Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media
Claire Chainais-Hillairet, Stella Krell, Alexandre Mouton

To cite this version:
Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media

C. Chainais-Hillairet¹, S. Krell¹, A. Mouton¹

¹Laboratoire P. Painlevé, CNRS UMR 8524, Université Lille 1, 59655 Villeneuve d’Ascq Cedex
²Laboratoire J. Dieudonné, CNRS UMR 6621, Université de Nice - Sophia Antipolis

Abstract

In this paper, we prove the convergence of a discrete duality finite volume scheme for a system of partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diiffusion-dispersion equation on the concentration. We first establish some a priori estimates satisfied by the sequences of approximate solutions. Then, it yields the compactness of these sequences. Passing to the limit in the numerical scheme, we finally obtain that the limit of the sequence of approximate solutions is a weak solution to the problem under study.

Keywords:
finite volume method, convergence analysis, porous medium, miscible fluid flows

1. Introduction

The Peaceman model has been introduced by Bear in [6] and Douglas in [1]. It describes the single-phase displacement of one fluid by another in a porous medium; the fluids are assumed incompressible and the gravity is neglected. This model is constituted of an anisotropic diffusion equation on the pressure of the mixture and a convection-diiffusion-dispersion on the concentration of the invading fluid. We refer to the work [2] by Feng for the theoretical analysis of this system of partial differential equations.

Many different schemes have already been proposed for the Peaceman model, since the beginning of the 1980’s: finite element schemes for both equations [1, 1, 2], finite element schemes for the pressure combined with method of characteristics for the concentration [2, 2, 1], or combined with Eulerian Lagrangian Localized Adjoint Method for the concentration [2, 2]. The first finite volume scheme scheme proposed for the Peaceman model is a Mixed Finite Volume scheme [7]. In this paper, Chainais-Hillairet and Droniou establish the convergence of the MFV scheme for the Peaceman model. In [5], Bartels, Jensen and Müller provide the convergence analysis of a combined Mixed Finite Element method for the pressure and a Discontinuous Galerkin method for the concentration.

As discrete duality finite volume schemes are well adapted for the discretization of anisotropic diiffusion operators (see for instance [1, 4, 1]...), we have proposed in a recent work [8] some discrete duality finite volume schemes for the Peaceman model. In [8], we have focused on the a priori estimates satisfied by the schemes and on the study of the numerical efficiency. The numerical experiments showed the good convergence behaviour of the schemes and also good qualitative results. In the present paper, we will now consider the convergence analysis (when time and space steps go to 0) of a DDFV scheme for the Peaceman model.

1.1. Presentation of the problem

Let assume that Ω is a connected polygonal domain of \(\mathbb{R}^2\) and let \(T > 0\). We denote by ∂Ω the boundary of Ω. The unknowns of the Peaceman model are the pressure in a fluid mixture, \(p\), its Darcy velocity \(\bar{U}\) and the concentration of...
some invading fluid \(\hat{\epsilon} \). As proposed by Chainais-Hillairet and Droniou in [7], we consider a synthesized form of the Peaceman model. It writes:

\[
\begin{align*}
\text{div}(\hat{U}) &= q^+ - q^- \quad \text{in }]0, T[\times \Omega, \\
\hat{U} &= -\Lambda(\cdot, \hat{\epsilon})\nabla \hat{p} \quad \text{in }]0, T[\times \Omega, \\
\hat{U} \cdot n &= 0 \quad \text{on }]0, T[\times \partial \Omega, \\
\int_{\Omega} \hat{p}(\cdot, x) \, dx &= 0 \quad \text{on }]0, T[.
\end{align*}
\]

(1a) (1b) (1c) (1d)

\[
\Phi \partial_t \hat{\epsilon} - \text{div}(\mathbb{D}(\cdot, \hat{U})\nabla \hat{\epsilon}) + \text{div}(\mathbb{D}\hat{U}) + q^- \hat{\epsilon} = q^+ \hat{\epsilon} \quad \text{in }]0, T[\times \Omega, \\
\mathbb{D}(\cdot, \hat{U})\nabla \cdot n &= 0 \quad \text{on }]0, T[\times \partial \Omega, \\
\hat{\epsilon}(0, \cdot) &= c_0 \quad \text{on } \Omega.
\]

(2a) (2b) (2c)

In this system, \(q^+ \) and \(q^- \) denote the injection and production terms, \(\hat{\epsilon} \) the injected concentration, \(\Phi \) the porosity of the porous medium. The tensor \(\Lambda \) contains the effect of the permeability of the porous medium and the viscosity of the fluid mixture. The tensor \(\mathbb{D} \) is the diffusion-dispersion tensor; it includes molecular diffusion and mechanical dispersion. The assumptions on the data are the following:

\[
(q^+, q^-) \in L^\infty(0, T; L^2(\Omega)) \quad \text{are nonnegative functions such that}
\]

\[
\int_{\Omega} q^+(\cdot, x) \, dx = \int_{\Omega} q^-(\cdot, x) \, dx \quad \text{a.e. on }]0, T[,
\]

(3)

\(A : \Omega \times \mathbb{R} \to M_2(\mathbb{R}) \) is a Carathéodory matrix-valued function satisfying:

\[
\exists a_A > 0 \text{ such that } a_A(\cdot, \cdot) \geq a_A(\cdot) \mid \cdot \mid^2
\quad \text{for a.e. } x \in \Omega, \text{ all } s \in \mathbb{R} \text{ and all } \xi \in \mathbb{R}^2, \\
\exists \Lambda_A > 0 \text{ such that } |a_A(\cdot, x)| \leq \Lambda_A \text{ for a.e. } x \in \Omega \text{ and all } s \in \mathbb{R},
\]

(4)

\(\mathbb{D} : \Omega \times \mathbb{R}^2 \to M_2(\mathbb{R}) \) is a Carathéodory matrix-valued function satisfying:

\[
\exists a_D > 0 \text{ s.t. } a_D(\cdot, W) \mid \xi \mid \geq a_D(\cdot) \mid W \mid \mid \xi \mid^2
\quad \text{for a.e. } x \in \Omega, \text{ all } W \in \mathbb{R}^2 \text{ and all } \xi \in \mathbb{R}^2, \\
\exists \Lambda_D > 0 \text{ such that } |a_D(\cdot, W)| \leq \Lambda_D(1 + |W|) \text{ for a.e. } x \in \Omega \text{ and all } W \in \mathbb{R}^2, \\
\Phi \in L^\infty(\Omega) \text{ and there exists } \Phi_c > 0 \text{ such that } \Phi_c \leq \Phi \leq \Phi_c^{-1} \text{ a.e. in } \Omega, \\
\hat{\epsilon} \in L^\infty(0, T[\times \Omega) \text{ satisfies: } 0 \leq \hat{\epsilon} \leq 1 \text{ a.e. in }]0, T[\times \Omega, \\
c_0 \in L^\infty(\Omega) \text{ satisfies: } 0 \leq c_0 \leq 1 \text{ a.e. in } \Omega.
\]

(5) (6) (7) (8)

The following definition (similar to the one in [2]) of weak solution to (1)—(2) makes sense.

Definition 1.1. Under assumptions (3)—(8), a weak solution to (1)—(2) is a triple \((\hat{\rho}, \hat{U}, \hat{\epsilon})\) satisfying

\[
\begin{align*}
\int_{\Omega} \hat{\rho}(t, \cdot) &= 0 \quad \text{for a.e. } t \in]0, T[, \\
\hat{\rho} &= -\Lambda(\cdot, \hat{\epsilon})\nabla \hat{p} \quad \text{a.e. on }]0, T[\times \Omega, \\
\phi \in C^0(0, T[\times \bar{\Omega}), \quad - \int_{0}^{T} \int_{\Omega} \hat{U} \cdot \nabla \phi &= \int_{0}^{T} \int_{\Omega} (q^+ - q^-) \phi, \\
\phi \in C^0_c(0, T[\times \bar{\Omega}), \quad - \int_{0}^{T} \int_{\Omega} \Phi \phi \hat{\epsilon} \phi + & \int_{0}^{T} \int_{\Omega} (\mathbb{D}(\cdot, \hat{U})\nabla \hat{\epsilon} - \int_{0}^{T} \int_{\Omega} \hat{\epsilon} \hat{U} \cdot \nabla \phi + & \int_{0}^{T} \int_{\Omega} q^- \hat{\epsilon} \phi \\
& - \int_{\Omega} \Phi \phi(0, \cdot) = \int_{0}^{T} \int_{\Omega} q^- \hat{\epsilon} \phi.
\end{align*}
\]

(9) (10)
1.2. Aim of the paper and outline

Different development of new finite volume schemes for diffusion equations have been done since twenty years. Their aim is to reconstruct some discrete gradient which has no serious restriction on meshes and strong enough convergence for handling the nonlinear coupling of the equations. Let us cite for instance the Multi Points Flux Approximation schemes by Aavatsmark, Barkve, Boe and Mannseth [1, 2], the Discrete Duality Finite Volume (DDFV) schemes by Domelevo and Omnes [1, 4], the Mixed Finite Volume schemes by Droniou and Eymard [1, 1], the Scheme Using Stabilization and Hybrid Interfaces by Eymard, Gallouët and Herbin [2, 2]. We refer to [1] where Droniou presents a review on finite volume methods for diffusion equations, with a focus on coercivity and minimum-maximum principles.

In [8], we have proposed a DDFV scheme for the Peaceman system (1)-(2). The DDFV scheme requires unknowns on both vertices and “centers” of control volumes. These two sets of unknowns allow to define a two-dimensional discrete gradient (piecewise constant on new geometric elements called diamonds) and a discrete divergence operator. These two operators satisfy a duality property in a discrete sense, which gives its name to the method.

In order to prove the convergence of the scheme, we need to add a penalization operator in the discretization of the convection-diffusion-dispersion equation. Such a penalization operator has already been introduced by Andreianov, Bendahmane and Karlsen in the numerical approximation of a degenerate hyperbolic-parabolic equation [3]. It ensures that both reconstructions of the concentration, either on the primal mesh or on the dual mesh, converge to the same limit. It is crucial when passing to the limit in the concentration equation. However, the numerical experiments will show that the penalization operator is not necessary in practice.

In Section 2, we present the different meshes and the associated notations. After having introduced the different discrete operators, we present the DDFV scheme in Section 2.5. The main result of the paper (convergence of the DDFV scheme) is stated in Theorem 2.6.

In order to prove this Theorem, we establish in Section 3 some a priori estimates satisfied by the numerical solution to the scheme. Then, in Section 4, we prove some properties satisfied by the discrete functional spaces. They will be useful to apply a discrete counterpart of Aubin-Simon Theorem, proved by Gallouët and Latché in [2]. Thanks to the a priori estimates and the properties satisfied by the discrete functional spaces, we prove the compactness of the sequence of approximate solutions. Then, the proof of Theorem 2.6 is concluded by passing to the limit into the scheme in Section 5. In Section 6, we provide some numerical experiments. The efficiency of the DDFV scheme has already been shown in [8]. In this last Section, we just show that the penalization operator introduced for the proof of convergence can be set to 0 in practice.

2. Presentation of the numerical scheme and of the main results

2.1. Meshes and notations

In order to define a DDFV scheme, as for instance in [1, 4], we need to introduce three different meshes – the primal mesh, the dual mesh and the diamond mesh – and some associated notations.

The mesh construction starts from the partition \mathcal{M}, the partition of the computational domain Ω, with disjoint open polygonal control volumes $\mathcal{K} \subset \Omega$ such that $\cup \mathcal{K} = \Omega$. This partition \mathcal{M} is called the interior primal mesh. We denote by $\partial \mathcal{M}$ the set of boundary edges, which are considered as degenerate control volumes. Then, the primal mesh is composed of $\mathcal{M} \cup \partial \mathcal{M}$, denoted by \mathcal{M}. To construct the two others meshes, we need to associate at each primal cell $\mathcal{K} \in \mathcal{M}$, a point $x_K \in \mathcal{K}$, called the center of the primal cell. Notice that for \mathcal{K} a degenerate control volume, the point x_K is necessarily the midpoint of \mathcal{K}. This family of centers is denoted by $X = \{x_K, \mathcal{K} \in \mathcal{M}\}$ and these will determine the two others meshes.

Let X^* denote the set of the vertices of the primal control volumes in \mathcal{M}. Distinguishing the interior vertices from the vertices lying on the boundary, we split X^* into $X^* = X^*_\text{int} \cup X^*_\text{ext}$. To any point $x_K \in X^*_\text{int}$, we associate the polygon \mathcal{K}^*, whose vertices are $\{x_K \in X^*_\text{int}, x_K \in \mathcal{K}, \mathcal{K} \in \mathcal{M}\}$. The set of these polygons defines the interior dual mesh denoted by \mathcal{M}^*. To any point $x_K \in X^*_\text{ext}$, we then associate the polygon \mathcal{K}^*, whose vertices are $\{x_K \in X^*_\text{ext}, x_K \in \mathcal{K}, \mathcal{K} \in \mathcal{M}\}$. The set of these polygons is denoted by $\partial \mathcal{M}^*$ called the boundary dual mesh and the dual mesh is $\mathcal{M}^* \cup \partial \mathcal{M}^*$, denoted by \mathcal{M}^*.

In order to define the diamond mesh, we first introduce the notion of edges. For all neighboring primal cells \mathcal{K} and \mathcal{L}, we assume that $\partial \mathcal{K} \cap \partial \mathcal{L}$ is a segment, corresponding to an edge of the mesh \mathcal{M}, denoted by $\sigma = \{\}$. A point $x_{\mathcal{K},\mathcal{L}}$ of \mathcal{M} is said to be a vertex if $x_{\mathcal{K},\mathcal{L}} \in X^*_\text{int}$ and a center if $x_{\mathcal{K},\mathcal{L}} \in X^*_\text{ext}$.
\(\mathcal{K} \backslash \mathcal{L} \). Let \(\mathcal{E} \) be the set of such edges. We similarly define the set \(\mathcal{E}' \) of the edges of the dual mesh \(\overline{\mathcal{M}}' \): \(\mathcal{E}' = \{ \sigma', \sigma'' = \mathcal{K}' \backslash \mathcal{L}' \text{ with } \mathcal{K}', \mathcal{L}' \in \overline{\mathcal{M}}' \} \). Let us note that, if \(\mathcal{K} \in \overline{\mathcal{M}} \), all its edges belong to \(\mathcal{E} \) and if \(\mathcal{K}' \in \overline{\mathcal{M}}' \), all its edges belong to \(\mathcal{E}' \). But, if \(\mathcal{K}' \in \partial \overline{\mathcal{M}}' \), then it has edges inside the domain and also on its boundary: the interior edges belong to \(\mathcal{E}' \) while the boundary edges belong to \(\mathcal{E} \).

For each couple \((\sigma, \sigma') \in E \times E'\) such that \(\sigma = \mathcal{K} \setminus \mathcal{L} = (x_K, x_L)\) and \(\sigma' = \mathcal{K}' \setminus \mathcal{L}' = (x_K', x_L')\), we define the quadrilateral diamond cell \(D_{\sigma,\sigma'}\) whose diagonals are \(\sigma\) and \(\sigma'\). If \(\sigma \in E \cap \partial \Omega\), we note that the diamond degenerates into a triangle. The set of the diamond cells defines the diamond mesh \(\mathcal{T}\). It verifies \(\Omega = \bigcup_{D \in \mathcal{T}} D\). We have as many diamond cells as primal edges. We can rewrite \(\mathcal{T} = \mathcal{T}^{int} \cup \mathcal{T}^{ext}\) where \(\mathcal{T}^{int}\) is the set of all the boundary diamonds (associated to the boundary edges) and \(\mathcal{T}^{int}\) the set of all the interior diamonds.

Finally, the DDFV mesh is made of the \(\mathcal{T} = (\overline{\mathcal{M}}, \overline{\mathcal{M}}')\) and \(\mathcal{T}\). Let us now introduce some notations associated to the meshes \(\mathcal{T}\) and \(\mathcal{D}\). For each primal or dual cell \(V \in \overline{\mathcal{M}}\) or \(V \in \overline{\mathcal{M}}'\), we define \(m_V\) the measure of \(V\), \(E_V\) the set of the edges of \(V\) (it coincides with the edge \(\sigma = V\) if \(V \in \partial \overline{\mathcal{M}}\)), \(\mathcal{D}_V\) the set of diamonds \(D_{\sigma,\sigma'} \in \mathcal{D}\) such that \(m(D_{\sigma,\sigma'} \cap V) > 0\), and \(d_V\) the diameter of \(V\).

For a diamond \(D_{\sigma,\sigma'}\), whose vertices are \((x_K, x_K', x_L, x_L')\), we define, as shown on Figure 2.1: \(x_D\) the center of the diamond cell \(D\): \(x_D = \sigma \cap \sigma'\), \(m_{\sigma}\) the length of the primal edge \(\sigma\), \(m_{\sigma'}\) the length of the dual edge \(\sigma'\), \(m_D\) the measure of \(D\), \(d_D\) its diameter, \(\theta_D\) the angle between \((x_K, x_L)\) and \((x_K', x_L')\). We will also use two direct basis \((n_{\sigma}, d_{\sigma}, n_{\sigma'})\) and \((n_{\sigma}, d_{\sigma}, n_{\sigma'})\), where \(n_{\sigma}\) is the unit normal to \(\sigma\), outward \(\mathcal{K}\), \(n_{\sigma'}\) is the unit normal to \(\sigma'\), outward \(\mathcal{K}'\), \(d_{\sigma}, d_{\sigma'}\) is the unit tangent vector to \(\sigma\), oriented from \(\mathcal{K}\) to \(\mathcal{L}\), \(d_{\sigma}, d_{\sigma'}\) is the unit tangent vector to \(\sigma'\), oriented from \(\mathcal{K}\) to \(\mathcal{L'}\).

We introduce now the size of the mesh, \(\text{size}(\mathcal{T}) = \max_{D \in \mathcal{T}} d_D\). We assume that the diamonds cannot be flat: there exists a unique \(\theta_D \in [0, \frac{\pi}{2}]\) such that \(\sin(\theta_D) := \min(\{\sin(\theta_D)\})\). We also need some regularity of the mesh, as in [4].

We assume that there exists \(\zeta > 0\) such that

\[
\sum_{\mathcal{E} \in \mathcal{E}_D} m_{\sigma} m_{\sigma'} \leq \frac{m_D}{\zeta}, \forall \mathcal{K} \in \overline{\mathcal{M}}, \quad \text{and} \quad \sum_{\mathcal{E} \in \mathcal{E}_D} m_{\sigma} m_{\sigma'} \leq \frac{m_D}{\zeta}, \forall \mathcal{K}' \in \overline{\mathcal{M}}',
\]

\[
m_D \leq \frac{m_{\mathcal{K} \cap \mathcal{K}'}^\zeta}{\zeta}, \forall \mathcal{D} \in \mathcal{T}, \mathcal{K} \in \overline{\mathcal{M}}, \mathcal{K}' \in \overline{\mathcal{M}}'\text{ such that } m(D \cap \mathcal{K}) \neq 0 \text{ and } m(D \cap \mathcal{K}') \neq 0.
\]

2.2. Set of discrete unknowns

We need several types of degrees of freedom to represent scalar and vector fields in the discrete setting. Let us introduce:
\[R^r \] the linear space of scalar fields constant on the cells of \(\mathcal{M} \) and \(\mathcal{M}^r \):

\[R^r = \left\{ u_T = \left(u_K \right)_{K \in \mathcal{M}}, \left(u_K^* \right)_{K^* \in \mathcal{M}^r} \right\}, \text{ with } u_K \in \mathbb{R}, \forall K \in \mathcal{M}, \text{ and } u_K^* \in \mathbb{R}, \forall K^* \in \mathcal{M}^r.\]

\[\left(\mathbb{R}^2 \right)^D \] the linear space of vector fields constant on the cells of \(\mathcal{D} \):

\[\left(\mathbb{R}^2 \right)^D = \left\{ \xi_D = (\xi_D)_{D \in \mathcal{D}}, \text{ with } \xi_D \in \mathbb{R}^2, \forall D \in \mathcal{D} \right\}. \]

Similarly, we may define \(R^r, \mathbb{R}^D, \mathbb{R}^{D^{ext}} \) and \(\mathbb{R}^{D^{ext}} \) the spaces of scalar fields constant respectively on \(\mathcal{D}, \mathcal{D}^{ext} \), and \(\mathbb{R}^{D^{ext}} \) and \(\mathbb{R}^{D^{ext}} \) the space of vector fields constant on \(\mathcal{D}^{ext} \). It permits to introduce two trace operators, defined respectively on \(R^r \) and \(\left(\mathbb{R}^2 \right)^D \). The first one is \(\gamma^r : u_T \in R^r \mapsto \gamma^r(u_T) = \left(\gamma_L(u_T) \right)_{D \in \partial \mathcal{M}} \in \mathbb{R}^{\partial \mathcal{M}}, \) defined by:

\[
\gamma_L(u_T) = \frac{u_K + 2u_K + u_L}{4}, \quad \forall L = [x_K, x_L] \in \partial \mathcal{M}.
\]

The second one is \(\gamma^D : \varphi^D \in \left(\mathbb{R}^2 \right)^D \mapsto (\varphi_D)_{D \in \partial \mathcal{M}} \in \left(\mathbb{R}^2 \right)^{D^{ext}}. \)

We define the scalar products \([\cdot, \cdot]_T \) on \(R^r \) and \((\cdot, \cdot)_D \) on \(\left(\mathbb{R}^2 \right)^D \) by:

\[
\left[v_T, u_T \right]_T = \frac{1}{2} \left(\sum_{K \in \mathcal{M}} m_K u_K v_K + \sum_{K \in \mathcal{M}^r} m_K u_K^* v_K^* \right), \quad \forall v_T, u_T \in R^r, \\
\left(\xi_D, \varphi_D \right)_D = \sum_{D \in \mathcal{D}} m_D \xi_D \cdot \varphi_D, \quad \forall \xi_D, \varphi_D \in \left(\mathbb{R}^2 \right)^D.
\]

The corresponding norms are denoted by \(\| \cdot \|_{2,T} \) and \(\| \cdot \|_{2,D} \). More generally, we set for all \(u_T \in R^r, \xi_D \in \left(\mathbb{R}^2 \right)^D \) and \(1 \leq p < +\infty:\)

\[
\| u_T \|_{p,T} = \left(\frac{1}{2} \sum_{K \in \mathcal{M}} m_K |u_K|^p + \frac{1}{2} \sum_{K \in \mathcal{M}^r} m_K |u_K^*|^p \right)^{1/p}, \quad \| \xi_D \|_{p,D} = \left(\sum_{D \in \mathcal{D}} m_D |\xi_D|^p \right)^{1/p},
\]

\[
\| u_T \|_{\infty,T} = \max \left(\max_{K \in \mathcal{M}} |u_K|, \max_{K \in \mathcal{M}^r} |u_K^*| \right), \quad \| \xi_D \|_{\infty,D} = \max_{D \in \mathcal{D}} |\xi_D|.
\]

We also define the bilinear form \((\cdot, \cdot)_{\partial \mathcal{M}} \) on \(\mathbb{R}^{D^{ext}} \times \mathbb{R}^{\partial \mathcal{M}} \) by:

\[
(\varphi_D, \varphi_{\partial \mathcal{M}})_{\partial \mathcal{M}} = \sum_{D \in \mathcal{D}, K \in \partial \mathcal{M}} m_K \varphi_D \varphi_{\partial \mathcal{M}}, \quad \forall \varphi_D \in \mathbb{R}^{D^{ext}}, \forall \varphi_{\partial \mathcal{M}} = (\varphi_{\partial \mathcal{M}})_{K \in \partial \mathcal{M}} \in \mathbb{R}^{\partial \mathcal{M}}.
\]

To a given vector \(u_T = \left(u_K \right)_{K \in \mathcal{M}}, \left(u_K^* \right)_{K^* \in \mathcal{M}^r} \in R^r \) defined on a DDFV mesh \(\mathcal{T} \) of size \(h \), we associate the approximate solution:

\[
u_T = \frac{1}{K} \sum_{K \in \mathcal{M}} u_K^r \mathbf{1}_K + \frac{1}{K} \sum_{K \in \mathcal{M}^r} u_K^* (\mathbf{1}^*_K).
\]

With this definition, we use simultaneously the values on the primal mesh and the values on the dual mesh. Indeed, we have \(u_T = \frac{1}{2} \left(u_{h,\mathcal{M}} + u_{h,\mathcal{M}^r} \right) \), where \(u_{h,\mathcal{M}} \) and \(u_{h,\mathcal{M}^r} \) are two different reconstructions based either on the primal values or the dual values:

\[
u_{h,\mathcal{M}} = \sum_{K \in \mathcal{M}} u_K \mathbf{1}_K \quad \text{and} \quad u_{h,\mathcal{M}^r} = \sum_{K^* \in \mathcal{M}^r} u_K^* \mathbf{1}^*_K.
\]

The space of the approximate solutions is denoted by \(H_T \):

\[
H_T = \left\{ u_T \in L^1(\Omega) \mid \exists u_T = \left(u_K \right)_{K \in \mathcal{M}}, \left(u_K^* \right)_{K^* \in \mathcal{M}^r} \in R^r \text{ such that } u_T = \frac{1}{2} \sum_{K \in \mathcal{M}} u_K \mathbf{1}_K + \frac{1}{2} \sum_{K^* \in \mathcal{M}^r} u_K^* \mathbf{1}^*_K \right\}.
\]
In the sequel, we will also need some reconstruction of the approximate solutions on the diamond cells. Therefore, we associate to a given \(u_h \in H_T \) the piecewise constant function on diamond cells \(u_{h,D} \), defined by:

\[
u_{h,D}(x) = \sum_{D \in \mathcal{D}} u_D 1_D \quad \text{with} \quad u_D = \frac{1}{m_D} \int_D u_h(y) \, dy \quad \forall \mathcal{D} \in \mathcal{D}.
\] (16)

2.3. Discrete operators and duality formula

In this section, we recall the definition of the discrete operators: discrete gradient, discrete divergence operator and discrete convection operator. The discrete gradient has been introduced in [1] and developed in [1]. The discrete divergence has been introduced in [1]. The discrete convection has been introduced in [8].

Definition 2.1. The discrete gradient is a mapping from \(\mathbb{R}^r \) to \(\mathbb{R}^2 \) defined for all \(u_T \in \mathbb{R}^r \) by \(\nabla^D u_T = \left(\nabla^D u_T \right)_{D \in \mathcal{D}} \), where for \(D \in \mathcal{D} \):

\[
\nabla^D u_T = \frac{1}{\sin(\theta_D)} \left(\frac{u_D - u_K}{m_r} \mathbf{n}_{rx} + \frac{u_D - u_K}{m_r} \mathbf{n}_{ry} \right).
\]

Definition 2.2. The discrete divergence operator \(\text{div}^D \) is a mapping from \(\mathbb{R}^2 \) to \(\mathbb{R}^r \) defined for all \(\xi_D \in \mathbb{R}^2 \) by

\[
\text{div}^D \xi_D = \left(\text{div}^D \xi_D \right)_{D \in \mathcal{D}} = \left(\text{div}^D \xi_D \right)_{D \in \mathcal{D}}
\]

with \(\text{div}^D \xi_D = \left(\text{div}^D \xi_D \right)_{\mathcal{K} \in \mathcal{M}} \) and \(\text{div}^D \xi_D = \left(\text{div}^D \xi_D \right)_{\mathcal{K} \in \mathcal{M}} \) such that:

\[
\forall \mathcal{K} \in \mathcal{M}, \text{div}^D \xi_D = \frac{1}{m_K} \sum_{D \in \mathcal{D}_K} m_r \xi_D \cdot \mathbf{n}_{rx},
\]

and analogous definitions for \(\text{div}^D \xi_D \) for \(\mathcal{K}^* \in \overline{\mathcal{M}} \) (see [8]).

Discrete Duality Finite Volume methods are based on the discrete duality formula recalled in Theorem 2.3 and proved for instance in [1]. This is the discrete counterpart of the Green formula.

Theorem 2.3. For all \((\xi_D, v_T) \in \left(\mathbb{R}^2 \right)^{\mathcal{D}} \times \mathbb{R}^r \), we have

\[
\left[\text{div}^D \xi_D, v_T \right]_T = -\left(\xi_D, \nabla^D v_T \right)_T + \left(\gamma^T(\xi_D) \cdot \mathbf{n}, \gamma^T(v_T) \right)_{\partial \Omega},
\]

where \(\mathbf{n} \) is the exterior unit normal to \(\Omega \).

The discrete convection operator has been introduced in [8]. It is similar with previous definitions given by Andreianov, Bendahane and Karlsen in [3] and by Coudière and Manzini in [9].

Definition 2.4. The discrete convection operator \(\text{div}^D \) is a mapping from \(\mathbb{R}^2 \) to \(\mathbb{R}^r \) defined for all \(\xi_D \in \mathbb{R}^2 \) and \(v_T \in \mathbb{R}^r \) by

\[
\text{div}^D(\xi_D, v_T) = \left(\text{div}^D(\xi_D, v_T) \right)_{\mathcal{K} \in \mathcal{M}} = \left(\text{div}^D(\xi_D, v_T) \right)_{\mathcal{K} \in \mathcal{M}} = \left(\text{div}^D(\xi_D, v_T) \right)_{\mathcal{K} \in \mathcal{M}} = \left(\text{div}^D(\xi_D, v_T) \right)_{\mathcal{K} \in \mathcal{M}}
\]

with \(\text{div}^D(\xi_D, v_T) = \left(\text{div}^D(\xi_D, v_T) \right)_{\mathcal{K} \in \mathcal{M}} \) and \(\text{div}^D(\xi_D, v_T) = \left(\text{div}^D(\xi_D, v_T) \right)_{\mathcal{K} \in \mathcal{M}} \) such that:

\[
\forall \mathcal{K} \in \mathcal{M}, \text{div}^D(\xi_D, v_T) = \frac{1}{m_K} \sum_{D \in \mathcal{D}_K} m_r \left(\xi_D \cdot \mathbf{n}_{rx} \right)^+ v_K - \left(\xi_D \cdot \mathbf{n}_{rx} \right)^- v_L,
\]

where \(x^+ = \max(x, 0) \) and \(x^- = -\min(x, 0) \) for all \(x \in \mathbb{R} \), and analogous definitions for \(\text{div}^D(\xi_D, v_T) \) for \(\mathcal{K}^* \in \overline{\mathcal{M}} \) (see [8]).
2.4. A penalization operator

Let us introduce now a penalization operator as in [3]. This operator has not been introduced in our previous work [8]. However, we will see that it is essential when passing to the limit in the scheme, especially in the convection term in (2a). Indeed, the penalization operator will ensure that the reconstructions of the concentration on the primal mesh and on the dual mesh converge to the same limit.

Definition 2.5. Let \(\beta \in]0,2[\). The penalization operator \(\mathcal{P}^\beta : \mathbb{R}^r \to \mathbb{R}^r \) is defined for all \(u_T \in \mathbb{R}^r \), by:

\[
\mathcal{P}^\beta u_T = \left(\mathcal{P}^{\beta P} u_T, \mathcal{P}^{\beta P^*} u_T, \mathcal{P}^{\beta W} u_T, \mathcal{P}^{\beta W^*} u_T \right),
\]

with \(\mathcal{P}^{\beta P} u_T = (\mathcal{P}_{x} u_T)_{x \in \mathbb{R}^r}, \mathcal{P}^{\beta W} u_T = 0, \mathcal{P}^{\beta P^*} u_T = (\mathcal{P}_{x^*} u_T)_{x^* \in \mathbb{R}^r} \) and \(\mathcal{P}^{\beta W^*} u_T = (\mathcal{P}_{x^{*}} u_T)_{x^{*} \in \mathbb{R}^{r'}} \) such that

\[
\forall \ K \in \mathbb{R}, \quad \mathcal{P}_{x} u_T = \frac{1}{m_K} \frac{1}{\text{size}(T)} \sum_{K' \in \mathbb{E}} m_{K \cap K'} (u_K - u_{K'}),
\]

\[
\forall \ K^* \in \mathbb{R}^r, \quad \mathcal{P}_{x^*} u_T = \frac{1}{m_{K^*}} \frac{1}{\text{size}(T)} \sum_{K \in \mathbb{E}} m_{K \cap K^*} (u_K - u_{K^*}).
\]

The penalization operator clearly satisfies the following property:

\[
[\mathcal{P}^\beta u_T, u_T]_T = \frac{1}{2} \frac{1}{\text{size}(T)} \sum_{K \in \mathbb{E}} \sum_{K' \in \mathbb{E}} m_{K \cap K'} (u_K - u_{K'})^2 = \frac{1}{2} \frac{1}{\text{size}(T)} \parallel u_{t_0, 0} - u_{t_0, \mathbb{E}} \parallel^2_{L^2(\Omega)},
\] (17)

2.5. The numerical scheme

Let \((T, \mathcal{E})\) be a DDFV mesh of \(\Omega \) (as presented in Section 2.1) and \(\delta t > 0 \) be a time step. We set \(N_T = T / \delta t \) (we always choose time steps such that \(N_T \) is an integer) and we define \(t_n = n \delta t \) for \(n \in \{0, \ldots, N_T\} \).

First, we discretize all the data of the problem. Therefore, we introduce \(\mathbb{P}_K \) (respectively \(\mathbb{P}_{K^*} \)) the \(L^2 \) projection over an interior primal (respectively dual) cell. We then define \(\mathcal{E}^0_T = \left((\mathbb{P}_K c_0)_{K \in \mathbb{E}}, 0, (\mathbb{P}_{K^*} c_0)_{K^* \in \mathbb{E}} \right) \in \mathbb{R}^r \). and \(\Phi_T = \left((\mathbb{P}_K \Phi)_{K \in \mathbb{E}}, 0, (\mathbb{P}_{K^*} \Phi)_{K^* \in \mathbb{E}} \right) \in \mathbb{R}^r \). In a similar way, for all \(n \geq 1 \), we define \((q_T^n, q^n, c_T^n) \in (\mathbb{R}^r)^3 \) by taking the mean values of \(q^+, q^- \) and \(\hat{c} \) on the primal and dual cells crossed with the time interval \((t_{n-1}, t_n)\). For \(w = q^+, q^-, \hat{c} \), it writes:

\[
w^n_T = \frac{1}{\delta t} \int_{t_{n-1}}^{t_n} \left((\mathbb{P}_K w(t))_{K \in \mathbb{E}}, 0, (\mathbb{P}_{K^*} w(t))_{K^* \in \mathbb{E}} \right) dt.
\]

At each time step \(n \), the numerical solution will be given by \((p^n_T, u^n_T, c_T^n) \in \mathbb{R}^r \times \left(\mathbb{R}^r \right)^5 \times \mathbb{R}^r \) and the computation of the pressure and the velocity \((p^n_T, u^n_T) \) will be decoupled from the computation of the concentration \((c_T^n) \). Due to the coupling in the Darcy law (1b), we need to reconstruct some approximate values on the diamond cells \(c_T^{-1} = (c_T^n)_{D \in \mathcal{E}} \) from \(c_T^{-1} \) following (16). We may also introduce the approximate tensors

\[
A_{\mathcal{E}}(s) = \frac{1}{m_D} \int_D A(x, s) dx, \quad D_{\mathcal{W}}(W) = \frac{1}{m_D} \int_D D(x, W) dx, \quad \forall W \in \mathbb{R}^2.
\]

It permits to define \(A_{\mathcal{E}}(c_T^{-1}) = \left(A_{\mathcal{E}}(c_T^{-1}) \right)_{D \in \mathcal{E}} \) and \(D_{\mathcal{W}} \left(U^n_T \right) = \left(D_{\mathcal{W}}(U^n_T) \right)_{D \in \mathcal{E}} \). Then, the scheme for (1) writes:

\[
div \left(U^n_T \right) = q^n_T - q^n_T, \quad \forall 1 \leq n \leq N_T, \quad (18a)
\]

\[
U^n_T = -A_{\mathcal{E}}(c_T^{-1}) \nabla T^n_T, \quad \forall 1 \leq n \leq N_T, \quad (18b)
\]

\[
U^n_T \cdot n = 0, \quad \forall D \in \mathcal{E}, \quad \forall 1 \leq n \leq N_T, \quad (18c)
\]

\[
\sum_{K \in \mathbb{E}} m_K p^n_K = \sum_{K^* \in \mathbb{E}} m_{K^*} p^n_{K^*} = 0, \quad \forall 1 \leq n \leq N_T, \quad (18d)
\]
and the scheme for (2) writes:

\[
\Phi_T c^n_T - c^{n-1}_T \frac{\delta t}{\delta t} - \text{div}^T D \left(U^n_T \right) \nabla c^n_T + \text{div}^T \left(U^n_T, c^n_T \right) + q^n_T c^n_T + A P_T (c^n_T) = q^n_T p^n_T, \quad \forall 1 \leq n \leq N_T, \tag{19a}
\]

\[
\sum_{D \in \mathcal{D}} D \left(U^n_T \right) \nabla c^n_T \cdot n = 0, \quad \forall D \in \mathcal{D}_{ext}, \quad \forall 1 \leq n \leq N_T. \tag{19b}
\]

Note that \(\lambda \) is a positive constant. The scheme (18)–(19) comes down to a resolution of two linear systems: starting from \(c^{n-1}_T \), \((p^n_T, U^n_T)\) is obtained by solving the linear system (18a)–(18d) and then \(c^n_T \) is computed by solving the linear system (19a)-(19b). Existence and uniqueness of a solution to each linear system has been proved in [8] in the case where \(\lambda = 0 \). This result is based on the \textit{a priori} estimates satisfied by the discrete pressure and the discrete concentration. It remains true in the case where \(\lambda > 0 \) because the same \textit{a priori} estimates on the pressure and the concentration still hold (see Lemma 3.1 and Lemma 3.2 in Section 3).

2.6. Definition of the functional spaces for approximate solutions

As we are interested in the numerical analysis of the scheme (and particularly in its convergence analysis), we need to define some functional spaces for the approximate solutions.

We have already defined in (15) the space of approximate solutions \(H_T \). For a function \(u_h \in H_T \), we define its approximate gradient \(\nabla^h u_h \) by

\[
\nabla^h u_h = \sum_{D \in \mathcal{D}} \nabla^D u_h 1_D.
\]

This approximate gradient is a piecewise constant function on each diamond. The space of such functions is denoted by \(H^D \):

\[
H^D = \left\{ U_h \in (L^1(\Omega))^2 \mid \exists U_D \in \left(\mathbb{R}^2 \right)^2 \text{ such that } U_h = \sum_{D \in \mathcal{D}} U_D 1_D \right\}.
\]

Then, we define the space-time approximation spaces \(H_{T,dt} \) and \(H_{D,dt} \) based respectively on \(H_T \) and \(H^D \):

\[
H_{T,dt} = \left\{ u_{h,dt} \in L^1([0,T] \times \Omega) \mid u_{h,dt}(t,x) = u^n_h(x) \forall t \in [t_{n-1}, t_n], \quad \text{with } u^n_h \in H_T, \quad \forall 1 \leq n \leq N_T \right\},
\]

\[
H_{D,dt} = \left\{ U_{h,dt} \in (L^1([0,T] \times \Omega))^2 \mid U_{h,dt}(t,x) = U^n_h(x) \forall t \in [t_{n-1}, t_n], \quad \text{with } U^n_h \in H^D, \quad \forall 1 \leq n \leq N_T \right\}.
\]

We still keep the notation \(\nabla^h \) to define the approximate gradient of \(u_{h,dt} \in H_{T,dt} \):

\[
\nabla^h u_{h,dt}(x,t) = \nabla^h u^n_h(x) \forall t \in [t_{n-1}, t_n).
\]

Therefore, for all \(u_{h,dt} \in H_{T,dt} \), we have \(\nabla^h u_{h,dt} \in H_{D,dt} \). Furthermore, we introduce the following reconstructions

\[
u_{h,dt,\ast} (t,x) = \sum_{K \in \mathcal{K}} u^n_K 1_K (x), \quad \forall t \in [t_{n-1}, t_n), \tag{20a}
\]

\[
u_{h,dt,\div} (t,x) = \sum_{K \in \mathcal{K}} \frac{\delta c^n_K}{\delta t} 1_K (x), \quad \forall t \in [t_{n-1}, t_n), \tag{20b}
\]

\[
u_{h,dt,\nabla} (t,x) = \sum_{D \in \mathcal{D}} \nabla^D u^n_D (x), \quad \forall t \in [t_{n-1}, t_n). \tag{20c}
\]

We may now define some norms on \(H_T \), \(H_{T,dt} \). First, we define some discrete \(W^{1,p} \)-norms \((1 \leq p \leq +\infty)\) and a discrete \(W^{1,1} \)-norm on \(H_T \). For all \(u_h \in H_T \), we set

\[
\| u_h \|_{1,p,T} = \left(\| u_T \|^p_{p,T} + \| \nabla^D u_T \|^p_{p,T} \right)^{1/p}, \quad \forall 1 \leq p \leq +\infty,
\]

\[
\| u_h \|_{1,\infty,T} = \| u_T \|_{\infty,T} + \| \nabla^D u_T \|_{\infty,D},
\]

\[
\| u_h \|_{1,\ast,T} = \| u_T \|_{1,\ast,T} + \| P^T u_T, u_T \|_{\ast,T}^\frac{1}{2},
\]

\[
\| u_h \|_{1,-1,T} = \max \left\{ \| v_T, u_T \|_{-1,T}, \forall v_h \in H_T \text{ verifying } \| v_h \|_{1,\ast,T} \leq 1 \right\}.
\]
where the norms \(|\cdot|_{p,T}\) and \(\|\cdot\|_{p,\mathbb{T}}\) have been defined by (13) and the penalization operator \(\mathcal{P}^r\) is given in Definition 2.5. Then, we define some discrete \(L^1(0,T;W^{1,\beta}((\Omega)))\) \((1 \leq p < +\infty)\), \(L^\infty(0,T;W^{1,\infty}(\Omega))\) and \(L^\infty(0,T;L^p(\Omega))\)-norms on \(H_{T_{\delta t},T}\). For all \(u_{h,\delta t} \in H_{T_{\delta t},T}\), we set:

\[
\|u_{h,\delta t}\|_{1,p,T} = \sum_{n=1}^{N_T} \delta t \|\phi_h^p\|_{1,p,T}, \quad \forall 1 \leq p < +\infty,
\]

\[
\|u_{h,\delta t}\|_{\infty,1,T} = \max_{n \in \{1,\ldots,N_T\}} \|\phi_h^p\|_{1,\infty,T},
\]

\[
\|u_{h,\delta t}\|_{\infty,0,p,T} = \max_{n \in \{1,\ldots,N_T\}} \left(\frac{1}{2} \sum_{K \in \mathcal{E}} \max_{x \in \mathcal{E}} |u_h^p|^p + \frac{1}{2} \sum_{K' \in \mathcal{E}} \max_{x' \in \mathcal{E}} |u_{h'}^p|^p \right)^{1/p}, \quad \forall 1 \leq p < +\infty.
\]

Let us also remark that, for all \(U_{h,\delta t} \in H_{T_{\delta t},T}\) and for \(1 \leq p < +\infty\), we have

\[
\|U_{h,\delta t}\|_{L^\infty(0,T;L^p(\Omega))^2} = \max_{n \in \{1,\ldots,N_T\}} \left(\sum_{D \in \mathcal{D}} m_D |U_{h_n}^p|^p \right)^{1/p},
\]

\[
\|U_{h,\delta t}\|_{L^p(0,T;L^2(\Omega))^2} = \left(\sum_{n=1}^{N_T} \delta t \sum_{D \in \mathcal{D}} m_D |U_{h_n}^p|^p \right)^{1/p}.
\]

2.7. Main result

We may now state the main result of the paper.

Theorem 2.6. Let \(\Omega\) be an open bounded connected polygonal domain of \(\mathbb{R}^2\) and \(T > 0\). Assume (3)–(8) hold, \(\lambda > 0\) and \(\beta \in [0,2]\). Let \((\mathcal{T}_m)_{m \geq 1}\) be a sequence of DDFV meshes such that \(h_m = \text{size}(\mathcal{T}_m) \rightarrow 0\) while the regularity parameters \(\xi_m\) and \(\theta_m\) verifying:

\[
\exists \theta > 0, \xi > 0 \text{ such that, } \forall m, \quad \theta_m \geq \theta \text{ and } \xi_m \leq \xi.
\]

Let \((\delta t_m)_{m \geq 1}\) be a sequence of time steps such that \(T/\delta t_m\) is an integer and \(\delta t_m \rightarrow 0\). Then, the scheme (18)–(19) defines a sequence of approximate solutions \((p_m = p_{h_{\delta t_m},u_{\delta t_m},c_{\delta t_m}})\), \(U_m = U_{h_{\delta t_m},u_{\delta t_m}}\), \(c_m = c_{h_{\delta t_m}}\) in \(H_{T_{\delta t_m},T_{\delta t_m}} \times H_{T_{\delta t_m},T_{\delta t_m}} \times H_{T_{\delta t_m},T_{\delta t_m}}\), there exists \(\tilde{p} \in L^\infty(0,T;H^1(\Omega))\), \(\tilde{U} \in L^\infty(0,T;L^2(\Omega)^2)\) and \(\tilde{c} \in L^\infty(0,T;L^2(\Omega))\) and, up to a subsequence, we have the following convergence results when \(m \rightarrow +\infty:\)

\[
p_m \rightarrow \tilde{p} \quad \text{weakly* in } L^\infty(0,T;L^2(\Omega)) \text{ and strongly in } L^p(0,T;L^q(\Omega)), \forall p < \infty, q < 2;
\]

\[
\nabla^{h_{\delta t_m}} p_m \rightarrow \nabla \tilde{p} \quad \text{weakly* in } (L^\infty(0,T;L^2(\Omega))^2) \text{ and strongly in } (L^\infty((0,T) \times \Omega))^2;
\]

\[
U_m \rightarrow \tilde{U} \quad \text{weakly* in } (L^\infty(0,T;L^2(\Omega))^2) \text{ and strongly in } (L^\infty((0,T) \times \Omega))^2;
\]

\[
c_m \rightarrow \tilde{c} \quad \text{weakly* in } L^\infty(0,T;L^2(\Omega)) \text{ and strongly in } L^p(0,T;L^q(\Omega)), \forall p < \infty, q < 2;
\]

\[
\nabla^{h_{\delta t_m}} c_m \rightarrow \nabla \tilde{c} \quad \text{weakly in } (L^\infty((0,T) \times \Omega))^2.
\]

Moreover, \((\tilde{p}, \tilde{U}, \tilde{c})\) is a weak solution to (1)-(2).
3. A priori estimates

In this Section, we prove a priori estimates satisfied by a solution to the scheme. Lemma 3.1 gives a priori estimates on the pressure, the gradient of the pressure and the Darcy’s velocity at the discrete level, while Lemma 3.2 gives a priori estimates on the approximate concentration and its approximate gradient. Thanks to these two lemmas, we get the existence and uniqueness of a solution to the scheme, as in [8]. Then, Lemma 3.3 shows that the reconstructions of the concentration on the primal and dual meshes will necessarily converge to the same limit (when convergence occurs). In Lemma 3.4, we give an a priori estimate on the discrete time derivatives of the approximate concentration.

Lemma 3.1. Under the hypotheses of Theorem 2.6, we assume that the scheme (18)–(19) defines an approximate solution \((p_{h,d}, \bar{u}_{h,d}, c_{h,d}) \in H_{T,\delta t} \times H_{\mathcal{Z},\delta t} \times H_{T,\delta t}\). Then, there exists \(C > 0\) depending only on \(\Omega, \zeta, \theta, \alpha_A\) and \(\Lambda_A\) such that:

\[
\|p_{h,d}\|_{L^2(0,T;L^2(\Omega))} + \|\nabla p_{h,d}\|_{L^2(0,T;L^2(\Omega))} + \|\bar{u}_{h,d}\|_{L^2((0,T;L^2(\Omega))} \leq C\|q^\ast - q\|_{L^2(0,T;L^2(\Omega))}.
\]

Proof. Inequality (22) is a direct consequence of Lemma 3.1 in [8].

Lemma 3.2. Under the hypotheses of Theorem 2.6, we assume that the scheme (18)–(19) defines an approximate solution \((p_{h,d}, \bar{u}_{h,d}, c_{h,d}) \in H_{T,\delta t} \times H_{\mathcal{Z},\delta t} \times H_{T,\delta t}\). Then, there exists \(C > 0\) depending only on \(\Omega, T, \zeta, \theta, \Phi,\) and \(\alpha_D\) such that:

\[
\|c_{h,d}\|_{L^2(0,T;L^2(\Omega))} + \|\nabla c_{h,d}\|_{L^2(0,T;L^2(\Omega))} + \|\bar{u}_{h,d}\|_{L^2((0,T;L^2(\Omega))} \leq C\left(\|c_0\|_{L^2(\Omega)} + \|q^\ast\|_{L^2(0,T;L^2(\Omega))}\right).
\]

Proof. The proof is very close to the proof of Lemma 3.3 in [8]. We multiply the scheme (19a) by \(c_T^p\). It yields

\[
\left[\Phi_T \frac{c_T^p - c_T^{p-1}}{\delta t}, c_T^p\right] = \left[\text{div}\left(D_T\left(U_T^p\right)\nabla c_T^p\right), c_T^p\right] + \left[\text{div}\left(U_T^p\right)\nabla c_T^p, c_T^p\right] + \left[q_T^p, c_T^p\right] + \lambda \left\|q_T^p\right\|_{L^2(0,T;L^2(\Omega))}.
\]

Following the same computations as in [8], we get

\[
\frac{1}{2\delta t}\left[\Phi_T \left(c_T^p\right)^2\right] - \left[\Phi_T, (c_T^{p-1})^2\right] + \alpha_D \left(\|\nabla c_T^p\|_{L^2(\Omega)} + \|U_T^p\| + \|\nabla c_T^p\|_{L^2(\Omega)}\right) + \lambda \left\|q_T^p\right\|_{L^2(0,T;L^2(\Omega))} \leq \left\|q_T^p\right\|_{L^2(0,T;L^2(\Omega))}.
\]

Multiplying by \(2\delta t\) and summing over \(n = 1, \ldots, N\) with \(1 \leq N \leq N_T\), we get

\[
\Phi_T \left\|c_T^p\right\|_{L^2(\Omega)}^2 + 2\alpha_D \sum_{n=1}^N \delta t \left(\|\nabla c_T^p\|_{L^2(\Omega)}^2 + \|U_T^p\| + \|\nabla c_T^p\|_{L^2(\Omega)}^2 + 2\lambda \sum_{n=1}^N \delta t \left|\Phi_T^2\right|_{L^2(\Omega)} + \lambda \left\|q_T^p\right\|_{L^2(0,T;L^2(\Omega))} + \Phi_T \sup_{1 \leq n \leq N_T} \left\|c_T^p\right\|_{L^2(\Omega)}^2.
\]

Thanks to (17), the contribution of the penalization is positive and therefore we conclude the proof of (23) by taking the supremum over \(1 \leq N \leq N_T\). Then, restarting from (25), we obtain (24)

Thanks to Lemma 3.1 and 3.2, we have the existence and uniqueness of a solution \((p_{h,d}, \bar{u}_{h,d}, c_{h,d}) \in H_{T,\delta t} \times H_{\mathcal{Z},\delta t} \times H_{T,\delta t}\) to the scheme (18)–(19) as in [8].
Lemma 3.3. Under the hypotheses of Theorem 2.6, there exists \(C > 0 \) depending only on \(\Omega, T, \xi, \eta, \Phi, \) and \(\alpha_D \) such that the solution \((p_{h, \delta t}, u_{h, \delta t}, c_{h, \delta t}) \in H_{T, \delta t} \times H_{\Omega, \delta t} \times H_{T, \delta t} \) to the scheme (18)–(19) verifies
\[
\|c_{h, \delta t, \Omega} - c_{h, \Omega, \delta t}\|_{L^2(0,T;L^2(\Omega))} \leq \frac{C}{\lambda^2} \left(\|c_0\|_{L^2(\Omega)}^2 + \|q^\ast\|_{L^2(0,T;L^2(\Omega))}^2 \right). \tag{26}
\]
Moreover,
\[
\sum_{n=1}^{N_T} \delta t \sum_{D \in \mathbb{D}} m_D |c^n_{h, \delta t} - c^n_{h, \delta t} - c^n_{h, \Omega} - c^n_{h, \Omega}|^2 \to 0, \quad \sum_{n=1}^{N_T} \delta t \sum_{D \in \mathbb{D}} m_D |c^n_{h, \delta t} - c^n_{h, \delta t} - c^n_{h, \Omega} - c^n_{h, \Omega}|^2 \to 0, \quad \text{when } h, \delta t \to 0. \tag{27}
\]

Proof. The property (17) of the penalization operator yields
\[
\sum_{n=1}^{N_T} \delta t \|\mathcal{P}^n(c^n_T), c^n_T\|_{H^1} = \frac{1}{2h^2} \sum_{n=1}^{N_T} \delta t \sum_{D \in \mathbb{D}} \sum_{K \in \mathbb{K}^-, \xi \in \mathbb{E}^T} m_K c^n_K (c^n_K - c^n_K)^2 = \frac{1}{2h^2} \|c_{h, \delta t, \Omega} - c_{h, \Omega, \delta t}\|_{L^2(0,T;L^2(\Omega))}^2.
\]

Then, we deduce (26) from Lemma 3.2. In order to prove (27), let us rewrite \(c^n_T \):
\[
c^n_T = \frac{1}{m_D} \int_{C_0} c^n(t) \, dx = \frac{m_{D, K}}{2m_D} c^n_K \cdot \frac{m_{D, K}}{2m_D} c^n_K + \frac{m_{D, \Omega, \xi}}{2m_D} c^n_\xi + \frac{m_{D, \xi, \xi}}{2m_D} c^n_\xi + \frac{1}{2} (c^n_K - c^n_\xi)^2.
\]
Therefore, we have
\[
c^n_K - c^n_\xi = \frac{m_{D, K}}{2m_D} (c^n_L - c^n_\xi) + \frac{m_{D, \Omega, \xi}}{2m_D} (c^n_\xi - c^n_\xi) + \frac{1}{2} (c^n_K - c^n_\xi)^2.\]

Using the fact that \(c^n_L - c^n_K = m_{\Omega} (\nabla^D c^n_\Omega) \cdot \tau_{n, e} \) and \(c^n_\xi - c^n_\xi = m_{\xi} (\nabla^D c^n_\xi) \cdot \tau_{x, e} \), we obtain:
\[
\sum_{D \in \mathbb{D}} m_D |c^n_K - c^n_\xi|^2 \lesssim \frac{3}{2} h^2 \sum_{D \in \mathbb{D}} m_D |\nabla^D c^n_K|^2 + \frac{3}{4} \sum_{D \in \mathbb{D}} m_D |c^n_K - c^n_\xi|^2.
\]

Thanks to the regularity of the mesh (11b), we get:
\[
\sum_{D \in \mathbb{D}} m_D |c^n_K - c^n_\xi|^2 \leq \frac{1}{\xi} \sum_{D \in \mathbb{D}} m_K c^n_K |c^n_K - c^n_\xi|^2 \leq \frac{1}{\xi} \|c^n_{h, \Omega} - c^n_{h, \Omega}\|_{L^2(\Omega)}^2.
\]

We deduce that
\[
\sum_{n=1}^{N_T} \delta t \sum_{D \in \mathbb{D}} m_D |c^n_{h, \delta t} - c^n_{h, \Omega}|^2 \leq \frac{3}{2} h^2 \|\nabla^h c_{h, \delta t}\|_{L^2(0,T;L^2(\Omega))}^2 + \frac{3}{4} \|c_{h, \delta t, \Omega} - c_{h, \Omega, \delta t}\|_{L^2(0,T;L^2(\Omega))}^2.
\]

It yields the first part of (27), thanks to (26) and (23). The second part of (27) is obtained similarly.

\[\square\]

The \textit{a priori} estimates given in Lemma 3.1 and Lemma 3.2 will lead to compactness in space of the sequences of approximate solutions. But, as the problem is evolutive in time, we also need compactness in time for the sequence of approximate concentration. Therefore, we need an \textit{a priori} estimate on the discrete time derivatives of the approximate concentration.

For a given function \(u_{h, \delta t} \in H_{T, \delta t} \), we recall that we have \(u_{h, \delta t}(\cdot, t) = u^n_t(\cdot) \in H_T \) for all \(t \in [t_{n-1}, t_n) \). Let us define the discrete time derivative \(\partial_{t_i} u_{h, \delta t} \in H_{T, \delta t} \) by
\[
\partial_{t_i} u_{h, \delta t}(\cdot, t) = \frac{u^n_t(\cdot) - u^{n-1}_t(\cdot)}{\delta t}, \quad \forall t \in [t_{n-1}, t_n).
\]

Then, we note \(\partial_{t_i} u^n_t = \frac{u^n_t - u^{n-1}_t}{\delta t} \in H_T \), associated to the vector of values
\[
\partial_{t_i} u^n_t = \left(\left(\frac{u^n_t - u^{n-1}_t}{\delta t} \right)_{K \in \mathbb{K}^-} \left(\frac{u^n_t - u^{n-1}_t}{\delta t} \right)_{\xi \in \mathbb{E}^T} \right)
\]
Lemma 3.4. Under the hypotheses of Theorem 2.6, there exists $C > 0$ depending only on T, Ω, ζ, q^+, q^-, c_0, α_Λ, Λ_Λ, Φ_\ast and α_D such that the approximate solution $(p_{h,t}, u_{h,t}, c_{h,t}) \in H_{T, \rho t} \times H_{T, \rho t} \times H_{T, \rho t}$ to the scheme (18)–(19) satisfies:

$$\sum_{n=1}^{N_T} \| \Phi_T \partial_t c_{h,t} \|_{1-1, T} \leq C. \quad (28)$$

Proof. Let $w_h \in H_T$ and $n \in \{1, \cdots, N_T\}$. Multiplying the scheme (19a) by w_T, we get:

$$\left[\Phi_T \frac{c_{n}^T - c_{n-1}^T}{\delta t}, w_T \right] = \left[\text{div}^T(\mathcal{D}_D \left(U_{h,t}^n \right) \nabla ^D c_{n}^T), w_T \right] - \left[\text{div}^T(\mathcal{U}_{h,t}^n, c_{n}^T), w_T \right] - \left[q_T \nabla ^D c_{n}^T, w_T \right] - \lambda \left[\mathcal{P}(c_{n}^T), w_T \right].$$

We will now bound separately each term, denoted by T_i for $1 \leq i \leq 5$, of the right-hand-side of this equality.

Using the discrete duality formula (Theorem 2.3) and the boundary conditions, we first obtain that

$$T_1 = \left[\text{div}^T(\mathcal{D}_D \left(U_{h,t}^n \right) \nabla ^D c_{n}^T), w_T \right] = - \left[\mathcal{D}_D \left(U_{h,t}^n \right) \nabla ^D c_{n}^T \cdot \nabla ^D w_T \right] = - \sum_{\partial T_{\partial D}} \mathcal{D}_D \left(U_{h,t}^n \right) \nabla ^D c_{n}^T \cdot \nabla ^D w_T.$$

Then, the hypothesis (5) on \mathcal{D} implies:

$$|T_1| \leq \Lambda_D \|w_h\|_{1, \infty,T} \sum_{\partial T_{\partial D}} \mathcal{D}_D \left(U_{h,t}^n \right) \| \nabla ^D c_{n}^T \|.$$

The second term $T_2 = - \left[\text{div}^T(\mathcal{U}_{h,t}^n, c_{n}^T), w_T \right]$ can be split into the sum of a primal term $T_{2,p}$ and a dual term $T_{2,d}$.

Let us consider the primal term

$$T_{2,p} = - \frac{1}{2} \sum_{\mathcal{K} \in \partial D} \mathcal{m}_r \text{div}^\mathcal{K}(\mathcal{U}_{h,t}^n) c_{n}^\mathcal{K} w_{\mathcal{K}} = - \frac{1}{2} \sum_{\mathcal{K} \in \partial D} \sum_{\partial T_{\partial D} \mathcal{K}} \mathcal{m}_r \left((\mathcal{U}_{h,t}^n, n_{\mathcal{K}})^{+} \right)^{c_{n}^\mathcal{K}} - (\mathcal{U}_{h,t}^n, n_{\mathcal{K}})^{-} c_{n}^\mathcal{K} w_{\mathcal{K}}.$$

Rewriting $T_{2,p}$ as a sum on all the primal edges of the mesh and using the relations $x = x^+ - x^-$, we get:

$$T_{2,p} = - \frac{1}{2} \sum_{\mathcal{K} \in \partial D} \sum_{\partial T_{\partial D} \mathcal{K}} \mathcal{m}_r \left((\mathcal{U}_{h,t}^n, n_{\mathcal{K}})^{+} \right)^{c_{n}^\mathcal{K}} - (\mathcal{U}_{h,t}^n, n_{\mathcal{K}})^{-} c_{n}^\mathcal{K} w_{\mathcal{K}} = - \frac{1}{2} \sum_{\mathcal{E} \in \partial D} \mathcal{m}_r \left((\mathcal{U}_{h,t}^n, n_{\mathcal{E}})^{+} \right)^{c_{n}^\mathcal{E}} - (\mathcal{U}_{h,t}^n, n_{\mathcal{E}})^{-} c_{n}^\mathcal{E} w_{\mathcal{E}}.$$

But, by definition, we have $(w_{\mathcal{K}} - w_{\mathcal{E}}) = m_{\mathcal{E}} \nabla f_{\mathcal{E}} \cdot x_{\mathcal{E}}$ and therefore $|w_{\mathcal{K}} - w_{\mathcal{E}}| \leq \|w_h\|_{1, \infty,T} m_{\mathcal{E}}$. It yields:

$$\left| \sum_{\partial T_{\partial D} \mathcal{K}} \mathcal{m}_r \left((\mathcal{U}_{h,t}^n, n_{\mathcal{K}})^{+} \right)^{c_{n}^\mathcal{K}} - (\mathcal{U}_{h,t}^n, n_{\mathcal{K}})^{-} c_{n}^\mathcal{K} w_{\mathcal{K}} \right| \leq \|w_h\|_{1, \infty,T} \sum_{\partial T_{\partial D} \mathcal{K}} \mathcal{m}_r \mathcal{m}_r \| \mathcal{U}_{h,t}^n \| \| \nabla ^D c_{n}^\mathcal{K} \|.$$

For the second term in $T_{2,p}$, we use the bound $|w_{\mathcal{K}} - w_{\mathcal{E}}| \leq 2 \|w_h\|_{1, \infty,T}$ to get:

$$\left| \sum_{\partial T_{\partial D} \mathcal{K}} \mathcal{m}_r \left((\mathcal{U}_{h,t}^n, n_{\mathcal{K}})^{-} \right)^{c_{n}^\mathcal{K}} - (\mathcal{U}_{h,t}^n, n_{\mathcal{K}})^{-} c_{n}^\mathcal{K} w_{\mathcal{K}} \right| \leq 2 \|w_h\|_{1, \infty,T} \left(\sum_{\partial T_{\partial D} \mathcal{K}} \mathcal{m}_r \mathcal{m}_r \| \mathcal{U}_{h,t}^n \| \| \nabla ^D c_{n}^\mathcal{K} \|. \right).$$

As we may treat similarly the dual term $T_{2,d} = \frac{1}{2} \sum_{n=1}^{N_T} \| \Phi_T \partial_t c_{h,t} \|_{1-1, T} \sum_{\partial T_{\partial D}} \mathcal{D}_D \left(U_{h,t}^n \right) \nabla ^D c_{n}^T$, we deduce that

$$|T_2| \leq \|w_h\|_{1, \infty,T} \left(\sum_{\partial T_{\partial D} \mathcal{K}} \mathcal{m}_r \mathcal{m}_r \| \mathcal{U}_{h,t}^n \| \| \nabla ^D c_{n}^\mathcal{K} \| + 2 \sum_{\partial T_{\partial D} \mathcal{K}} \mathcal{m}_r \mathcal{m}_r \| \mathcal{U}_{h,t}^n \| \| \nabla ^D c_{n}^\mathcal{K} \|. \right).$$

(31)
Let us now consider

\[T_3 = -\lambda \mathcal{P}''(c_T^m), w_T \]

Using Cauchy-Schwarz inequality, equality (17) and the definition of \(\|w_h\|_{\infty,T} \), we obtain

\[|T_3| \leq \frac{\lambda}{2h^2} \|w_{h,3R} - w_{h,3R}\|_{L^2(\Omega)} \|e_h^n - e_h^{n-1}\|_{L^2(\Omega)} \]

(32)

We focus now on the last two terms \(T_4 \) and \(T_5 \). They verify:

\[|T_4| \leq \|w_h\|_{1,\infty,T} \|q_T^n\|_{L^2(\Omega)} \|e_T^m\|_{L^2(\Omega)} \]

(34)

\[|T_5| \leq \|w_h\|_{1,\infty,T} \|q_T^n\|_{L^2(\Omega)} \|e_T^m\|_{L^2(\Omega)} \]

(35)

Finally, due to (29), (31), (33), (34) and (35), we obtain that, for all \(w_h \in H_T \),

\[
\left[\mathbf{\Phi}_T \frac{e_T^m - e_T^{m-1}}{\delta t}, w_T \right]_T \leq \|w_h\|_{1,\infty,T} \left(\lambda_D \sum_{n=1}^{N_T} m_D \left(1 + \|U_D^n\| \right) \|\nabla \mathbf{\delta}_T^n\| \right) + \sum_{n_{\tau'} \in \mathbb{E}} m_{\tau'} \mathbf{m}_{\tau'} \|U_{D^n}\| |\mathbf{\delta}_T^n| \\
+ 2 \sum_{n_{\tau'} \in \mathbb{E}} m_{\tau'} \mathbf{m}_{\tau'} \|U_{D^n}\| |\nabla \mathbf{\delta}_T^n| \leq \|w_h\|_{1,\infty,T} \left(\lambda_D \sum_{n=1}^{N_T} m_D \left(1 + \|U_D^n\| \right) \|\nabla \mathbf{\delta}_T^n\| \right) + \sum_{n_{\tau'} \in \mathbb{E}} m_{\tau'} \mathbf{m}_{\tau'} \|U_{D^n}\| |\mathbf{\delta}_T^n| \\
+ 2 \sum_{n=1}^{N_T} \delta_t \sum_{n_{\tau'} \in \mathbb{E}} m_{\tau'} \mathbf{m}_{\tau'} \|U_{D^n}\| |\nabla \mathbf{\delta}_T^n| \]

It gives the bound for \(\|\Phi_T \partial_t c_T^m\|_{1,-T} \). Multiplying by \(\delta t \) and summing over \(n \), we obtain that

\[
\sum_{n=1}^{N_T} \delta_t \|\Phi_T \partial_t c_T^m\|_{1,-T} \leq \lambda_D \sum_{n=1}^{N_T} m_D \left(1 + \|U_D^n\| \right) \|\nabla \mathbf{\delta}_T^n\| + \sum_{n_{\tau'} \in \mathbb{E}} m_{\tau'} \mathbf{m}_{\tau'} \|U_{D^n}\| |\mathbf{\delta}_T^n| \\
+ 2 \sum_{n=1}^{N_T} \delta_t \sum_{n_{\tau'} \in \mathbb{E}} m_{\tau'} \mathbf{m}_{\tau'} \|U_{D^n}\| |\nabla \mathbf{\delta}_T^n| \leq \lambda_D \sum_{n=1}^{N_T} m_D \left(1 + \|U_D^n\| \right) \|\nabla \mathbf{\delta}_T^n\| + \sum_{n_{\tau'} \in \mathbb{E}} m_{\tau'} \mathbf{m}_{\tau'} \|U_{D^n}\| |\mathbf{\delta}_T^n| \\
+ 2 \sum_{n=1}^{N_T} \delta_t \sum_{n_{\tau'} \in \mathbb{E}} m_{\tau'} \mathbf{m}_{\tau'} \|U_{D^n}\| |\nabla \mathbf{\delta}_T^n| \]

Applying Cauchy-Schwarz inequality and using the \textit{a priori} estimates (22), (23) and (26), we conclude the proof of (28).

\[\Box \]

4. Spaces of approximate solutions

In order to prove the convergence of a sequence of approximate solutions given by the scheme, we need some compactness properties on the space of approximate solutions \(H_T \).

Proposition 4.1. Let \((T_m)_m \) be a sequence of DDFV meshes satisfying \(h_m = \text{size}(T_m) \to 0 \) when \(m \to \infty \) and (21). We consider a sequence of functions \((w_m)_m \) with \(w_m = w_{h_m} \in H_{T_m} \). If the sequence \((\|w_m\|_{1,1,T_m})_m \) is bounded, then there exists \(w \in L^1(\Omega) \) such that, up to a subsequence,

\[w_m \to w \text{ in } L^1(\Omega). \]
Proof. The convergence result of Proposition 4.1 is a consequence of an estimate on the space translates of the sequence of approximate solutions. Such an argument is classical in the finite volume framework since [2].

Let us consider one function \(w_h \) of the given sequence (\(w_h = w_{h,n} \) but we omit the subscript \(m \) for ease of presentation). We are looking for an upper bound of \(\| w_h (\cdot + \eta) - w_h (\cdot) \|_{L^1(\mathbb{R}^2)} \). But, by construction, \(w_h = \frac{1}{2} (w_{h,\infty} + w_{h,\infty}^R) \).

Therefore, we first focus on \(\| w_{h,\infty} (\cdot + \eta) - w_{h,\infty} (\cdot) \|_{L^1(\mathbb{R}^2)} \). The calculations are similar to those followed in [4, Lemma 3.8]; the main difference comes from the fact that we do not impose boundary conditions.

For each primal edge \(\sigma = \mathcal{K} \mathcal{L} \) and for all \(x, \eta \in \mathbb{R}^2 \), we define

\[
\psi_\sigma(x, \eta) = \begin{cases} 1 & \text{where } [x, x + \eta] \cap \sigma \neq \emptyset, \\ 0 & \text{elsewhere.} \end{cases}
\]

Then, for \(x \in \mathbb{R}^2 \) and \(\eta \in \mathbb{R}^2 \setminus \{0\} \), we have

\[
|w_{h,\infty}(x + \eta) - w_{h,\infty}(x)| \leq \sum_{D_{\sigma,\tau} \subset \Omega_{\text{ext}}} \psi_\sigma(x, \eta)|w_L - w_K| + \sum_{D_{\sigma,\tau} \subset \Omega_{\text{ext}}} \psi_\sigma(x, \eta)|w_K|.
\]

We treat the first term of the right hand side as in [4, Lemma 3.8]:

\[
T_1(x) := \sum_{D_{\sigma,\tau} \subset \Omega_{\text{ext}}} \psi_\sigma(x, \eta)|w_L - w_K| \leq \sum_{D_{\sigma,\tau} \subset \Omega_{\text{ext}}} m_{\sigma,\tau}\psi_\sigma(x, \eta)|\frac{w_L - w_K}{m_{\sigma,\tau}}|.
\]

As \(\int_{\mathbb{R}^2} \psi_\sigma(x, \eta)dx \leq m_{\sigma,\tau}|\eta| \), we obtain that

\[
\int_{\mathbb{R}^2} T_1(x)dx \leq |\eta| \sum_{D_{\sigma,\tau} \subset \Omega_{\text{ext}}} m_{\sigma,\tau}|\frac{w_L - w_K}{m_{\sigma,\tau}}| \leq \frac{2}{\sin(\theta_T)}|\eta| \sum_{D \subset \mathbb{R}^2} m_D|\nabla D^\theta_T| \leq \frac{2}{\sin(\theta_T)}|\eta| \|w_h\|_{L^1, \mathcal{K} \mathcal{L}}.
\]

For the second term of the right hand side in (36), \(T_2(x) := \sum_{D_{\sigma,\tau} \subset \Omega_{\text{ext}}} \psi_\sigma(x, \eta)|w_K| \), we have

\[
\int_{\mathbb{R}^2} T_2(x)dx \leq |\eta| \sum_{D_{\sigma,\tau} \subset \Omega_{\text{ext}}} m_{\sigma,\tau}|w_K| \leq |\eta|C\|w_h\|_{L^1, \mathcal{K} \mathcal{L}},
\]

thanks to the trace Theorem 7.1 proving in Section 7. Therefore, we get:

\[
\|w_{h,\infty}(\cdot + \eta) - w_{h,\infty}(\cdot)\|_{L^1(\mathbb{R}^2)} \leq C|\eta| \|w_h\|_{L^1, \mathcal{K} \mathcal{L}},
\]

with \(C \) depending only on \(\Omega \) and the regularity parameters \(\theta \) and \(\zeta \). With the same calculations on the dual mesh, we also get

\[
\|w_{h,\infty}^R(\cdot + \eta) - w_{h,\infty}^R(\cdot)\|_{L^1(\mathbb{R}^2)} \leq C|\eta| \|w_h\|_{L^1, \mathcal{K} \mathcal{L}}.
\]

Therefore, since \(\|w_m\|_{L^1, \mathcal{K} \mathcal{L}} \) is bounded, there exists \(C \) not depending on \(m \) such that

\[
\|w_m(\cdot + \eta) - w_m(\cdot)\|_{L^1(\mathbb{R}^2)} \leq C|\eta|, \quad \forall \eta \in \mathbb{R}^2.
\]

We conclude thanks to Kolmogorov Theorem: there exists a subsequence of \((w_m) \) which converges towards \(w \in L^1(\mathbb{R}^2) \). Furthermore, as \(w_m \) vanishes outside \(\Omega \) for all \(m \), \(w \) also vanishes outside \(\Omega \): \(w \in L^1(\Omega) \).

Proposition 4.2. Let \((T_m)_m\) be a sequence of DDFV meshes satisfying \(h_m = \text{size}(T_m) \rightarrow 0 \) when \(m \rightarrow \infty \) and (21).

We consider a sequence of functions \((w_m)_m \) with \(w_m = w_{h,\infty} \in H_{T_m} \). If

\[
w_m \rightarrow w \text{ in } L^1(\Omega) \quad \text{and} \quad \|w_m\|_{L^1, \mathcal{K} \mathcal{L}} \rightarrow 0,
\]

then \(w = 0 \).
Proof. Let us consider one function \(w_h \) of the given sequence (\(w_h = w_{h_m} \) but we omit the subscript \(m \) for ease of presentation). Let \(\psi \in C^0_c(\Omega) \). We define

\[
\psi_K = \frac{1}{m_K} \int_{K} \psi(x)dx \quad \forall K \in \mathcal{M} \quad \text{and} \quad \psi_K = 0 \quad \forall K \in \partial \mathcal{M},
\]

and \(\psi_T = \big((\psi_K)_{K \in \mathcal{K}_T}, (\psi_K^*)_{K \in \mathcal{K}_T^*}\big) \). By this way, we can associate to each function \(\psi \in C^0_c(\Omega) \) a vector \(\psi_T \) and a function \(\psi_h \in H_T \). For all \(D_{x,\alpha}, \mathcal{B} \in \mathcal{T} \), the Taylor’s theorem implies:

\[
|\psi_K - \psi_L| \leq (d_K + d_L)|\nabla \psi|_{L^\infty(\Omega)} \quad \text{and} \quad |\psi_K - \psi_L| \leq (d_K + d_L)|\nabla \psi|_{L^\infty(\Omega)},
\]

Using the regularity of the mesh, we deduce that there exists \(C \) only depending on \(\vartheta \) and \(\zeta \) such that

\[
\|\psi_h\|_{1,\infty,T} \leq C \|\psi\|_{W^{1,\infty}(\Omega)},
\]

and

\[
\|\psi_h,\mathcal{B} - \psi_h,\mathcal{B}\|_{L^2(\Omega)} \leq C h \|\psi\|_{W^{1,\infty}(\Omega)}.
\] (37)

Then, as \(\beta < 2 \), we deduce, thanks to (17), that

\[
\|\psi_h\|_{1,\infty,T} \leq C \|\psi\|_{W^{1,\infty}(\Omega)}.
\]

But, for \(w_h \in H_T \), we have the following inequality:

\[
\|w_T, \psi_T\|_{T} \leq \|w_h\|_{1,-1,T} \|\psi_h\|_{1,\infty,T} \leq C \|w_h\|_{1,-1,T} \|\psi\|_{W^{1,\infty}(\Omega)}.
\]

Therefore, if \(\psi \in C^0_c(\Omega) \) and the sequence \((w_m) \) satisfies \(\|w_m\|_{1,-1,T} \to 0 \), it yields:

\[
\|w_{T_m}, \psi_{T_m}\|_{T_m} \to 0 \quad \text{as} \quad m \to \infty.
\]

Yet, by definition, we have

\[
\|w_{T_m}, \psi_{T_m}\|_{T_m} = \frac{1}{2} \sum_{K \in \mathcal{K}_T} \int_{\Omega} \psi(x)\mathbf{1}_K(x)dx + \frac{1}{2} \sum_{K^* \in \mathcal{K}^*_T} \int_{\Omega} \psi(x)\mathbf{1}_{K^*}(x)dx
\]

(38)

As a consequence, as \(w_m \to w \) in \(L^1(\Omega) \), we obtain \(\int_{\Omega} w(x)\psi(x)dx = 0 \) for all \(\psi \in C^0_c(\Omega) \), hence \(w = 0 \).

\[\square \]

Proposition 4.3. Let \((T_m) \) be a sequence of DDFV meshes satisfying \(h_m = \text{size}(T_m) \to 0 \) when \(m \to \infty \) and (21). We consider a sequence of functions \((v_m) \) with \(v_m = \psi_h \in H_{T_m} \) such that the sequence \(\|v_m\|_{L^2(T_m)} \) is bounded. Then, there exists \(v \in H^1(\Omega) \) such that, up to a subsequence, we have the following convergence results when \(m \to \infty \):

\[
v_m \to v \quad \text{strongly in} \quad L^2(\Omega),
\]

\[
\nabla v_m \to \nabla v \quad \text{weakly in} \quad (L^2(\Omega))^2.
\]

Proof. Let us set \(w_m = v_m|_{\Omega} \). An adaptation of the proof of Proposition 4.1, with the ideas of [4, Lemma 3.8], leads to

\[
\|w_m(\cdot + \eta) - w_m(\cdot)\|_{L^1(\mathbb{R}^3)} \leq C|h|, \forall \eta \in \mathbb{R}^3.
\]

15
It proves the convergence of \((w_m)\) in \(L^1(\Omega)\) and the existence of \(v \in L^2(\Omega)\) such that

\[v_m \rightharpoonup v \text{ strongly in } L^2(\Omega). \]

As \(\|\nabla h v_m\|_2 \leq C\), there exists \(\chi \in (L^2(\Omega))^2\) such that, up to a subsequence:

\[\nabla h v_m \rightharpoonup \chi \text{ weakly in } (L^2(\Omega))^2. \]

It remains to prove that \(\chi = \nabla v\), which will also imply \(v \in H^1(\Omega)\).

Let \(\psi \in (C_c^\infty(\Omega))^2\), we define

\[I_m := \int_\Omega \nabla h v_m(z) \cdot \psi(z) \, dz + \int_\Omega v_m(z) \text{div}(\psi(z)) \, dz \quad \text{as} \quad m \to \infty \quad \int_\Omega \chi(z) \cdot \psi(z) \, dz + \int_\Omega v(z) \text{div}(\psi(z)) \, dz. \]

For \(\mathcal{D} = \mathcal{D}_{\sigma,\sigma'}\), we define \(\psi_{\sigma}, \psi_{\sigma'}\) and \(\psi_{\sigma'}\) respectively as the mean values of \(\psi\) over \(\mathcal{D}, \sigma\) and \(\sigma'\). We consider also \(\tilde{\psi}_D\) defined by

\[\tilde{\psi}_m \cdot n_{\sigma \times \omega} = \psi_{\sigma} \cdot n_{\sigma \times \omega}, \quad \tilde{\psi}_{\sigma'} \cdot n_{\sigma' \times \omega} = \psi_{\sigma'} \cdot n_{\sigma' \times \omega}. \]

We have:

\[\int_\Omega \nabla h v_m(z) \cdot \psi(z) \, dz = \sum_{D \in \mathcal{E}_m} m_D \nabla h v_{\mathcal{F}_m} \cdot \tilde{\psi}_D = \sum_{D \in \mathcal{E}_m} m_D \nabla h v_{\mathcal{F}_m} \cdot \tilde{\psi}_D + \sum_{D \in \mathcal{E}_m} m_D \nabla h v_{\mathcal{F}_m} \cdot (\psi_D - \tilde{\psi}_D). \]

But,

\[\sum_{D \in \mathcal{E}_m} m_D \nabla h v_{\mathcal{F}_m} \cdot \tilde{\psi}_D = -\frac{1}{2} \sum_{K \in \mathcal{M}_m} \sum_{D = \mathcal{D}_{\sigma,\sigma'}} m_K \psi_{\sigma} \cdot n_{\sigma \times \omega} - \frac{1}{2} \sum_{K \in \mathcal{M}_m} \sum_{D = \mathcal{D}_{\sigma,\sigma'}} m_K \psi_{\sigma'} \cdot n_{\sigma' \times \omega}. \]

Using the definition of \(\tilde{\psi}_D\) and the fact that \(\psi\) has a compact support, we get, thanks to Stokes formula,

\[\sum_{D \in \mathcal{E}_m} m_D \nabla h v_{\mathcal{F}_m} \cdot \tilde{\psi}_D = -\frac{1}{2} \sum_{K \in \mathcal{M}_m} \int_K \text{div}(\psi(z)) \, dz - \frac{1}{2} \sum_{K \in \mathcal{M}_m} \int_{\partial K} \text{div}(\psi(z)) \, dz = -\int_\Omega v_m(z) \text{div}(\psi(z)) \, dz. \]

It implies that

\[I_m = \sum_{D \in \mathcal{E}_m} m_D \nabla h v_{\mathcal{F}_m} \cdot (\psi_D - \tilde{\psi}_D). \]

Since \(\psi\) is a smooth function, we have

\[|\psi_D - \tilde{\psi}_D| \leq \frac{1}{\sin(\theta)} (|\psi_D - \psi_{\sigma'}| + |\psi_D - \psi_{\sigma}|) \leq -\frac{2}{\sin(\theta)} h_m \|\nabla \psi\|_{L^\infty(\Omega)}, \]

and we deduce that

\[\left| \sum_{D \in \mathcal{E}_m} m_D \nabla h v_{\mathcal{F}_m} \cdot (\psi_D - \tilde{\psi}_D) \right| \leq \|\nabla h v_m\|_{L^\infty(\Omega)} \sqrt{m_1} \frac{2}{\sin(\theta)} h_m \|\nabla \psi\|_{L^\infty(\Omega)}, \]

so that \(I_m\) tends to 0. We conclude that

\[\int_\Omega \chi(z) \cdot \psi(z) \, dz = -\int_\Omega v(z) \text{div}(\psi(z)) \, dz, \forall \psi \in (C_c^\infty(\Omega))^2, \]

which ends the proof. \(\blacksquare\)
Proof. An adaptation of the proof of Proposition 4.3, leads to prove that functions $(\| \cdot \|)$ family $(\| \cdot \|)$ under the assumptions of Theorem 2.6 and the fact that Proposition 5.1.

5.1. Compactness of the concentration

5. Proof of the convergence of the numerical scheme

5.1. Compactness of the concentration

Proposition 5.1. Under the assumptions of Theorem 2.6 and the fact that Φ is a constant Φ^*, the sequence $(c_m)_m$ defined by the scheme (18)–(19) is relatively compact in $L^1(0, T; L^1(\Omega))$. Let us note by \bar{c} its limit up to a subsequence. Then, \bar{c} lies in $L^2(0, T; H^1(\Omega))$. Furthermore, up to a subsequence, we have, when $m \to \infty$

$$c_m \to \bar{c} \text{ weakly-}\ast \text{ in } L^{\infty}(0, T; L^2(\Omega)) \text{ and strongly in } L^p(0, T; L^q(\Omega)), \forall p < \infty, q < 2;$$

$$\nabla^h c_m \to \bar{\nabla} \bar{c} \text{ weakly in } (L^2(0, T; L^2(\Omega)))^d.$$

Proof. The key of the proof is the discrete Aubin-Simon lemma proved by Gallouët and Latché [2, Theorem 3.4]. The family $(H_{T_n})_m$ is a family of finite dimensional subspaces of $L^1(\Omega)$. Each space H_{T_n} can be equipped with the norm $\| \cdot \|_{1,1,T_n}$ or with the norm $\| \cdot \|_{1,-1,T_n}$. The following properties are satisfied:

- Let consider a sequence $(w_m)_m$ with $w_m = w_{h_n} \in H_{T_n}$. If the sequence $(\|w_m\|_{1,1,T_n})_m$ is bounded, then there exists $w \in L^1(\Omega)$ such that, up to a subsequence, $(w_m)_m$ converges to w in $L^1(\Omega)$. See Proposition 4.1.

- Let consider a sequence $(w_m)_m$ with $w_m = w_{h_n} \in H_{T_n}$. If w_m converges towards w in $L^1(\Omega)$ while $(\|w_m\|_{1,-1,T_n})_m$ tends to 0, then $w = 0$. See Proposition 4.2.

The sequence $(c_m)_m$ verifies $c_m(t) = c^0_m \in H_{T_n}$ for all $t \in [(n-1)\delta t_m, n\delta t_m)$. Furthermore Lemma 3.2 (with Cauchy-Schwarz inequality) ensures that $(c_m)_m$ verifies, for all m,

$$\sum_{n=1}^{N_T(m)} \delta t_m \|c^0_m\|_{1,1,T_n} \leq C,$$

and Lemma 3.4 gives, for all m,

$$\sum_{n=1}^{N_T(m)} \delta t_m \|\partial_t c_m\|_{1,-1,T_n} \leq C,$$

with C depending only on the data of the problem. Then, Theorem 3.4 in [2] implies that, up to a subsequence, (c_m) converges in $L^1(0, T; L^1(\Omega))$ to a function \bar{c}. Furthermore, Lemma 3.2 implies that there exists $w \in (L^2(0, T; L^2(\Omega)))^d$, such that, up to a subsequence, we have, when $m \to \infty$

$$c_m \to \bar{c} \text{ weakly-}\ast \text{ in } L^{\infty}(0, T; L^2(\Omega)), \text{ weakly in } L^2(0, T; L^2(\Omega)) \text{ and strongly in } L^p(0, T; L^q(\Omega)), \forall p < \infty, q < 2;$$

$$\nabla^h c_m \to w \text{ weakly in } (L^2(0, T; L^2(\Omega)))^d.$$

We conclude, applying Proposition 4.4:

$$\bar{c} \in L^2(0, T; H^1(\Omega)), \text{ and } \nabla \bar{c} = w.$$
Remark 5.2. We have used the fact that Φ is a constant function in order to get (39). Therefore the compactness of the sequence of approximate concentration is obtained thanks to [2, Theorem 3.4]. If Φ is not a constant, we need to establish some estimates on the time translates of the approximate concentration, as for instance in [7], in order to get the compactness. As the proof is rather technical, we have restricted the proof to the case Φ°.

Proposition 5.3. Under the assumptions of Theorem 2.6 and the fact that Φ is a constant Φ°, the sequences $(c_m,\overline{\mathcal{H}})_m$, $(c_m,\overline{\mathcal{I}})_m$ and $(\overline{c}_m,\overline{\mathcal{A}})_m$, defined by the scheme (18)–(19) and (20), are relatively compact in $L^1(0,T;L^1(\Omega))$ and converge to the same limit $\overline{c} \in L^2(0,T;H^1(\Omega))$, defined in Proposition 5.1.

Proof. We have

$$\|c_m,\overline{\mathcal{H}} - \overline{c}\|_{L^1(0,T;\Omega)} \leq \|c_m - \overline{c}\|_{L^1(0,T;\Omega)} + \frac{\sqrt{Tm2}}{2}\|c_m,\overline{\mathcal{H}} - c_m,\overline{\mathcal{I}}\|_{L^1(0,T;\Omega)}.$$

Lemma 3.3 and Proposition 5.1 imply that

$$\|c_m,\overline{\mathcal{H}} - \overline{c}\|_{L^1(0,T;\Omega)} \to 0, \text{ when } m \to \infty.$$

We do similarly for the convergence of $c_m,\overline{\mathcal{I}}$.

For the last convergence, we have

$$\|c_m,\overline{\mathcal{I}} - \overline{c}\|_{L^1(0,T;\Omega)} \leq \int_0^T \sum_{D \in \mathcal{D}} \int_D \left| \frac{1}{m_D} \int_D c_m(s,y)dy - \overline{c}(s,y) \right| dx ds$$

$$\leq \int_0^T \sum_{D \in \mathcal{D}} \int_D |c_m(s,y) - \overline{c}(s,y)| dy ds$$

$$+ \int_0^T \sum_{D \in \mathcal{D}} \frac{1}{m_D} \int_D |\overline{c}(s,y)| dy ds.$$

Proposition 5.1 implies that the first term in the right hand side tends to 0. Using the regularity of the mesh and of \overline{c}, we have for the second term:

$$\int_0^T \sum_{D \in \mathcal{D}} \frac{1}{m_D} \int_D |\overline{c}(s,y)| dy ds \leq \frac{1}{m_D} \int_0^T \sum_{D \in \mathcal{D}} \int_D |\nabla \overline{c}(s,y)| dy ds,$$

term which tends to 0. We deduce that when $m \to \infty$

$$\|c_m,\overline{\mathcal{I}} - \overline{c}\|_{L^1(0,T;\Omega)} \to 0.$$

\[\Box \]

5.2. Convergence of the pressure

Proposition 5.4. Under the assumptions of Theorem 2.6, and the fact that Φ is a constant Φ°, there exists $\bar{p} \in L^\infty(0,T;L^2(\Omega))$ and $\bar{U} \in L^\infty(0,T;L^2(\Omega))^2$, such that the sequences $(p_m)_m,(U_m)_m$ defined by the scheme (18)–(19) have the following convergence result when $m \to \infty$:

$$p_m \to \bar{p}, \text{ weakly-}^* \text{ in } L^\infty(0,T;L^2(\Omega)) \text{ and strongly in } L^p(0,T;L^q(\Omega)), \forall p < \infty, q < 2;$$

$$\nabla h_m p_m \to \nabla \bar{p} \text{ weakly-}^* \text{ in } (L^\infty(0,T;L^2(\Omega)))^2 \text{ and strongly in } L^2((0,T) \times \Omega)^2;$$

$$U_m \to \bar{U} \text{ weakly-}^* \text{ in } (L^\infty(0,T;L^2(\Omega)))^2 \text{ and strongly in } L^2((0,T) \times \Omega)^2;$$

and (\bar{p}, \bar{U}) is a weak solution to (1), with \bar{c} defined in Proposition 5.1.
Proof. Lemma 3.1 implies that up to a subsequence, we have when \(m \to \infty \):

\[
p_m \to \bar{\rho} \text{ weakly-* in } L^\infty(0, T; L^2(\Omega));
\]

\[
\nabla \psi_m \to \nu \text{ weakly-* in } (L^\infty(0, T; L^2(\Omega)))^2
\]

and Proposition 4.4 implies

\[
\bar{\rho} \in L^\infty(0, T; H^1(\Omega)), \text{ with } \nabla \bar{\rho} = \nu.
\]

Furthermore, we have \(\int_0^T p_m(t, \cdot) \, dx = 0 \) for all \(t \in [0, T] \), it gives that \(\int_0^T \rho(t, \cdot) \, dx = 0 \) for all \(t \in [0, T] \). We introduce a new sequence \((\tilde{c}_m)_m^\bullet\) defined by

\[
\tilde{c}_m(t, x) = c_{h_0}(x) \in [0, 1], \text{ if } t \in [0, \delta t],
\]

\[
\tilde{c}_m(t, x) = c_m, \forall (t - \delta t, x), \text{ on } [\delta t, T] \times \Omega,
\]

Thanks to Proposition 5.3, \((c_m_\bullet)_m)\) converges to \(\bar{c} \) in \(L^1(0, T; L^1(\Omega)) \). It implies that \((\tilde{c}_m)_m)\) converges also to \(\tilde{c} \) in \(L^1(0, T; L^1(\Omega)) \). As in [7, Section 5.2] (working on the diamond mesh instead of the primal mesh), we obtain

\[
U_m = -A_m(\cdot, \tilde{c}_m) \nabla \psi_m p_m \quad \text{weakly in } (L^2([0, T] \times \Omega))^2.
\]

Let us remark that the a priori estimates (Lemma 3.1) gives

\[
U_m \to \bar{U} \quad \text{weakly-* in } (L^\infty(0, T; L^2(\Omega)))^2.
\]

It remains to prove (9). Let \(\varphi \in C^\infty([0, T] \times \bar{\Omega}) \), we define \(\psi_{\varphi_m}^n \) associated to the discrete values:

\[
\psi_{\varphi_m}^n = \frac{1}{mKt} \int_{t_{m-1}}^{t_m} \int_{K_m} \psi(s, x) \, dx \, ds, \forall K_m \in \mathcal{M}_m \text{ and } \psi_{\varphi_m}^n = 0, \forall K_m \in \partial \mathcal{M}_m, \forall n \in \{1, \ldots, N\},
\]

\[
\varphi_{\varphi_m}^n = \frac{1}{mKt} \int_{t_{m-1}}^{t_m} \int_{K_m} \varphi(s, x) \, dx \, ds, \forall K_m \in \mathcal{M}_m \text{ and } \varphi_{\varphi_m}^n = 0, \forall K_m \in \partial \mathcal{M}_m, \forall n \in \{1, \ldots, N\}.
\]

We define also the corresponding function \(\varphi_m \) and \(\Psi_m = \nabla \psi_m \). Since \(p_m \) is the solution of (18a), the discrete duality formula (Theorem 2.3) gives

\[
\sum_{n=1}^{N_T} \delta t [q_{\varphi_m}^n - q_{\varphi_m}^n - p_{\varphi_m}^n, \nabla \psi_m]_{\mathcal{T}_n} = \sum_{n=1}^{N_T} \delta t (A_{\varphi_m}(c_{\varphi_m}^n) \nabla \varphi_m p_{\varphi_m}^n, \nabla \psi_m)_{\mathcal{T}_n}.
\]

But, on one hand, thanks to (38), we have

\[
\sum_{n=1}^{N_T} \delta t [q_{\varphi_m}^n - q_{\varphi_m}^n - p_{\varphi_m}^n, \nabla \psi_m]_{\mathcal{T}_n} = \int_0^T \int_{\Omega} (q^+ - q^-) \varphi_m,
\]

and on the other hand,

\[
\sum_{n=1}^{N_T} \delta t (A_{\varphi_m}(c_{\varphi_m}^n) \nabla \varphi_m p_{\varphi_m}^n, \nabla \psi_m)_{\mathcal{T}_n} = - \int_0^T \int_{\Omega} U_m \cdot \Psi_m.
\]

We deduce

\[
\int_0^T \int_{\Omega} (q^+ - q^-) \varphi_m = - \int_0^T \int_{\Omega} U_m \cdot \Psi_m.
\]

The function \(\varphi \) is smooth and then we have the uniform convergence of \(\varphi_m \) and \(\Psi_m \) to \(\varphi \) and \(\nabla \varphi \), respectively. Therefore, the weak convergence of \(U_m \) to \(\bar{U} = -A(\cdot, \bar{c}) \nabla \bar{\rho} \) in \((L^2([0, T] \times \Omega))^2 \) implies (9). As in [7, Section 5.2], using the Minty trick, we deduce the strong convergence of \(\nabla \psi_m, U_m \) and finally of \(p_m \).
5.3. Convergence of the concentration

Proposition 5.5. Under the assumptions of Theorem 2.6, and the fact that Φ is a constant Φ^*, the function \tilde{c}, introduced in Proposition 5.1, and \bar{U}, introduced in Proposition 5.4, satisfy (10).

Proof. Let $\varphi \in C^\infty([0, T] \times \Omega)$, we use the same notation as in the proof of Proposition 5.4 in order to define φ_m^n, φ_m, and Ψ_m. Since c_m is the solution of (19a), we obtain

$$
\sum_{n=1}^{N_{t}} \delta t \left[\Phi^* \partial_{t, a} c_m^n - \text{div}^n \left(\nabla \varphi_m^n, \nabla \varphi_m^n \right) \right]_{\bar{\Omega}} + \sum_{n=1}^{N_{t}} \delta t \left[\text{div}^n \left(U_m^n, c_m^n \right) + A \Phi^* c_m^n + q_m^n c_m^n, \varphi_m^n \right]_{\Omega} = \sum_{n=1}^{N_{t}} \delta t \left[q_m^n c_m^n, \varphi_m^n \right]_{\bar{\Omega}}.
$$

We will pass to the limit separately in each term, denoted by T_i for $0 \leq i \leq 5$. We start with

$$
T_0 := \sum_{n=1}^{N_{t}} \delta t \Phi^* \left[\partial_{t, a} c_m^n, \varphi_m^n \right]_{\bar{\Omega}}.
$$

It rewrites

$$
T_0 = - \sum_{n=1}^{N_{t}-1} \delta t \Phi^* \left[c_m^{n+1} - c_m^n, \frac{\varphi_m^{n+1} - \varphi_m^n}{\delta t} \right]_{\bar{\Omega}} - \Phi^* \left[c_m^0, \varphi_m^0 \right]_{\bar{\Omega}},
$$

since $\varphi_m^{N_{t}} = 0$. Applying (38), we get

$$
T_0 = - \int_0^T \int_\Omega \Phi^* \partial_t c_m(s, x) \frac{\varphi(s + \delta t, x) - \varphi(s, x)}{\delta t} \, dx \, ds - \int_\Omega \Phi^* c_0(x) \varphi_m(\delta t, x) \, dx.
$$

The function φ is smooth and then we have the uniform convergence of $\frac{\varphi(s + \delta t, \cdot) - \varphi(s, \cdot)}{\delta t}$ and $\varphi_m(\delta t, \cdot)$ respectively to $\partial_t \varphi$ and $\varphi(0, \cdot)$. Therefore, the weak convergence of c_m to \tilde{c} in $L^\infty([0, T]; L^2(\Omega))$ implies that

$$
T_0 \rightarrow - \int_0^T \int_\Omega \Phi^* \partial_t \varphi - \int_\Omega \Phi^* c_0 \varphi(0, \cdot).
$$

Using the discrete duality formula (Theorem 2.3), T_1 rewrites

$$
T_1 := - \sum_{n=1}^{N_{t}} \delta t \left[\text{div}^n \left(U_m^n, \nabla \varphi_m^n \right), \varphi_m^n \right]_{\bar{\Omega}} = \sum_{n=1}^{N_{t}} \delta t \left[\nabla \varphi_m^n, \nabla \varphi_m^n \right]_{\bar{\Omega}}.
$$

We deduce

$$
T_1 = \int_0^T \int_\Omega \nabla h_{m} c_m \cdot \left(D(\cdot, U_m) \psi_m \right).
$$

We have the uniform convergence of ψ_m to $\nabla \varphi$. Furthermore, we have $U_m \rightarrow \bar{U} = -A(\cdot, \varphi) \nabla \varphi$ in $L^2((0, T) \times \Omega)$, then we get $D(\cdot, U_m) \rightarrow D(\cdot, \bar{U})$ in $(L^2((0, T) \times \Omega))^d$. It implies that $D(\cdot, U_m) \psi_m \rightarrow D(\cdot, \bar{U}) \nabla \varphi$ in $L^2((0, T) \times \Omega)$. And finally, the weak convergence of $\nabla h_m c_m$ to $\nabla \varphi$ in $L^2((0, T) \times \Omega)$ implies that

$$
T_1 \rightarrow \int_0^T \int_\Omega \nabla \varphi \cdot \left(D(\cdot, \bar{U}) \nabla \varphi \right) = \int_0^T \int_\Omega \partial_t (\varphi) \nabla \varphi \cdot \nabla \varphi.
$$

20
As in the proof of Lemma 3.4, $T_2 := \sum_{n=1}^{N_f} \delta t \left[\text{divc}^n \left((U^n_{2\alpha} \cdot n_{n\gamma}) \right), \varphi^n_{T_2n} \right]_{T_n}$ can be split into the sum of a primal term $T_{2,p}$ and a dual term $T_{2,d}$. Using the relation $\varphi^n_K - \varphi^n_L = m_{cr} \nabla^D \varphi^n_{F_{2n}} \cdot \tau_{n,t}$, $x^+ = x + n^-$ and (30), the primal part rewrites

$$T_{2,p} = \frac{1}{2} \sum_{n=1}^{N_f} \delta t \sum_{D \in T_{2u}} m_{cr} m_{r} (U^n_{D} \cdot n_{n\gamma}) c^n_{K} \nabla^D \varphi^n_{F_{2n}} \cdot \tau_{n,t},$$

$$+ \frac{1}{2} \sum_{n=1}^{N_f} \delta t \sum_{D \in T_{2u}} m_{cr} m_{r} (U^n_{D} \cdot n_{n\gamma}) (c^n_{K} - c^n_{L}) \nabla^D \varphi^n_{F_{2n}} \cdot \tau_{n,t}.$$

Let set $T_2^* = \int_0^T \int_{\Omega} e_{m,2} U_m \cdot \Psi_m$. Using the convergence results, we remark that

$$T_2 \rightarrow \int_0^T \int_{\Omega} \varepsilon \bar{U} \cdot \nabla \varphi.$$

Moreover, T_2^* can also be split into the sum of a primal term $T_{2,p}^*$ and a dual term $T_{2,d}^*$. The primal term is

$$T_{2,p}^* = \sum_{n=1}^{N_f} \delta t \sum_{D \in T_{2u}} \frac{m_{cr}}{\sin(\Theta)} (U^n_{D} \cdot n_{n\gamma}) (\nabla^D \varphi^n_{F_{2n}} \cdot \tau_{n,t}),$$

since we have $U^n_{D} = \frac{1}{\sin(\Theta)} (U^n_{D} \cdot n_{n\gamma}) \tau_{n,t} + \frac{1}{\sin(\Theta)} (U^n_{D} \cdot n_{n\gamma}) \tau_{n,t}$. Let us prove that $T_{2,p}^* - T_{2,p}$ tends to 0. We obtain

$$T_{2,p}^* - T_{2,p} = \sum_{n=1}^{N_f} \delta t \sum_{D \in T_{2u}} \frac{m_{cr}}{\sin(\Theta)} (U^n_{D} \cdot n_{n\gamma})(\nabla^D \varphi^n_{F_{2n}} \cdot \tau_{n,t})(c^n_{K} - c^n_{L})$$

$$- \sum_{n=1}^{N_f} \delta t \sum_{D \in T_{2u}} \frac{m_{cr}}{\sin(\Theta)} (U^n_{D} \cdot n_{n\gamma})(\nabla^D \varphi^n_{F_{2n}} \cdot \tau_{n,t})(c^n_{K} - c^n_{L}).$$

For the second term in the right hand side of (41), the relation $c^n_{K} - c^n_{L} = m_{cr} \nabla^D c^n_{F_{2n}} \cdot \tau_{n,t}$ and Cauchy-Schwarz inequality imply

$$\left| \sum_{n=1}^{N_f} \delta t \sum_{D \in T_{2u}} \frac{m_{cr}}{\sin(\Theta)} (U^n_{D} \cdot n_{n\gamma})(\nabla^D \varphi^n_{F_{2n}} \cdot \tau_{n,t})(c^n_{K} - c^n_{L}) \right|$$

$$\leq C \sqrt{T} h_m \| \nabla^D \varphi^n_{F_{2n}} \|_{\infty,2\Omega} \| U_m \|_{L^\infty(0,T;L^2(\Omega)))}^2 \| \nabla^h c_m \|_{L^2(0,T;\Omega^2)}.$$

(42)

The a priori estimates (23) and Lemma 3.5 of [4] give

$$\left| \sum_{n=1}^{N_f} \delta t \sum_{D \in T_{2u}} \frac{m_{cr}}{\sin(\Theta)} (U^n_{D} \cdot n_{n\gamma})(\nabla^D \varphi^n_{F_{2n}} \cdot \tau_{n,t})(c^n_{K} - c^n_{L}) \right| \leq C h_m.$$

This term tends to 0. For the first term in the right hand side of (41), we have similarly

$$\left| \sum_{n=1}^{N_f} \delta t \sum_{D \in T_{2u}} \frac{m_{cr}}{\sin(\Theta)} (U^n_{D} \cdot n_{n\gamma})(\nabla^D \varphi^n_{F_{2n}} \cdot \tau_{n,t})(c^n_{K} - c^n_{L}) \right| \leq C \left(\sum_{n=1}^{N_f} \delta t \sum_{D \in T_{2u}} m_{cr} |c^n_{K} - c^n_{L}| \right)^{1/2}.$$

We apply Lemma 3.3 to get that this term tends to 0 and finally $T_{2,p}^* - T_{2,p} \rightarrow 0$. The same convergence result is obtained for the dual part and

$$T_2 \rightarrow \int_0^T \int_{\Omega} \varepsilon \bar{U} \cdot \nabla \varphi.$$
As in the proof of Lemma 3.4, using (32), the penalization term $T_3 := \sum_{n=1}^{N_r} \delta t \left[q_{T_n}^m, \phi_{T_n}^m \right]_{T_n}$ verifies

$$|T_3| \leq \frac{1}{2} \frac{1}{h_m^2} \| c_{m,30} - c_{m,30}^\ast \|_{L^2(0, T; L^2(\Omega))} \| \varphi_{m,30} - \varphi_{m,30}^\ast \|_{L^2(0, T; L^2(\Omega))}.$$

Inequality (26) and (37) imply that:

$$|T_3| \leq C h_m^{1-\frac{1}{2}} \rightarrow 0,$$

since $\beta < 2$.

Thanks to (38), $T_4 := \sum_{n=1}^{N_r} \delta t \left[q_{T_n}^m, c_{T_n}^m, \phi_{T_n}^m \right]_{T_n}$ rewrites

$$T_4 = \frac{1}{2} \int_0^T \int_\Omega c_{m,30}(s, x) \varphi_{m,30}(s, x) q^-(s, x) dxd s + \frac{1}{2} \int_0^T \int_\Omega c_{m,30}(s, x) \varphi_{m,30}(s, x) q^+(s, x) dxd s.$$

The uniform convergence of $\varphi_{m,30}$ and $\varphi_{m,30}^\ast$ to φ, the weak convergence of $c_{m,30}$ and $c_{m,30}^\ast$ to the same \bar{c} lying in $L^\infty(0, T; L^2(\Omega))$ imply that

$$T_4 \rightarrow \int_0^T \int_\Omega q^\ast \bar{c} \varphi.$$

Similarly, $T_5 := \sum_{n=1}^{N_r} \delta t \left[q_{T_n}^m, c_{T_n}^m, \phi_{T_n}^m \right]_{T_n}$ rewrites

$$T_5 = \frac{1}{2} \int_0^T \int_\Omega \hat{c}(s, x) \varphi_{m,30}(s, x) q_{m,30}^+(s, x) dxd s + \frac{1}{2} \int_0^T \int_\Omega \hat{c}(s, x) \varphi_{m,30}(s, x) q_{m,30}^-(s, x) dxd s.$$

The uniform convergence of $\varphi_{m,30}$ and $\varphi_{m,30}^\ast$ to φ and the weak convergence of $q_{m,30}^+$ and $q_{m,30}^\ast$ to q^\ast in $L^2((0, T) \times \Omega)$ imply that

$$T_5 \rightarrow \int_0^T \int_\Omega q^\ast \hat{c} \varphi.$$

Passing to the limit in each term, we have proved (10). \qed

Remark 5.6. The penalization term in the scheme is useful in order to prove that the sequences $(c_{m,30})_m$ and $(c_{m,30}^\ast)_m$ converge to the same limit $\bar{c} \in L^2(0, T; H^1(\Omega))$ (Lemma 3.3). This is essential when passing to the limit in the conversion term T_2 and the reaction term T_4.

6. Numerical experiments

In this section, we provide some numerical experiments to illustrate the influence of the penalization operator in the behavior of DDFV scheme. The efficiency of the DDFV scheme has already been shown in [8] without penalization.

The spatial domain is $\Omega = (0, 1000) \times (0, 1000)$ ft² and the time period is [0, 3600] days. The injection well is located at the upper-right corner (1000, 1000) with an injection rate $q^+ = 30$ ft²/day and an injection concentration $\hat{c} = 1.0$. The production well is located at the lower-left corner (0, 0) with a production rate $q^- = 30$ ft²/day. It means that q^\ast and q^\ast are Dirac masses, which can be taken into account with the scheme. The porosity of the medium is specified as $\Phi(x) = 0.1$ and the initial concentration is $c_0(x) = 0$. The viscosity of the oil is $\mu(0)=1.0$ cp and $M = 41$. We choose $\Phi_\delta t = 5$ ft and $\Phi_\delta t = 0.5$ ft and there is no molecular diffusion $\Phi_\eta d t = 0$ ft²/day. We choose a constant permeability $K = 80$ ft.

We introduce a sequence of triangular meshes. For a refinement level $i \in \{1, \ldots, 8\}$, the mesh is obtained by dividing the domain into $2^{i+1} \times 2^{i+1}$ equally sized squares and each square is split into 2 triangles along a diagonal. The number of cells for the mesh i is 2^{2i+3}. We present on Figure 6.1 the meshes obtained for $i = 1$ and $i = 3$. We choose this sequence of structured triangular meshes because they fit together and allow the computation of numerical
errors. Let us also mention that, even though many choices are possible, we always assume in this paper that \(x_K \) is the mass center of \(K \in \mathcal{M} \). The time step is \(\delta t = 36 \) days.

Figures 6.2 and 6.3 present the level sets of the concentration obtained with the DDFV scheme, with the penalization term and without a penalization term, on the structured triangular mesh \(i = 5 \), at two different times (3 and 10 years). The same qualitative behavior is observed.

The penalization operator is introduced in order to prove that \((c_{m,\mathcal{M}})_m\) and \((c_{m,\mathcal{M}^*})_m\) have the same limit (Lemma
3.3). In Table 6.1, we compute the L^2-norm (in space and time) of the difference between $(c_{m,i \mid \Omega})_{m}$ and $(c_{m,i \mid \Omega})_{m}$ in the case where $i = 0$. We observe that without any penalization this difference tends to zero with an order of convergence close to 0.5. Let us just mention that we obtain similar results using a sequence of square meshes.

In conclusion, we have presented a DDFV scheme for the Peaceman model with a penalization operator and we have established its convergence. The numerical experiments show good qualitative properties with a small penalization or without penalization. We can conclude that the penalization operator can be set to 0 in practice.

Acknowledgement. The authors would like to thank R. Eymard and T. Gallouët for fruitful exchanges and advices.

7. Appendix

First, to a given vector $u_T = \left((u_K)_{K \in \mathcal{T}}, (u_{K^*})_{K^* \in \mathcal{T}^*}\right) \in \mathbb{R}^T$ defined on a DDFV mesh \mathcal{T} of size h, we associate the approximate solution on the boundary:

$$u_{\text{approx}, \partial \Omega} = \frac{1}{2} \sum_{K \in \mathcal{T}} u_K 1_{\partial K \cap \partial \Omega} + \frac{1}{2} \sum_{K^* \in \mathcal{T}^*} u_{K^*} 1_{\partial K^* \cap \partial \Omega}.$$

With this definition, we use simultaneously the values on the primal mesh and the values on the dual mesh. Indeed, we have $u_{\text{approx}, \partial \Omega} = \frac{1}{2}(u_{\text{primal}} + u_{\text{dual}})$, where u_{primal} and u_{dual} are different reconstructions based either on the primal values or the dual values:

$$u_{\text{primal}}(x) = \sum_{K \in \mathcal{T}} u_K 1_{\partial K \cap \partial \Omega}(x) \quad \text{and} \quad u_{\text{dual}}(x) = \sum_{K^* \in \mathcal{T}^*} u_{K^*} 1_{\partial K^* \cap \partial \Omega}(x).$$

Let us now define some norms

$$\|u_{\text{approx}, \partial \Omega}\|_{1, \partial \Omega} = \frac{1}{2} \|u_{\text{primal}}\|_{1, \partial \Omega} + \frac{1}{2} \|u_{\text{dual}}\|_{1, \partial \Omega}.$$

Theorem 7.1 (Trace inequality). Let Ω be a convex polygonal domain of \mathbb{R}^2 and \mathcal{T} a DDFV mesh of this domain. There exists $C > 0$, depending only on Ω, ζ and θ, such that for every $u_T \in \mathbb{R}^T$:

$$\|u_{\text{approx}, \partial \Omega}\|_{1, \partial \Omega} = \frac{1}{2} \|u_{\text{primal}}\|_{1, \partial \Omega} + \frac{1}{2} \|u_{\text{dual}}\|_{1, \partial \Omega} \leq C \left(\|u_T\|_{1, \mathcal{T}} + \|\nabla^\mathcal{T} u_T\|_{1, 2}\right).$$

Proof. The calculations are similar to those followed in [2, Lemma 10.5] especially for the primal mesh, the main difference comes from the dual mesh. As a result we detail only this part in the following.

We have, as in [2, Lemma 10.5], by compactness of the boundary $\partial \Omega$, the existence of a finite number of open hyper-rectangles $\{R_i, i = 1 \cdots N\}$, and normalized vectors of \mathbb{R}^2, $\{\eta_i, i = 1 \cdots N\}$, such that

$$\{\partial \Omega \subset \bigcup_{i=1}^N R_i\},$$

$$\{\eta_i, \tilde{v}(x) > 0 \text{ for all } x \in R_i \cap \partial \Omega, i \in \{1 \cdots N\}\},$$

$$\{|x + \eta_i, x \in R_i \cap \partial \Omega, t \in \mathbb{R}_+| \cap R_i \subset \Omega\}$$

<table>
<thead>
<tr>
<th>refinement level</th>
<th>error L^2</th>
<th>order L^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.08e+03</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>9.39e+02</td>
<td>0.23</td>
</tr>
<tr>
<td>3</td>
<td>7.06e+02</td>
<td>0.45</td>
</tr>
<tr>
<td>4</td>
<td>5.24e+02</td>
<td>0.45</td>
</tr>
<tr>
<td>5</td>
<td>3.93e+02</td>
<td>0.42</td>
</tr>
<tr>
<td>6</td>
<td>2.92e+02</td>
<td>0.44</td>
</tr>
<tr>
<td>7</td>
<td>2.11e+02</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Table 6.1: The L^2-norm $\|c_{m,i}\|_{L^2(\partial \Omega)}$ without penalization term ($i = 0$).
Then, we define i when $1 \cdots x$ and for K, σ and N, y be a family of functions such that $1 \cdots x \ast x \ast \sigma(x) \in K \cap \partial M$.

Then, we define $C = \sum_{i=1}^{N} C_i$, depending only on Ω, ζ and θ, to get (43).

As in [2] we introduce a function which determine the successive neighbours of a cell u_{K^*}: we define, for $x, y \in \Omega$ and $\sigma^* \in \Omega$,

$$
\psi_{\sigma^*}(x, y) = \begin{cases}
1 & \text{si } [x, y] \cap \sigma^* \neq \emptyset, \\
0 & \text{si } [x, y] \cap \sigma^* = \emptyset,
\end{cases}
$$

and for $K^* \in \Omega$,

$$
\psi_{K^*}(x, y) = \begin{cases}
1 & \text{si } [x, y] \cap K^* \neq \emptyset, \\
0 & \text{si } [x, y] \cap K^* = \emptyset.
\end{cases}
$$

Let $i \in \{1, \cdots, N\}$ and $x \in \partial \Omega$. There exists a unique $t > 0$ such that $x + t \eta_i \in \partial R_i$, let $y(x) = x + t \eta_i$. For $\sigma^* \in \Omega$, when $[x, y(x)] \cap \sigma^* \neq \emptyset$, the intersection is either reduced to a point let then $z_{\sigma^*}(x) = [x, y(x)] \cap \sigma^*$, or a segment $[x, y(x)] \cap \sigma^* = [a(x), b(x)]$ with $(a(x)b(x), \eta_i) > 0$ and then let $z_{\sigma^*}(x) = b(x)$. For $K^* \in \Omega$, let $\xi_{K^*}(x), \eta_{K^*}(x)$ such that $[x, y(x)] \cap K^* = [\xi_{K^*}(x), \eta_{K^*}(x)]$, if $[x, y(x)] \cap K^* \neq \emptyset$ and $(\xi_{K^*}(x), \eta_{K^*}(x), \eta_i) > 0$.

Furthermore, let $x \in K^*_0$ and $y(x) \in \mathcal{L}_0^*$ such that $\sigma^*_0 = \mathcal{K}^*_0|\mathcal{L}_0^*$ (see Figure 7.2), we have two cases. Note that in the two cases we have $x = \xi_{\sigma^*_0}(x)$ and $y(x) = \eta_{\sigma^*_0}(x)$ we get $\eta_{\sigma^*_0}(x) \in \partial R_i$, and deduce $\lambda(\eta_{\sigma^*_0}(x)) = 0$.

1. $[x, y(x)] \cap \sigma^*_0$ is reduced to a point then we have $\eta_{\sigma^*_0}(x) = z_{\sigma^*_0}(x) = \xi_{\sigma^*_0}(x)$. We obtain

$$
\lambda_i(x)|u_{\sigma^*_0}| = \left(\lambda_i(\xi_{\sigma^*_0}(x)) - \lambda_i(\eta_{\sigma^*_0}(x))\right)|u_{\sigma^*_0}| + \left(\lambda_i(\xi_{\sigma^*_0}(x)) - \lambda_i(\eta_{\sigma^*_0}(x))\right)|u_{\sigma^*_0}| + \lambda_i(z_{\sigma^*_0}(x))(|u_{\sigma^*_0}| - |u_{\sigma^*_0}|).
$$
The following inequality
\[A \] we begin with the estimate of
\[\sum \] where
\[\| \| \] Noting that
\[\lambda \] This point is the main difference with [2, Lemma 10.5]. In the two cases we get the same estimates
\[\lambda_i(x)\|u_{\mathcal{K}}\| = \left(\lambda_i(\xi_{\mathcal{K}}(x)) - \lambda_i(\eta_{\mathcal{K}}(x))\right)\|u_{\mathcal{K}}\|. \]

2. \([x, y(x)] \cap \sigma^0_0 \) is a segment, then we have \(\eta_{\mathcal{K}}(x) = y(x) \) and \(\lambda_i(\eta_{\mathcal{K}}(x)) = 0 \). We obtain
\[\lambda_i(x)\|u_{\mathcal{K}}\| \leq A(x) + B(x), \]
where
\[A(x) = \sum_{\mathcal{K} \in \mathcal{D}} \psi_{\sigma^r}(x, y(x))\lambda_i(z_{\sigma^r}(x))\|u_{\mathcal{K}}\| - \|u_{\mathcal{L}}\|, \]
and
\[B(x) = \sum_{\mathcal{K} \in \mathcal{D}} \left(\lambda_i(\xi_{\mathcal{K}}(x)) - \lambda_i(\eta_{\mathcal{K}}(x))\right)\|u_{\mathcal{K}}\| \psi_{\sigma^r}(x, y(x)). \]

We begin with the estimate of \(A \). Using the fact that \(\lambda_i \) is bounded, we get
\[A(x) \leq \|\lambda_i\|_{\infty} \sum_{\mathcal{D} \in \mathcal{B}} \psi_{\sigma^r}(x, y(x))\|u_{\mathcal{K}}\| - \|u_{\mathcal{L}}\|. \]
The following inequality
\[\int_{\partial \Omega} \psi_{\sigma^r}(x, y(x))dx \leq m_{\sigma^r} \frac{1}{\lambda}, \]
implies that
\[\mathcal{A} = \int_{\partial \Omega} A(x)dx \leq \|\lambda_i\|_{\infty} \sum_{\mathcal{D} \in \mathcal{B}} \left(\int_{\partial \Omega} \psi_{\sigma^r}(x, y(x))dx \right) \|u_{\mathcal{K}}\| - \|u_{\mathcal{L}}\| \leq C \sum_{\mathcal{D} \in \mathcal{B}} m_{\sigma^r} \|u_{\mathcal{K}}\| - \|u_{\mathcal{L}}\|. \]

Since \(|a| - |b| \leq |a - b|\), we obtain
\[\sum_{\mathcal{D} \in \mathcal{B}} m_{\sigma^r} \|u_{\mathcal{K}}\| - |u_{\mathcal{L}}| \leq \frac{2}{\sin(\theta_r)} \sum_{\mathcal{D} \in \mathcal{B}} m_{\sigma^D} \left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{m_{\sigma^r}} \right|. \]
Noting that
\[\left| \frac{u_{\mathcal{K}} - u_{\mathcal{L}}}{m_{\sigma^r}} \right| \leq |\nabla^{\mathcal{D}} u_{\mathcal{F}}|, \]
we deduce
\[\sum_{\mathcal{D} \in \mathcal{B}} m_{\sigma^r} \|u_{\mathcal{K}}\| - |u_{\mathcal{L}}| \leq \frac{2}{\sin(\theta_r)} \sum_{\mathcal{D} \in \mathcal{B}} m_{\sigma^D}|\nabla^{\mathcal{D}} u_{\mathcal{F}}| \leq C|\nabla^{\mathcal{D}} u_{\mathcal{F}}|_{1, \Omega} + ||u_{\mathcal{F}}||_{1, \Omega}. \]

Figure 7.2: (On the left) \([x, y(x)] \cap \sigma^0_0 \) is reduced to a point \(z_{\sigma^0_0}(x)\). (On the right) \([x, y(x)] \cap \sigma^0_0 \) is the segment \([x, y(x)]\).
Finally, we obtain
\[\mathcal{A} \leq C_1\|\nabla^2 u_T\|_{1,\mathcal{Z}} + C_2\|u_T\|_{\mathcal{Z}}. \]
Now the bound of \(B \) is as follows. Since the function \(\lambda_i \) is smooth, we have
\[B(x) \leq \|\nabla \lambda_i\|_{\infty} \sum_{K \in \mathcal{F}} |\xi_K^- - \eta_K^-| |u_K| \psi_K^-(x, y(x)). \]
Furthermore, we have on one hand
\[|\xi_K^- - \eta_K^-| \leq d_K^\lambda, \]
on the other hand
\[\int_{\partial \Omega_h} \psi_K^-(x, y(x)) \, dx \leq \frac{d_K^\lambda}{\lambda}. \]
It implies that
\[\int_{\partial \Omega_h} \psi_K^-(x, y(x)) |\xi_K^- - \eta_K^-| \, dx \leq C m_K^\lambda, \]
with \(C \) depending on \(\zeta, \theta \) and \(\lambda \). We obtain
\[B = \int_{\partial \Omega_h} B(x) \, dx \leq C_2 \sum_{K \in \mathcal{F}} m_K^\lambda |u_K| \leq C_2\|u_T\|_{1,\mathcal{Z}}. \]
Finally, we deduce
\[\int_{\partial \Omega_h} \lambda_i(x)|u^{DFFV}|^2(x) \, dx \leq \mathcal{A} + \mathcal{B} \leq C_1(\|\nabla^2 u_T\|_{1,\mathcal{Z}} + \|u_T\|_{1,\mathcal{Z}}). \]

