. First note that by construction of VP′′ there exists a

finite cycle in T+
P′′ of the form (s0,b0, s1)(s1,b1, s2) . . . (sk,bk, sk+1) with sk+1 =

s0 and Σi∈{0,...,k}bi ≥ 0 if and only if there exists a cycle in T+
P′′ of the form

(s′0,b
′
0, s

′
1)(s

′
1,b

′
1, s

′
2) . . . (s

′
k,b

′
k, s

′
k+1) with s′k+1 = s′0 and Σi∈{0,...,k}b

′
i ≥ 0, i.e.

a cycle that do not necessarily begin with in state s0. This because we cannot
have a zero sum cyle looping only on a state of the form s1e or s2e since such
loop make strictly decrease a counter, hence any cycle will necessarily passes
through s0. Then we know thanks to [15] that the existence of such a cycle can
be detected in polynomial time. The problem is that we do not know whether
for such a cycle max {col′(s′i,b

′
i, s

′
i+1) | i ∈ {0, . . . , k}} is even.

To solve this for each color c ∈ N present in V ′′
P
, we proceed as follows. We

remove all the edges with colors strictly bigger than c, then we add a dimension
(i.e. the 2n + 1 counter) such that for all edges e of the form (qi, !!a, qj) or
(qi, ε, qj), if col(e) 6= c then the transition (s0,b, s

1
e) decrement this 2n + 1

counter of 1 unit and if col(e) = c then we add a self loop on s1e that increments
this counter, the other transitions remaining unchanged. Consequently the only
way to a have a cycle with zero sum in such a VASS is to take at least a transition
of color c. We can do this for any even color and since there is linear number of
such color in VP′′ , this allows us to conclude. ⊓⊔

As said previously, there exists a vector b ∈ N
2n with b[i] = 0 for all i ∈

{n+1, . . . , 2n} such that in VP′′ there exists an infinite run starting from (s0,b)
valid with respect to col′ if and only if there exists a finite cycle in T+

P′′ of the form
(s0,b0, s1)(s1,b1, s2) . . . (sk,bk, sk+1) with sk+1 = s0 such that Σi∈{0,...,k}bi ≥
0 and such that max {col′(si,bi, si+1) | i ∈ {0, . . . , k}} is even, but note that if
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such a vector b exists then the property still holds for all vector b′ ∈ N
2n with

b′[i] = 0 for all i ∈ {n + 1, . . . , 2n} and b′[i] ≥ b[i] for all i ∈ {1, . . . , n}. So
if we resume Lemma 5 tells that we can compute in polynomial time RP′′ and
that for any natural k we can find a reachable configuration where each label of
RP′′ is present at least k times. then using Lemma 6 and 7 we know that we can
decide in polynomial time whether there exists such a configuration from which
there exists an infinite path in Winp in GP′′ . By the way we build P′′ (removing
the unsafe action from P′), we can hence deduce the Lemma 4.

B Details for Section 4

We define urgent strategies for Player 1: σ ∈ S(1) is urgent if for every play ρλ
with λ = (V,E, L) ∈ GQP×{⊥} if there exists v ∈ V such that L(v) ∈ Q(2) ×{⊥}

then σ(ρλ) = λ′ where λ′ = (V,E, L′), and L′(v) ∈ Q(2) × {⊤}. In words, the
urgent strategies are those where Player 1 activates (i.e. puts to ⊤) the processes
in states belonging to Player 2 as soon as possible. The set of urgent strategies

for Player 1 is denoted S
(1)
u . Note that if σu is urgent, and ρλ respects σu with

λ = (V,E, L) we have card({v ∈ V | L(v) ∈ Q(2) × {⊥,⊤}}) ≤ 1.
We prove that there is a winning strategy for Player 1 if and only if there is

an urgent one.

Lemma 8.

∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Win

⇐⇒

∃λ0 ∈ ΛP,0. ∃σ ∈ S
(1)
u , ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Win

Proof. Only the right to left implication deserves a proof, since S
(1)
u ⊆ S(1).

We assume that there exists λ0 ∈ ΛP,0 and σ ∈ S(1) such that ∀τ ∈
S(2), ρ(GP, λ0, σ, τ) ∈ Win. Without loss of generality we can assume that σ
is memoryless, since given the initial configuration λ0 ∈ ΛP,0 the game is finite,
hence there is a winning strategy if and only if there is a memoryless winning
strategy.

Intuitively, the urgent σ′ plays similarly to σ but delays the moment the
processes enter in state of Q2 until σ would have played them. Strategy σ′ is
then urgent, but has memory.

More formally, one the one hand, in λ if σ would have move a process to a
state q ∈ Q(2) then for the paths ρ that σ′ identifies to λ, σ′ remembers that this
process should be in q. One the other hand, in λ if σ would have put a process
in a state q′ ∈ Q(2) to ⊤, then for the paths ρ that σ′ identifies to λ, σ′ first
moves the process to q′ and then puts it immediately to ⊤.

Let τ be a strategy for Player 2. To a play ρ(GP, λ0, σ
′, τ) we can associate

the play ρ̃(GP, λ0, σ
′, τ) of configurations as stored in the memory of σ′. Notice

that ρ̃(GP, λ0, σ
′, τ) corresponds to a play for σ, and hence satisfies the wining

condition Win. Moreover the transitions visited along that play are the same as
ρ(GP, λ0, σ

′, τ). Hence the urgent strategy σ′ built above is winning: for every
strategy τ for Player 2, ρ(GP, λ0, σ

′, τ) ∈ Win. ⊓⊔
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B.1 Proof of Proposition 2

Proof. Since the parity protocol PP and the probabilistic protocol P have the
same set of states, there is a direct correspondence between the configurations
γ of M and the configurations λ of GPP

. Hence there is a direct correspondence
between schedulers on MP and urgent strategies for Player 1.

For γ0 an initial configuration and π a scheduler such that P(MP , γ0, π,✸qf ) =
0, for every reachable configuration γ we know that qf /∈ γ. We define λ0 as the
configuration corresponding to γ0. The strategy σπ that corresponds to π, never
uses a transition leading to qf nor visits a state q ∈ Q(2) that may lead to qf .
Therefore σπ ensures the safety objective from λ0.

For λ0 an initial configuration and σ a strategy such that ∀τ ∈ S(2), ρ(GP, λ0,
σ, τ) ∈ Wins, for every reachable configuration λ we know that qf /∈ λ, since
the safety objective prevents using action leading to qf . Hence the scheduler πσ

corresponding to σ never reaches a configuration containing qf . Hence P(MP , λ0,
πσ,✸qf ) = 0, where γ0 corresponds to λ0. ⊓⊔

B.2 Proof of Proposition 3

Proof. We start by proving:

∃γ0 ∈ ΛP,0. ∃π ∈ Π,P(MP , γ0, π,✸qf ) < 1
⇓

∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winsp

Let γ0 ∈ ΛP,0 be an initial configuration and π be a scheduler such that
P(MP , γ0, π,✸qf ) < 1. Hence, there exists a finite path ρ that respects π and
such that P(MP , γ0, π,Aρ∩✸qf ) = 0, where Aρ is the cylinder of paths starting
with prefix ρ.

We define λ0 as the initial configuration similar to γ0 except that all processes
are labelled by (q0, 1) instead of q0. We also define σ as the strategy that plays
the finite prefix ρ with all processes in the first copy, and after ρ, moves them all
to the second copy and then plays according to π (as the proof of Proposition 2).

For any finite play respecting σ the safety objective is satisfied because we
never use a transition that enters (qf , 1) during the prefix ρ, and because the
same arguments as the proof of Proposition 2 apply for the suffix in the second
copy. Moreover, any infinite play respecting σ only stays for a finite number
of steps in the first copy and then ends is in the second copy. Hence the play
satisfies the parity objective. All together, σ ensures the combined safety/parity
objective.

We now prove:

∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winsp

⇓
∃γ0 ∈ ΛP,0. ∃π ∈ Π,P(MP , γ0, π,✸qf ) < 1

Let λ0 ∈ ΛP,0 be an initial configuration and σ be a strategy for Player 1 such
that ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winsp.
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We define γ0 as λ0 but in which the labels (q0, 1) are replaced with q0. Also,
if we merge states (q, 1) and (q, 2), a configuration λ of GP can be seen as a
configuration of MP . We define π as the scheduler that mimicks σ on these
merged configurations, and that skips the actions leading from the first copy to
the second one (since they have no meaning in P).

Let A by the set of all plays that correspond to a play ρ(GP, λ0, σ, τ) where
we look at merged configurations and in which we removed the actions leading
from copy 1 to copy 2. Since σ is winning for the safety objective, we know
that P(MP , γ0, π,A ∩ ✸qf ) = 0. Moreover, since σ ensures also the parity ob-
jective, we obtain that σ only fixes a finite number of probabilistic choices (the
choices made in the first copy). Hence there is a positive probability that these
probabilistic choices are all correct in MP under π, hence P(MP , γ0, π,A) > 0.

The combination of P(MP , γ0, π,A ∩ ✸qf) = 0 and P(MP , γ0, π,A) > 0
gives us that P(MP , γ0, π,✸qf ) < 1. ⊓⊔

B.3 Proof of Proposition 1

Proof (Proposition 1). Let us first prove the following implication:

∃γ0 ∈ ΛP,0. ∃π ∈ Π,P(MP , γ0, π,✸qf ) = 1
⇓

∃λ0 ∈ ΛP,0. ∃σ ∈ S
(1)
u . ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winp

First remark that we can embed configurations of MP as configurations of GP

by identifying q ∈ Q(P ) to (q, 2) ∈ Q
(2)
P

, so that QP ⊆ QP. In particular, we
define λ0 as the configuration that corresponds to γ0.

Let γ0 and π be such that P(MP , γ0, π,✸qf ) = 1. We can assume, without
loss of generality that π is memoryless, because, given the initial configuration
γ0, the number of configurations is finite.

Now we explain how to define σ from π. For a configuration λ = (V,E, L):

– If there exists v ∈ V with L(v) = (qf ,⊥), then σ plays forever the two actions
(qf ,⊥) → (qf ,⊤) → (qf ,⊥) using the loop on qf , which has parity 2.

– Otherwise, if there exists v ∈ V with L(v) = ((q, 2),⊥), for some q ∈ Q(P ),
then σ moves to the configuration where this node is labelled ((q, 2),⊤).

– Otherwise, if there are no vertices v ∈ V with L(v) = ((q, 1),⊤) or L(v) =
((q, 1),⊥) for some q ∈ Q(P ), λ can be identified to a configuration γ, and σ
in λ mimics π in γ.

– Otherwise, there exists v ∈ V with L(v) = ((q, 1), ) for some state q ∈ Q.
In this case, we let γ1 be the configuration corresponding to λ except that v
is labelled by state q. We then pick a shortest path γ1γ2 . . . γn that respects
π and reaches qf , and define σ(λ) as the configuration corresponding to γ2.

Strategy σ is urgent by definition, and we show now that it is winning. Let τ be
any strategy for Player 2, and consider the play ρ(GP, λ0, σ, τ). There are two
possibilities: either qf is reached, and then σ ensures to loop on qf with parity 2

24



so that ρ(GP, λ0, σ, τ) ∈ Winp; or qf is not reached. By definition of σ, notice that
every configuration that can be reached under σ and has no processes labelled
with a state (q, 1) (for q ∈ Q(P )) corresponds to a configuration reachable under
π. Moreover, since Pπ(MP , γ0,✸qf ) = 1, from every configuration reachable
under π there exists a path to qf . Second notice that if, at some point, τ always
choose to move processes to states of the form (q, 1), then σ would ensure to
reach qf by following a shortest path. Hence infinitely often τ chooses not to
move the process to (q, 1) and this implies that the play has parity 2. Therefore
ρ(GP, λ0, σ, τ) ∈ Winp.

Let us now prove the other direction:

∃λ0 ∈ ΛP,0. ∃σ ∈ S
(1)
u . ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winp

⇓
∃γ0 ∈ ΛP,0. ∃π ∈ Π,P(MP , γ0, π,✸qf ) = 1

Let λ0 ∈ ΛP,0 be an initial configuration and σ ∈ S
(1)
u be an urgent strategy

for Player 1 such that ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winp.
Notice that since P and P share the same initial state, we can see λ0 as a

configuration of MP . We define γ0 as the disjoint union of n graphs λ0, where n
is the number of words on the alphabet Q(P ), where each letter appears at most
once. The initial graph is composed of n disconnected graphs, to which we will
refer as the graph w with w = w1 · · ·wk such that for all i, j ∈ {1 . . . k} we have
wi, wj ∈ Q(P ) and if i 6= j then wi 6= wj . We use the prefix relation to compare
two such words, i.e. w is smaller than w′, written w � w′ if w is a prefix of w′.
Last, for a state w ∈ Q(P ), we will say that q belongs to w, written q ∈ w if
there exists i ∈ {1 . . . k} such that wi = q.

We now explain how to define the scheduler π, that mimics σ in every graph
w and that starts in the graph ε. It is not straightforward to define a scheduler
from the strategy, since in P, every state q ∈ Q(P ) is duplicated in P into
(q, 1) and (q, 2). Hence we cannot establish a direct correspondence between the
configurations of MP and GP. Instead we use the memory of π to make this
correspondence feasible. The idea is that π plays in graph w as if for every q /∈ w
Player 2 always chooses in the future to move to (q, 1), and for q ∈ w as if Player
2 always chooses not to move to (q, 1).

Let us consider a fixed probabilistic state q ∈ Q(P ) such that ∆int(q) = µ, we
can assume w.l.o.g. that there are only two successors to q, the left one ql and
the right one qr, and hence that µ(qr)+µ(ql) = 1. The scheduler π we build has
memory. We will explain how to update the memory states. Assume that w is
the graph in which π is currently playing, and that its memory state is memπ.
Two cases arise.

– Assume first that q /∈ w. The normal behavior of the scheduler π is to mimic
what σ does on the state that memπ indicates it should be, when in the
graph w. If at some point, σ moves a parity protocol to the state (q, 2), then
π moves the corresponding node v, to state q. The consequential probabilistic
choice then leads to either ql or qr. Assume, for example, that it is qr. In this
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case, we store in the memory state memπ that v should be in state (q, 1)
and the computation continue.
After some time, σ may decide to move this process out of (q, 1). There are
two possible cases.
• The easy case is when the strategy dictates to move to qr. Since v is
already in qr, nothing needs to be done, and the computation resumes.

• Otherwise, the process should have been moved to ql. This somehow
contradicts the result of the probabilistic choice that already happened
in the probabilistic protocol. In this case, memπ remembers that the
graph w needs a process in state ql. Also, the scheduler π changes its
working graph to the graph w′, where w′ is a shortest word such that
w.q � w′ and such that the graph w′ does not already need a process in
a any state.

– Assume now that q ∈ w. As in the other case π plays as σ would have play
on the state that that memπ indicates it should be, when in the graph w. If
at some point, σ moves a parity protocol to the state (q, 2), then π moves the
corresponding node v to state q. The subsequent probabilistic choice then
leads to either ql or qr. Assume for example that it is qr.
If there exists4 w′ � w such that w′ needs a process in state qr, then π
changes its working graph to w′. Also π switches the process labelled by
qr in w and the one “in need” in w′. Doing so, the configuration in w′

corresponds exactly to a configuration reachable by σ, and the configuration
in w corresponds to a configuration where Player 2 has chosen ql instead of
qr.
If there is no such w′ � w and w′ needs a process in state qr (e.g. they may
all need a process in state ql), then π continues to mimic σ in w assuming
Player 2 chooses to move directly to qr.

First, notice that in every graph w, π plays accordingly to σ. Second, notice that
if π is playing in graph w then for every q ∈ w there must exist w′ � w such that
the graph w′ needs either qr or ql. Last, notice that for every play, there exists
a smallest graph w such that the play visits infinitely often w. Indeed, to reach
from w another graph w′ with neither w � w′ nor w′ � w, the play necessarily
visits a graph w′′ such that of w′′ � w and w′′ � w′.

We now show that π as defined above is winning, that is: P(MP , γ0, π,✸qf ) =
1. Toward a contradiction, suppose that there exists a set A of plays respecting
π, such that P(MP , γ0, π,A) > 0 and P(MP , γ0, π,A ∩ ✸qf) = 0. Since there
are only finitely many graphs, we can assume without loss of generality that all
plays of A share the same smallest graph visited infinitely often w.

For q ∈ w, let A′
q ⊆ A be the subset of plays in which infinitely often one

of state q is visited. Every play of A′
q is composed of a finite prefix, followed

by infinitely many probabilistic choice in q that always have the same outcome.
Indeed, otherwise π would have moved to a prefix of w that needs qr or ql.
Therefore P(MP , γ0, π,A′

q) = 0, and letting A′ = ∪q∈wA′
q, P(MP , γ0, π,A′) =

0.

4 Remark that if such a w′ exists, it is unique.
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Consider now a play ρ in A\A′. After a finite prefix, ρ never visits any state
of w. Hence, in the graph w, the scheduler π plays as σ when Player 2 always
move to the states Q(P ) ×{1}. The only way to win when Player 2 always move
to the states Q(P )×{1} is to reach qf , and then to achieve the parity objective by
looping on the state qf . Since σ is winning, we deduce that ρ eventually reaches
qf . Hence we have: P(MP , γ0, π, (A \ A′) ∩ ✸qf ) = P(MP , γ0, π,A \ A′), and
since P(MP , γ0, π,A) = P(MP , γ0, π, (A \ A′)) + P(MP , γ0, π,A′) we obtain
P(MP , γ0, π,A ∩ ✸qf ) > 0. This contradicts the definition of A. Therefore,
P(MP , γ0, π,✸qf ) = 1. ⊓⊔

B.4 Proof of Theorem 2

Proof. To establish the co-NP hardness we reduce the unsatisfiability problem
to Reach

=1
max.

Let V be a set of variables, and ϕ =
∧

0≤i≤l xi,1 ∨ xi,2 ∨ xi,3 a formula
in conjunctive normal form where each litteral xi,j is either a variable y ∈ V
or its negation ȳ. From ϕ we define the following probabilistic protocol Pϕ =
(Q,Q(1), Q(P ), q0, Σ,∆,∆int), where:

– Q(1) = {xi,j | 0 ≤ i ≤ l, 1 ≤ j ≤ 3} ∪ {q0, r1, qf} ∪ {y1, ȳ1, y2, ȳ2 | y ∈ V}
– Q(P ) = V ∪ {rP };
– Σ = {y, ȳ | y ∈ V} ∪ {ok};
– ∆ = {(xi,j , ??x̄i,j+1, xi,j+1) | 0 ≤ i ≤ l, 1 ≤ j ≤ 3}

∪ {(q0, ε, xi,0), (xi,3, !!ok, r1) | 0 ≤ i ≤ l}
∪ {(q0, ε, y), (y1, !!y, y2), (ȳ1, !!ȳ, ȳ2), (y2, ??ok, q0), (ȳ2, ??ok, q0) | y ∈ V}
∪ {(r1, ε, rP )};

– for every y ∈ V , ∆int(y)(y1) = ∆int(y)(ȳ1) =
1
2 ,

and ∆int(rP )(qf ) = ∆int(rP )(q0) =
1
2 .

The construction is illustrated on an example in Figure 4, where, for simplicity,
the initial state q0 of the probabilistic protocol is duplicated.

Let us now prove that ϕ is unsatisfiable if and only if there exists an initial
configuration γ0 ∈ ΓP,0 and a scheduler π such that P(MP , γ0, π,✸qf ) = 1.

Assume first that ϕ is unsatisfiable. Without loss of generality, we assume
that each clause in ϕ do not contain two literals with the same variable (y ∨ ȳ
can be replaced with true, and y ∨ y with y). We set N = card(V) + 1 and
γ0 = (V,E, L) with card(V ) = N ,E = V ×V \{(v, v) | v ∈ V } and L(v) = (q0,⊥)
for every v ∈ V . We define a scheduler π for MP as follows. From the initial
configuration γ0, and for each variable y ∈ V , π decides to perform transition
(q0, ε, y) followed by the corresponding probabilistic transition, thus moving one
process to either state y or state ȳ. These processes are called variable processes
and at this step, their position defines a valuation v : V → {0, 1}. Alternatively,
v can be seen as the set of variables or negated variables that fulfill the valuation.
Since ϕ is unsatisfiable, there exists a clause i such that for every literal xi,j ,
xi,j /∈ v. At this stage, π decides to move the remaining process, the formula
process, along the transition (q0, ε, xi,0) corresponding to choosing the clause
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Fig. 4: Probabilistic protocol for the formula ϕ = (a∨b∨ c̄)∧(a∨ b̄∨c)∧(ā∨ b̄∨ c̄)

which is violated by v. Next, the variable processes in state ¯xi,1, ¯xi,2 and ¯xi,3

broadcast in turn to the formula process, so that the latter moves to state xi,3.
The other variable processes broadcast to no one. Then, the formula process
broadcasts to all variable processes the ok-message: the N −1 variable processes
are back to their initial state q0, and the formula process reaches state rP , where
a probabilistic choice happens. With probability half, the state qf is reached,
and with the remaining probability the formula process is back in the initial
state q0, so that all processes are back in the initial configuration γ0. In this first
round, π thus ensures to reach qf with probability 1

2 . Iterating this process, π
ensures to reach qf almost-surely: P(MP , γ0, π,✸qf ) = 1.

Assume now that ϕ is satisfiable, and let v : V → {0, 1} be a satisfying
assignment of the variables. We fix π an arbitrary scheduler and γ0 an arbitrary
initial configuration, say with N processes. A probabilistic choice from state y
is said consistent with v if it sets y to its truth value in v. We aim at showing
that P(MPφ

, γ0, π,✸qf ) is bounded away from 1 by some factor independent of
π. We partition the set of paths Ω into incompatible events:

Ω = A0 ⊔ A1 ⊔ · · · ⊔ AN ⊔ AN+1 ⊔ A′
1 ⊔ · · · ⊔ A′

N , where

– for 0 ≤ k ≤ N , Ak is the set of paths that contain exactly k probabilistic
choices, and all of them are consistent with v;

– AN+1 is the set of paths that contain at least N + 1 probabilistic choices,
and the first N + 1 are consistent with v;

– for 1 ≤ k ≤ N , A′
k is the set of paths that contain at least k probabilistic

choices, the first k − 1 are consistent with v and the k-th is not.

Clearly enough, P(MP , γ0, π,A′
k) ≤ 1

2k
, for every 1 ≤ k ≤ N . Therefore,

P(MP , γ0, π,⊔N
k=1A

′
k) ≤ 1 − 1

2N
. Observe also that AN+1 is empty. Indeed,
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if the first probabilistic choices are consistent with v, then the formula pro-
cesses, if any, stay stuck in the initial state q0 and the variable processes can-
not receive an ok to get back to q0. Therefore, starting with N processes, only
N consecutive probabilistic choices consistent with v are possible, and AN+1

is empty. We thus derive a bound for the remaining paths in the partition:
P(MP , γ0, π,⊔N

k=0Ak) ≥ 1
2N

. It remains to prove that all paths in the sets Ak

end in a deadlock before reaching qf . Indeed, if the k first probabilistic choices
for variable processes are consistent with v, then the formula processes cannot
progress further than states xi,2’s. As a consequence, the formula processes can-
not move back to q0 and get stuck. Therefore, P(MP , γ0, π,¬✸qf ) ≥ 1

2N , or
equivalently, P(MP , γ0, π,✸qf ) ≤ 1 − 1

2N . Because this holds for every sched-
uler, we finally obtain infπ P(MP , γ0, π,✸qf ) < 1. ⊓⊔

B.5 Proof of Theorem 3

Reach=0

min
From P = (Q,Q(1), Q(P ), q0, Σ,∆,∆int) a probabilistic protocol and

qf ∈ Q a control state, we derive the parity protocol P = (QP, Q
(1)
P

, Q
(2)
P

, q0P,
ΣP, ∆P, col, safe) as follows:

– QP = Q, Q
(1)
P

= Q(1), Q
(2)
P

= Q(P ), and q0P = q0;

– ΣP = Σ;

– ∆P = ∆ ∪ {(q, ε, q′) | ∆int(q)(q′) > 0};

– safe = ∆ \ {δ | δ ∈ Q×
(

{!!a, ??a | a ∈ Σ} ∪ {ε}
)

× {qf}}.

Notice that we consider only safety objective, hence the coloring function col

needs not be defined. Intuitively, all random choices in P are replaced in P with
choices for Player 2. This construction ensures the following equivalence:

Proposition 2. ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Wins if and
only if ∃γ0 ∈ ΓP,0. Pmin(MP , γ0,✸qf) = 0.

Proof (sketch). Transitions with target qf are the only ones that do not belong
to the safe set safe. Hence, a winning strategy for the safety objective must
ensure that qf is avoided. Similarly, in order to reach qf with probability 0,
a scheduler also has to ensure that qf is avoided. Since the parity protocol P
and the probabilistic protocol P only differ on the type of adversarial states
(belonging to Player 2, or probabilistic), the correspondence between strategies
and schedulers is immediate. ⊓⊔

From Proposition 2 and Theorem 1 we deduce the decidability of Reach
=0
min and

establish a complexity upper-bound.

Corollary 1. Reach
=0
min is in ΠP

2 .
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Reach<1

min
For Reach

<1
min we reduce to a game problem for parity protocols with

a combination of safety and parity winning conditions. From P = (Q,Q(1), Q(P ),
q0, Σ,∆,∆int) a probabilistic protocol and qf ∈ Q a control state, we define the

parity protocol P = (QP, Q
(1)
P

, Q
(2)
P

, q0P, ΣP, ∆P, col, safe) as:

– Q
(1)
P

=
(

Q(1) × {1, 2}
)

∪
(

Q(P ) × {1}
)

, Q
(2)
P

= Q(P )×{2}, and q0P = (q0, 1);
– ΣP = Σ;
– ∆P = {((q, i), , (q′, i))|(q, , q′) ∈ ∆, i ∈ {1, 2}}

∪ {((q, i), ε, (q′, i))|∆int(q)(q′) > 0, i ∈ {1, 2}} ∪ {((q, 1), ε, (q, 2))|q ∈ Q};
– col((q, i), , (q′, i′))) = 2 if i′ = 2, and 1 otherwise;
– safe = ∆ \ {δ | δ ∈ Q×

(

{!!a, ??a | a ∈ Σ} ∪ {ε}
)

× {qf}}.

Intuitively, P consists of two copies of P . In the first copy, all random choices are
replaced with choices of Player 1, whereas in the second copy they are replaced
with choices of Player 2. Also, at any time, one can move from the first to the
second copy. This construction ensures the following equivalence:

Proposition 3. ∃λ0 ∈ ΛP,0. ∃σ ∈ S(1). ∀τ ∈ S(2), ρ(GP, λ0, σ, τ) ∈ Winsp if
and only if ∃γ0 ∈ ΓP,0. Pmin(MP , γ0,✸qf ) < 1.

Proof (sketch). Since the only unsafe edges are the ones leading to qf , the safety
parity winning condition forces a winning strategy to avoid qf . Moreover, the
parity condition ensures that only a finite number of “probabilistic” choices
(i.e. choices that correspond to probabilistic choices in P) are made by Player
1. On one hand, the existence of a winning strategy implies that with a fixed
finite number of probabilistic choices for Player 1, qf can be avoided. On the
other hand, any scheduler for which the probability to reach qf is less than one,
guarantees that after a finite prefix (hence a finitely many probabilistic choices)
qf is avoided with probability one (thus whatever the other probabilistic choices).

Corollary 2. Reach
<1
min is in ΠP

2 .

B.6 Proof of Theorem 4

The decidability of the last decision problems relies on a monotonicity property.

Lemma 9. ∀π ∀γ0, ∀γ′
0 ⊇ γ0 ∃π′. P(MP , γ0, π,✸qf ) ≤ P(MP , γ

′
0, π

′,✸qf ).

Proof. Intuitively, π′ behaves as π on the group of processes present in γ0, and
in case of a deadlock of these processes, it uses the remaining processes in an
arbitrary way. ⊓⊔

Due to Lemma 9 it is sufficient to consider the initial configuration with a
single node. We then solve these decision problems on the corresponding finite-
state MDP.

In this proof we write γ0 for the initial configuration with a single node.
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If Pmax(MP , γ0,✸qf ) = 0, then, trivially, the answer to Reach
=0
max is posi-

tive. Otherwise, Pmax(MP , γ0,✸qf ) > 0, and for every other initial configuration
γ′
0, since γ′

0 ⊇ γ0, by Lemma 9, we obtain that there exists a scheduler π′ with
P(MP , γ

′
0, π

′,✸qf ) ≥ Pmax(MP , γ0,✸qf ) > 0. Therefore, Pmax(MP , γ
′
0,✸qf) >

0, and the answer to Reach
=0
max is negative. Exactly the same reasoning applies

for Reach
<1
max.

If Pmin(MP , γ0,✸qf ) = 1, then, the answer to Reach
=1
min is positive. Other-

wise, Pmin(MP , γ0,✸qf ) < 1, and for γ′
0 ⊇ γ0, we consider the class of sched-

ulers that always choose a completely disconnected topology of the network,
i.e. no edge in the graph. For this class of schedulers, the behavior of each
node is independent of the others, and hence simulate what happens from γ0,
the initial configuration with a single node. Therefore, Pmin(MP , γ

′
0,✸qf ) ≤

Pmin(MP , γ0,✸qf ) < 1, and the answer to Reach
=1
min is negative. Exactly the

same reasoning applies for Reach
>0
min.
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