Controllability of the linear 1D-wave equation with inner moving forces
Castro Carlos, Nicolae Cindea, Arnaud Munch

To cite this version:
Castro Carlos, Nicolae Cindea, Arnaud Munch. Controllability of the linear 1D-wave equation with inner moving forces. 2014. hal-00927076v1

HAL Id: hal-00927076
https://hal.archives-ouvertes.fr/hal-00927076v1
Submitted on 14 Jan 2014 (v1), last revised 20 Jan 2014 (v2)
Controllability of the linear 1D wave equation with inner moving forces

Carlos Castro∗ Nicolae Cindea† Arnaud Münch†

January 14, 2014

Abstract

This paper deals with the numerical computation of distributed null controls for the 1D wave equation. We consider supports of the controls that may vary with respect to the time variable. The goal is to compute approximations of such controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. Under specific geometric conditions on the support of the controls earlier introduced in [Castro, Exact controllability of the 1-D wave equation from a moving interior point, 2013], we first prove a generalized observability inequality for the homogeneous wave equation. We then introduce and prove the well-posedness of a mixed formulation that characterizes the controls of minimal square-integrable norm. Such mixed formulation, introduced in [Cindea and Münch, A mixed formulation for the direct approximation of the control of minimal L^2-norm for linear type wave equations], and solved in the framework of the (space-time) finite element method, is particularly well-adapted to address the case of time dependent support. Several numerical experiments are discussed.

Keywords: Linear wave equation, null controllability, finite element methods, Mixed formulation.

Mathematics Subject Classification (2010)- 35L10, 65M12, 93B40.

1 Introduction

Let T be a positive real, Q_T the domain $(0,1) \times (0,T)$, q_T a non-empty subset of Q_T and $\Sigma_T = \{0,1\} \times (0,T)$. We are concerned in this work with the null distributed controllability for the 1D wave equation:

\[
\begin{aligned}
& y_{tt} - y_{xx} = v(t) 1_{q_T}, & (x,t) \in Q_T \\
& y(x,t) = 0, & (x,t) \in \Sigma_T \\
& y(x,0) = y_0(x), & y_t(x,0) = y_1(x), & x \in (0,1). \\
\end{aligned}
\]

(1)

We assume that $(y_0,y_1) \in \mathbf{V} := H^1_0(0,1) \times L^2(0,1)$; $v = v(t)$ is the control (a function in $L^2(q_T)$) and $y = y(x,t)$ is the associated state. 1_{q_T} from Q_T to $\{0,1\}$ denotes the indicatrice function of q_T. We also use the notation:

\[
L_y := y_{tt} - y_{xx}.
\]

(2)

For any $(y_0,y_1) \in \mathbf{V}$ and any $v \in L^2(q_T)$, there exists exactly one solution y to (1), with the regularity $y \in C^0([0,T];H^1_0(0,1)) \cap C^1([0,T];L^2(0,1))$ (see [10]).
The null controllability problem for (1) at time T is the following: for each $(y_0, y_1) \in V$, find $v \in L^2(q_T)$ such that the corresponding solution to (1) satisfies
\[y(\cdot, T) = 0, \quad y_t(\cdot, T) = 0 \quad \text{in} \quad (0, 1). \] (3)

When the subset q_T takes the form $q_T := \omega \times (0, T)$, where ω denotes a subset of $(0, 1)$, the null-controllability of (1) at any large time $T > T^*$ is well-known (for instance, see [19]). The critical time T^* is related to the measure of $(0, 1) \setminus \omega$. Moreover, as a consequence of the *Hilbert Uniqueness Method* of J.-L. Lions [19], the null controllability of (1) is equivalent to an observability inequality for the associated adjoint problem: there exists $C > 0$ such that
\[\|\varphi(\cdot, 0), \varphi_1(\cdot, 0)\|_H^2 \leq C \|\varphi\|_{L^2(\omega \times (0, T))}^2, \quad \forall (\varphi_0, \varphi_1) \in H := L^2(0, 1) \times H^{-1}(0, 1) \] (4)

where $(\varphi, \varphi_0, \varphi_1)$ solves
\[L \varphi = 0 \quad \text{in} \quad Q_T, \quad \varphi = 0 \quad \text{on} \quad \Sigma_T; \quad (\varphi(\cdot, 0), \varphi_1(\cdot, 0)) = (\varphi_0, \varphi_1) \quad \text{in} \quad (0, 1). \] (5)

We investigate in this work some questions related to the controllability of (1) for more general subsets $q_T \subset Q_T$ of the form
\[q_T = \left\{ (x, t) \in Q_T; a(t) < x < b(t), \; t \in (0, T) \right\} \] (6)

for some functions $a, b \in C([0, T], [0, 1])$. Thus, the support of the control function v depends on the time variable. A geometrical description is given by Figure [1].

To our knowledge, the control of PDEs with non-cylindrical support has been much less addressed in the literature. For the wave equation, we mention the contribution of Khapalov [18] providing observability results for a moving point sensor in the interior of the domain, allowing the author to avoid the usual difficulties related to strategic or non-strategic points. In particular, in the 1D setting, for any $T > 0$, the existence of controls continuous almost everywhere in $(0, T)$, supported over curves continuous almost everywhere is obtained for data in $H^2(0, 1) \cap H^1_0(0, 1) \times H^1_0(0, 1)$. More recently, let us mention two works concerning again the 1D wave equation both for initial data in H and any $T > 2$: the first one [6] analyzes the exact controllability from a moving interior point. By the way of the d’Alembert formulae, an observability inequality is proved for a precise sets of curves $\{ (\gamma(t), t) \}_{t \in (0, T)}$ leading to moving controls in $H^{-1}(\cup_{t \in (0, T)} \gamma(t) \times \{t\})$. The second one [11] considers the controllability from the moving boundary of the form $1 + kt$ with $k \in (0, 1)$, $t \in (0, T)$. In the case $k < 1$, the controllability in $L^2(0, T)$ is proved by the way of the multiplier method: as usual, a change of variable reduces the problem on fixed domains for wave equation with non constants coefficient. In the case $k = 1$ for which the speed of the moving endpoint is equal to the characteristic speed, the d’Alembert formulae allows to characterize the reachable set.

Let us denote by $C(a, b, T)$ the class of domains of the form given by (6) for which the controllability holds, or equivalently the set of triplet $(a, b, T) \in C([0, T], [0, 1]) \times C([0, T], [0, 1]) \times \mathbb{R}^+$ for which the controllability hold. Obviously, this set is not empty: it suffices that T be large enough and that the domain $\{(x, t) \in Q_T; a(t) < x < b(t), t \in (0, T)\}$ contains any rectangular domain $(a_1, b_1) \times (0, T)$ (i.e. that there exists $a_1 > 0, b_1 > 0$ such that $a(t) \leq a_1 < b_1 \leq b(t)$ for all time $t \in (0, T)$) and then to apply [4].

The first contribution of this work is the extension of the well-known observability inequality (1) to the non-cylindrical situation q_T given by (6) under less restrictive conditions on the function a and b. Precisely, if $T > 2$ and if the set q_T contains a C^1-curve γ whose variation satisfies $|\gamma'(t)| < 1$ for all $t \in [0, T]$, then the following estimate turns out to be true:
\[\|\varphi(\cdot, 0), \varphi_1(\cdot, 0)\|_H^2 \leq C \left(\|\varphi\|_{L^2(q_T)}^2 + \|L\varphi\|_{L^2(0, T; H^{-1}(0, 1))}^2 \right), \quad \forall \varphi \in \Phi \] (7)
precisely the coercivity of \(-\|\varphi\|\)-norm is then given by
\[v \varphi,\lambda \] solved in \(L^2(\Omega)\times H^1_0(\Omega)\) equivalent to the extremal problem (10). The variable \(\lambda\) can be interpreted as a Lagrange multiplier for the equality constraint \(L\varphi = 0\) in \(L^2(0,T;H^{-1}(0,1))\). We employ the estimate (7) to prove the well-posedness of this mixed formulation. In particular, we prove an inf-sup condition for the pair \((\varphi,\lambda)\). Moreover, it turns out that the multiplier \(\lambda\), unique solution of the mixed formulation, coincides with the controlled state \(y\), solution of (1) (in the weak-sense) (see section 3.1). This property allows to define Section 3.2 an another equivalent extremal problem (the so-called primal problem, dual of the problem (10)) in the controlled solution \(y\) only (see Proposition 3.1), without the introduction of any penalty parameter. The corresponding elliptic problem in \(L^2(0,T;H^1_0(0,1))\) is solved by the way of a conjugate gradient algorithm. Section 4 is devoted to the numerical approximation of the mixed formulation as well as some numerical experiments. We emphasize the robustness of the approach leading notably to the strong convergence of discrete sequence \(\{v_h\}\) toward the controls for various geometries of \(\Omega\). Eventually, Section 5 concludes with some perspectives: in particular, we highlight the natural extension of this work which consists in optimizing the control of (1) with respect to the support \(\Omega\).
2 A generalized observability inequality

Assume that q_T takes the form (6). We define the vectorial space

$$\Phi = \{ \varphi : \varphi \in L^2(q_T), \varphi = 0 \text{ on } \Sigma_T \text{ such that } L\varphi \in L^2(0,T;H^{-1}(0,1)) \}.$$

Endowed with the following inner product

$$(\varphi, \psi)_\Phi = \iint_{q_T} \varphi(x,t)\psi(x,t)\,dx\,dt + \eta \int_0^T <L\varphi, L\psi>_{H^{-1}(0,1)}\,dt,$$

for any fixed $\eta > 0$, the space Φ is an Hilbert space.

In this section, we prove the following result.

Proposition 2.1 Assume that $T > 2$ and q_T contains a C^1-curve $\gamma : [0,T] \to (0,1)$ such that

- $\gamma(t) \in (a(t),b(t))$ for all $t \in [0,T]$, i.e. $\gamma \subset q_T$
- $0 < |\gamma'(t)| < 1$ for all $t \in [0,T]$.

Then, there exists $C > 0$ such that the following estimate holds:

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0)\|^2_H \leq C \left(\|\varphi\|^2_{L^2(q_T)} + \|L\varphi\|^2_{L^2(0,T;H^{-1}(0,1))} \right), \quad \forall \varphi \in \Phi.$$

Proof: We proceed in several steps:

Step 1: First, we write an observability inequality for initial data in V, when the observation is taken on the curve $\gamma \subset q_T$ and $L\varphi = 0$. For $T > 2$, the following inequality is proved in [6]

$$\|\varphi(\cdot,0),\varphi_t(\cdot,0)\|^2_V \leq C \int_0^T \| \frac{d}{dt} \varphi(\gamma(t),t) \|^2 dt, \quad \forall \varphi \in W.$$

![Figure 1: Time dependent domains q_T included in Q_T.](image)
Step 2. Now we extend the observation in (13) from \(\gamma \) to \(q_T \). More precisely, we show that for some constant \(C > 0 \),

\[
\left\| \varphi(\cdot,0), \varphi_t(\cdot,0) \right\|_V^2 \leq C \left(\left\| \varphi_t \right\|_{L^2(q_T)}^2 + \left\| \varphi_x \right\|_{L^2(q_T)}^2 \right),
\]

(14)

for any \(\varphi \in W \) and initial data in \(V \). Let us consider \(\delta_0 > 0 \) small enough such that \(\gamma(t) + \delta_0 \in (a(t),b(t)) \) for all \(t \in [0,T] \). In this case, we can define small translations of the curve \(\gamma \), i.e. \(\gamma_{\delta} = \gamma + \delta \) in such a way that \(\gamma_{\delta} \subset q_T \) for all \(\delta < \delta_0 \). Obviously, \(\gamma_{\delta} : [0,T] \to (0,1) \) satisfies the same properties stated for \(\gamma \) in the Step 1 above and (13) holds for all such curves with the same constant. In particular, we have

\[
\left\| \varphi(\cdot,0), \varphi_t(\cdot,0) \right\|_V^2 \leq \frac{C}{2\delta_0} \int_{-\delta_0}^{\delta_0} \int_0^T \left\| \frac{d}{dt} \varphi(t) \right\|_V^2 dt d\delta
\]

\[
\leq \frac{C}{2\delta_0} \int_{q_T} \left\| \varphi_t(x,t) + \gamma'(t)\varphi_x(x,t) \right\|_V^2 dx dt
\]

\[
\leq \frac{C}{2\delta_0} (1 + \max_{t \in [0,T]} |\gamma'(t)|^2) \left(\left\| \varphi_t \right\|_{L^2(q_T)}^2 + \left\| \varphi_x \right\|_{L^2(q_T)}^2 \right).
\]

Step 3. Here we show that we can substitute \(\varphi_x \) by \(\varphi \) in the right hand side of (14), i.e.

\[
\left\| \varphi(\cdot,0), \varphi_t(\cdot,0) \right\|_V^2 \leq C \left(\left\| \varphi_t \right\|_{L^2(q_T)}^2 + \left\| \varphi_x \right\|_{L^2(q_T)}^2 \right),
\]

(15)

for any \(\varphi \in W \) and initial data in \(V \). In fact, this requires also to extend slightly the observation zone \(q_T \). Instead, we first argue that (14) must hold for a slightly smaller open set. Let \(\varepsilon > 0 \) small enough so that \(T - 2\varepsilon > 2 \) and it exists \(\tilde{q}_T \) defined as

\[
\tilde{q}_T = \left\{ (x,t) \in q_T; \; \tilde{a}(t) < x < \tilde{b}(t), \; t \in (\varepsilon,T-\varepsilon) \right\}
\]

with \((\gamma(t) - \delta_0, \gamma(t) + \delta_0) \subset (\tilde{a}(t) - \varepsilon, \tilde{b}(t) + \varepsilon) \subset (a(t),b(t)) \) for all \(t \in [0,T] \). Therefore, (14) holds when considering \(\tilde{q}_T \) instead of \(q_T \). Now we introduce

\[
\eta(x,t) = \begin{cases}
 t(T-t)(x-a(t))^2(x-b(t))^2, & \text{if } (x,t) \in q_T \\
 0 & \text{otherwise}.
\end{cases}
\]

Obviously, \(\eta \in C^1 \) is supported in \(q_T \) and there exists a constant \(C_1 \), depending on \(\varepsilon \), such that \(\| \eta_t \|_{L^\infty} \leq C_1, \| \eta_x^2 / \eta \| \leq C_1 \). Moreover \(\eta > 0 \) and it is uniformly bounded below by a constant \(C_2 > 0 \) in \(\tilde{q}_T \).

Multiplying the equation of \(\varphi \) by \(\eta \varphi \) and integrating by parts we easily obtain

\[
\int_{q_T} \int_{q_T} \eta |\varphi_x|^2 \, dx \, dt = \int_{q_T} \int_{q_T} \eta |\varphi_t|^2 \, dx \, dt + \int_{q_T} \int_{q_T} (\eta \varphi \varphi_t - \eta_x \varphi \varphi_x) \, dx \, dt \leq \int_{q_T} \int_{q_T} \eta |\varphi_t|^2 \, dx \, dt + \frac{\| \eta \|_L^\infty(q_T)}{2} \int_{q_T} \int_{q_T} (|\varphi|^2 + |\varphi_t|) \, dx \, dt
\]

\[
+ \frac{1}{2} \int_{q_T} \int_{q_T} (\frac{\eta_x^2}{\eta} \varphi^2 + \eta \varphi_x^2) \, dx \, dt.
\]

Therefore,

\[
\int_{q_T} \int_{q_T} \eta |\varphi_x|^2 \, dx \, dt \leq C \int_{q_T} \int_{q_T} (|\varphi_t|^2 + |\varphi|^2) \, dx \, dt,
\]
for some constant $C > 0$, and we obtain
\[\| \varphi \|_{L^2(q_T)}^2 \leq C_2^{-1} \int_{q_T} \eta |\varphi_x|^2 \, dx \, dt \leq C_2^{-1} C \int_{q_T} (|\varphi_t|^2 + |\varphi|^2) \, dx \, dt. \]

This combined with (14) for \tilde{q}_T provides (15).

Step 4. Here we prove that we can remove the second term in the right hand side of (15), i.e.
\[\| \varphi(\cdot, 0), \varphi_t(\cdot, 0) \|_V^2 \leq C \| \varphi_t \|_{L^2(q_T)}, \]
for any $\varphi \in W$ and initial data in V. Note that, for each time $t \in [0, T]$ and each $\omega \subset \Omega$ we have the following regularity estimate
\[\int_{\omega(t)} |\varphi(x, t)|^2 \, dx \leq \| \varphi(\cdot, 0), \varphi_t(\cdot, 0) \|_{H}^2, \quad \text{for all } t \in [0, T]. \]

Therefore, integrating in time, we easily obtain
\[\| \varphi \|_{L^2(q_T)}^2 \leq T \| \varphi(\cdot, 0), \varphi_t(\cdot, 0) \|_H^2. \]

We now substitute this inequality in (14)
\[\| \varphi(\cdot, 0), \varphi_t(\cdot, 0) \|_V^2 \leq C \left(\| \varphi_t \|_{L^2(q_T)} + \| \varphi(\cdot, 0), \varphi_t(\cdot, 0) \|_H^2 \right). \]

Inequality (16) is finally obtained by contradiction. Assume that it is not true. Then, there exists a sequence $(\varphi^k(\cdot, 0), \varphi_t^k(\cdot, 0))_{k > 0} \in V$ such that
\[\| \varphi^k(\cdot, 0), \varphi_t^k(\cdot, 0) \|_V^2 = 1, \quad \forall k > 0 \]
\[\| \varphi_t^k \|_{L^2(q_T)} \to 0, \quad \text{as } k \to \infty. \]

Therefore, there exists a subsequence, still denoted by the index k, such that $(\varphi^k(\cdot, 0), \varphi_t^k(\cdot, 0))$ approaches $(\varphi^*(\cdot, 0), \varphi_t^*(\cdot, 0))$ weakly in V and strongly in H (by the compactness of the inclusion $V \subset H$).

Passing to the limit in the equation we easily see that the solution associated to $(\varphi^*(\cdot, 0), \varphi_t^*(\cdot, 0))$.

Step 5. We now write (16) with respect to the weaker norm. In particular, we obtain
\[\| \varphi(\cdot, 0), \varphi_t(\cdot, 0) \|_H^2 \leq C \| \varphi \|_{L^2(q_T)}^2, \]
for any $\varphi \in \Phi$ with $L\varphi = 0$.

Let $\eta \in \Phi$ be the solution of $L\eta = 0$ and initial data $(\Delta^{-1} \varphi_t(\cdot, 0), \varphi(\cdot, 0)) \in V$ where Δ designates the Dirichlet Laplacian in $(0, 1)$. Let us write $\eta(x, t) = \eta(x, 0) + \int_0^t \varphi(x, s) \, ds$, for all $(x, t) \in Q_T$. Then, inequality (16) on η and the fact that Δ is an isomorphism from $H^1_0(0, 1)$ to $L^2(0, 1)$, provide
\[\| (\varphi(\cdot, 0), \varphi_t(\cdot, 0), \eta) \|_H^2 = C \| \eta \|_{L^2(q_T)}^2 \leq C \| \varphi \|_{L^2(q_T)}^2. \]

Step 6. Here we finally obtain (12) Given $\varphi \in \Phi$ we can decompose it as $\varphi = \varphi_1 + \varphi_2$ where $\varphi_1, \varphi_2 \in \Phi$ solve
\[\begin{cases} L\varphi_1 = L\varphi, \\ \varphi_1(\cdot, 0) = (\varphi_1)_t(\cdot, 0) = 0 \end{cases} \quad \begin{cases} L\varphi_2 = 0, \\ \varphi_2(\cdot, 0) = \varphi(\cdot, 0), \quad (\varphi_2)_t(\cdot, 0) = \varphi_t(\cdot, 0). \end{cases} \]
3 Control of minimal $L^2(q_T)$-norm: a mixed reformulation

We now adapt in this section the work [10] and present a mixed formulation based on the optimality conditions associated to the extremal problem [8] (section 3.1). From a numerical point of view, this mixed formulation is very appropriate to the non-cylindrical situation considered in this work. Very interestingly, this mixed formulation then allows to derive the dual formulation of the extremal problem [10] which consists in optimizing directly with respect to the controlled solution y (without the introduction of any penalty parameter) (see section 3.2).

3.1 Mixed reformulation of the controllability problem

As described at length in [10], the starting point of the reformulation is the dual problem [8]. Thus, in order to avoid the minimization of the functional J^* with respect to the initial data (φ_0, φ_1), we now present a direct way to approximate the control of minimal square integrable norm, in the spirit of the primal approach developed in [9]. Since the variable φ, solution of [8], is completely and uniquely determined by the data (φ_0, φ_1), the main idea of the reformulation is to keep φ as main variable and consider the following extremal problem:

$$
\min_{\varphi \in W} J^*(\varphi) = \frac{1}{2} \iint_{q_T} |\varphi|^2 \, dx \, dt + \langle \varphi(\cdot, 0), y_0 \rangle_{H^{-1}(0,1), H^1_0(0,1)} - \int_0^1 \varphi(\cdot, 0) \, y_1 \, dx,
$$

(21)

where

$$
W = \{ \varphi : \varphi \in L^2(q_T), \varphi = 0 \text{ on } \Sigma_T \text{ such that } L\varphi = 0 \in L^2(0,T;H^{-1}(0,1)) \}.
$$
Therefore, the well-posedness of the mixed formulation is a consequence of the following two

(i) The mixed formulation

where

\[L_3 \text{CONTROL OF MINIMAL } W \text{ is an Hilbert space endowed with the same inner product than } \Phi . \]

The minimization of \(\hat{J}^* \) is evidently equivalent to the minimization of \(J^* \) over \(H \). Remark that from \([12]\) the property \(\varphi \in W \) implies that \((\varphi(\cdot, 0), \varphi_1(\cdot, 0)) \in H \), so that the functional \(J^* \) is well-defined over \(W \).

The main variable is now \(\varphi \) submitted to the constraint equality \(L\varphi = 0 \) as an \(L^2(0, T; H^{-1}(0, 1)) \) function. This constraint is addressed introducing a Lagrangian multiplier \(\lambda \in L^2(0, T; H^1_0(\Omega)) \) as follows:

We consider the following problem: find \((\varphi, \lambda) \in \Phi \times L^2(0, T; H^1_0(0, 1)) \) solution of

\[
\begin{aligned}
& a(\varphi, \varphi) + b(\varphi, \lambda) = l(\varphi), \quad \forall \varphi \in \Phi \\
& b(\varphi, \lambda) = 0, \quad \forall \lambda \in L^2(0, T; H^1_0(0, 1)),
\end{aligned}
\]

(22)

where

\[
\begin{aligned}
& a : \Phi \times \Phi \rightarrow \mathbb{R}, \quad a(\varphi, \varphi) = \int_{\Omega_T} \varphi \varphi \, dx \, dt \\
& b : \Phi \times L^2(0, T; H^1_0(0, 1)) \rightarrow \mathbb{R}, \quad b(\varphi, \lambda) = \int_0^T \langle L\varphi, \lambda \rangle_{H^{-1}(0, 1), H^1_0(0, 1)} \, dt \\
& l : \Phi \rightarrow \mathbb{R}, \quad l(\varphi) = -\langle \varphi_1(\cdot, 0), y_0 \rangle_{H^{-1}(0, 1), H^1_0(0, 1)} + \int_0^1 \varphi(\cdot, 0) y_1 \, dx.
\end{aligned}
\]

We have the following result:

Theorem 3.1
(i) The mixed formulation \([22]\) is well-posed.

(ii) The unique solution \((\varphi, \lambda) \in \Phi \times L^2(0, T; H^1_0(0, 1)) \) is the unique saddle-point of the Lagrangian \(L : \Phi \times L^2(0, T; H^1_0(0, 1)) \rightarrow \mathbb{R} \) defined by

\[
L(\varphi, \lambda) = \frac{1}{2} a(\varphi, \varphi) + b(\varphi, \lambda) - l(\varphi).
\]

(27)

(iii) The optimal function \(\varphi \) is the minimizer of \(\hat{J}^* \) over \(\Phi \) while the optimal function \(\lambda \in L^2(0, T; H^1_0(0, 1)) \) is the state of the controlled wave equation \([11]\) in the weak sense (associated to the control \(-\varphi \mathbf{1}_{\Omega_T} \)).

Proof - We easily check that the bilinear form \(a \) is continuous over \(\Phi \times \Phi \), symmetric and positive and that the bilinear form \(b \) is continuous over \(\Phi \times L^2(0, T; H^1_0(0, 1)) \). Furthermore, assuming that \(T \) is large enough, the continuity of the linear form \(l \) over \(\Phi \) is a direct consequence of the generalized observability inequality \([12]\):

\[
||l(\varphi)|| \leq ||(y_0, y_1)||_{V} \sqrt{C \max(1, \eta^{-1})} ||\varphi||_{\Phi}, \quad \forall \varphi \in \Phi.
\]

Therefore, the well-posedness of the mixed formulation is a consequence of the following two properties (see \([3]\)):

- \(a \) is coercive on \(\mathcal{N}(b) \), where \(\mathcal{N}(b) \) denotes the kernel of \(b \):

\[
\mathcal{N}(b) = \{ \varphi \in \Phi \text{ such that } b(\varphi, \lambda) = 0 \text{ for every } \lambda \in L^2(0, T; H^1_0(0, 1)) \}.
\]

- \(b \) satisfies the usual "inf-sup" condition over \(\Phi \times L^2(0, T; H^1_0(0, 1)) \): there exists \(\delta > 0 \) such that

\[
\inf_{\lambda \in L^2(0, T; H^1_0(0, 1))} \sup_{\varphi \in \Phi} \frac{b(\varphi, \lambda)}{||\varphi||_{\Phi} ||\lambda||_{L^2(0, T; H^1_0(0, 1))}} \geq \delta.
\]

(28)
From the definition of a, the first point is clear: for all $\varphi \in \mathcal{N}(b) = W$, $a(\varphi, \varphi) = \|\varphi\|^2_W$.

Let us check the inf-sup condition (28). For any fixed $\lambda_0 \in L^2(0, T; H^0_0(0,1))$, we define the (unique) element φ_0 such that $L \varphi_0 = -\Delta \lambda_0$ in Q_T and such that $\varphi_0(\cdot, 0) = 0$ in $L^2(0,1)$ and $\varphi_{0,t}(\cdot,0) = 0$ in $H^{-1}(0,1)$. φ_0 is therefore solution of the wave equation with source term $-\Delta \lambda_0 \in L^2(0,T; H^{-1}(0,1))$, null Dirichlet boundary condition and zero initial state. We then use the following estimate (see for instance Chapter 1 in [14]): there exists a constant $C_{1,T} > 0$ such that

$$\|\varphi_0\|_{L^2(Q_T)} \leq C_{1,T} \|\lambda_0\|_{L^2(0,T; H^{-1}(0,1))} \leq C_{1,T} \|\lambda_0\|_{L^2(0,T; H^0_0(0,1))}.$$

(29)

Consequently, $\varphi_0 \in \Phi$. In particular, we have $b(\varphi_0, \lambda_0) = \|\lambda_0\|^2_{L^2(0,T; H^0_0(0,1))}$ and

$$\sup_{\varphi \in \Phi} \frac{b(\varphi, \lambda_0)}{\|\varphi\|_{L^2(Q_T)} \|\lambda_0\|_{L^2(0,T; H^0_0(0,1))}} \geq \frac{b(\varphi_0, \lambda_0)}{\|\varphi_0\|_{L^2(Q_T)} \|\lambda_0\|_{L^2(0,T; H^0_0(0,1))}} \geq \frac{1}{\sqrt{C_{1,T}^2 + \eta}}.$$

Combining the above two inequalities, we obtain

$$\sup_{\varphi \in \Phi} \frac{b(\varphi_0, \lambda_0)}{\|\varphi_0\|_{L^2(Q_T)} \|\lambda_0\|_{L^2(0,T; H^0_0(0,1))}} \geq \frac{1}{\sqrt{C_{1,T}^2 + \eta}}.$$

and, hence, (28) holds with $\delta = \left(C_{1,T}^2 + \eta \right)^{-\frac{1}{2}}$.

The point (ii) is due to the symmetry and to the positivity of the bilinear form a. (iii). The equality $b(\varphi, \lambda) = 0$ for all $\lambda \in L^2(0,T; H^0_0(0,1))$ implies that $L \varphi = 0$ as an $L^2(0,T; H^{-1}(0,1))$ function, so that if $q(\varphi, \lambda) \in \Phi \times L^2(0,T; H^0_0(0,1))$ solves the mixed formulation, then $\varphi \in W$ and $L(\varphi, \lambda) = J^*(\varphi)$. Finally, the first equation of the mixed formulation reads as follows:

$$\int_Q \varphi \overline{\psi} dx dt + \int_0^T L \overline{\psi}, \lambda > H^{-1}, H^0_0 dt = \lambda(\overline{\psi}), \quad \forall \overline{\psi} \in \Phi,$$

or equivalently, since the control of minimal $L^2(Q_T)$ norm is given by $v = -\varphi_{1,Q_T}$,

$$\int_Q -v_{1,Q_T} \overline{\psi} dx dt + \int_0^T L \overline{\psi}, \lambda > H^{-1}, H^0_0 dt = \lambda(\overline{\psi}), \quad \forall \overline{\psi} \in \Phi.$$

But this means that $\lambda \in L^2(0, T, H^0_0(0,1))$ is solution of the wave equation in the transposition sense. Since $(y_0,y_1) \in V$ and $v \in L^2(Q_T)$, λ must coincide with the unique weak solution to (1). \(\square\)

Therefore, Theorem 3.1 reduces the search of the control of square minimal norm to the resolution of the mixed formulation (22), or equivalently to the search of the saddle point for \mathcal{L}. In general, it is very convenient (actually in the case considered here, it is necessary) to "augment" the Lagrangian (see [14]), and consider instead the Lagrangian \mathcal{L}_r defined for any $r > 0$ by

$$\mathcal{L}_r(\varphi, \lambda) := \frac{1}{2} a_r(\varphi, \varphi) + b(\varphi, \lambda) - l(\varphi),$$

$$a_r(\varphi, \varphi) := a(\varphi, \varphi) + r \|L \varphi\|^2_{L^2(0,T; H^{-1}(0,1))}.$$

(30)

Since $a(\varphi, \varphi) = a_r(\varphi, \varphi)$ on W, the Lagrangian \mathcal{L} and \mathcal{L}_r share the same saddle-point.

Remark 1 The result of this section remains true if we define the space W such that $L \varphi$ belongs to $L^2(Q_T)$. This allows to avoid scalar product over the space $H^{-1}(0,1)$ (which is more involve to deal with at the numerical viewpoint, see Section 4.3). The estimate $\lbrack 12 \rbrack$ remains true and the multiplier $\lambda \in L^2(Q_T)$ is a controlled solution of \mathcal{L}_r in the sense of the transposition. As for the boundary situation, we may also work with $\varphi(\cdot, 0), \varphi_t(\cdot, 0)$ in $H^0_0(0,1) \times L^2(0,1)$ leading naturally to $L \varphi = 0$ as an $L^2(Q_T)$ function: however, the controls we then get are a priori only in $H^{-1}(q_T)$ $\lbrack 14 \rbrack$ Chapter 7, Section 2.
Remark 2 The estimate [(12)] may also be used to extend the work [9] to the non-cylindrical situation. [9] considers the pair (y,v) solution of [(13)] which minimize the following L^2-weighted functional

$$J(y,v) := \frac{1}{2} \int_{Q_T} \rho^2(x,t)|y|^2 \, dx \, dt + \frac{1}{2} \int_{Q_T} \rho_0^2(x,t)|v|^2 \, dx \, dt$$

for any weights $\rho, \rho_0 \in C(Q_T, \mathbb{R}^*_+)$.

Assuming $|\rho|$ and $|\rho_0|$ uniformly positive by below, the unique minimizer (y,v) is expressed in term of the auxiliary variable $p \in P := \{p : \rho^{-1}Lp \in L^2(Q_T), \rho_0^{-1}p \in L^2(q_T), p = 0 \text{ on } \Sigma_T\}$ as follows:

$$y = -\rho^{-2}Lp, \quad v = \rho_0^{-2}p1_{q_T} \quad \text{on } \; Q_T$$

where p is the solution of the variational formulation

$$\int_{Q_T} \rho^{-2}Lp \xi_1 \, dx \, dt + \int_{Q_T} \rho_0^{-2}p \xi_2 \, dx \, dt = \int_0^1 y^1(\cdot,0) \, dx - <y^0, q_1(\cdot,0)>_{H^1_0(0,1);H^{-1}(0,1)}, \quad \forall \xi \in P.$$

The well-posedness of this formulation is given by the estimate [(12)].

3.2 Dual problem of the extremal problem (21)

The mixed formulation allows to solve simultaneously the dual variable φ, argument of the conjugate functional [(21)], and the Lagrangian multiplier λ. Since λ turns out to be the controlled state of [(1)], we may qualify λ as the primal variable of the controllability problem. We derive in this section the corresponding extremal problem involving only that variable λ.

For any $r > 0$, let us define the linear operator A_r from $L^2(0,T;H^1_0(0,1)) \to L^2(0,T;H^1_0(0,1))$ by

$$A_r \lambda := -\Delta^{-1}(L\varphi), \quad \forall \lambda \in L^2(0,T;H^1_0(0,1))$$

where $\varphi \in \Phi$ is the unique solution to

$$a_r(\varphi, \psi) = b(\psi, \lambda), \quad \forall \psi \in \Phi. \quad (31)$$

Notice that the assumption $r > 0$ is needed here in order to guarantee the well-posedness of [(31)]. Precisely, for any $r > 0$, the form a_r defines a norm equivalent to the norm on φ.

We have the following important lemma:

Lemma 3.1 For any $r > 0$, the operator A_r is a strongly elliptic, symmetric isomorphism from $L^2(0,T;H^1_0(0,1)) \to L^2(0,T;H^1_0(0,1))$.

Proof From the definition of a_r, we easily get that $\|A_r \lambda\|_{L^2(0,T;H^1_0(0,1))} \leq r^{-1}\|\lambda\|_{L^2(0,T;H^1_0(0,1))}$ and the continuity of A_r.

Next, consider any $\lambda' \in L^2(0,T;H^1_0(0,1))$ and denote by φ' the corresponding unique solution of [(31)] so that $A_r \lambda' := -\Delta^{-1}(L\varphi')$. Relation [(31)] with $\varphi = \varphi'$ then implies that

$$\int_0^T <A_r \lambda', \lambda>_{H^1_0(0,1);H^1_0(0,1)} \, dt = a_r(\varphi, \varphi') \quad (32)$$

and therefore the symmetry and positivity of A_r. The last relation with $\lambda' = \lambda$ and the estimate [(12)] imply that A_r is also positive definite.

Finally, let us check the strong ellipticity of A_r, equivalently that the bilinear functional $(\lambda, \lambda') \to \int_0^T <A_r \lambda, \lambda'>_{H^1_0(0,1);H^1_0(0,1)} \, dt$ is $L^2(0,T;H^1_0(0,1))$-elliptic. Thus we want to show that

$$\int_0^T <A_r \lambda, \lambda>_{H^1_0(0,1);H^1_0(0,1)} \, dt \geq c \|\lambda\|^2_{L^2(0,T;H^1_0(0,1))}, \quad \forall \lambda \in L^2(0,T;H^1_0(0,1)) \quad (33)$$
for some positive constant c. Suppose that (33) does not hold; there exists then a sequence $\{\lambda_n\}_{n \geq 0}$ of $L^2(0, T; H^1_0(0, 1))$ such that
\[
\|\lambda_n\|_{L^2(0, T; H^1_0(0, 1))} = 1, \quad \forall n \geq 0, \quad \text{and} \quad \lim_{n \to \infty} \int_0^T < A_r \lambda_n, \lambda_n >_{H^1_0(0, 1), H^1_0(0, 1)} dt = 0.
\]
Let us denote by φ_n the solution of (31) corresponding to λ_n. From (32), we then obtain that
\[
\lim_{n \to \infty} \|L \varphi_n\|_{L^2(0, T, H^{-1}(0, 1))} = 0, \quad \lim_{n \to +\infty} \|\varphi_n\|_{L^2(Q_T)} = 0
\]
and thus $\lim_{n \to \infty} \int_0^T \varphi_n$, $\lambda_n >_{H^1_0(0, 1), H^1_0(0, 1)} dt = 0$ for all $\varphi \in \Phi$ (and so the $L^2(0, T; H^1_0(0, 1))$-weak-convergence of λ_n toward 0).

From (31) with $\varphi = \varphi_n$ and λ_n, we have
\[
\int_0^T < -r \Delta^{-1}(L \varphi_n) - \lambda_n, -\Delta^{-1}(L \varphi) >_{H^1_0(0, 1), H^1_0(0, 1)} dt + \int_{Q_T} \varphi_n \varphi \, dx \, dt = 0, \quad \forall \varphi \in \Phi. \quad (35)
\]
We define the sequence $\{\varphi_n\}_{n \geq 0}$ as follows:
\[
\begin{cases}
L \varphi_n = r L \varphi_n + \Delta \lambda_n, & \text{in } Q_T, \\
\varphi_n(0, \cdot) = \varphi_n(1, \cdot) = 0, & \text{in } (0, T), \\
\varphi_n(\cdot, 0) = \varphi_n(\cdot, 1), & \text{in } (0, 1)
\end{cases}
\]
so that, for all n, φ_n is the solution of the wave equation with zero initial data and source term $r L \varphi_n + \Delta \lambda_n$ in $L^2(0, T; H^{-1}(0, 1))$. Using again (29), we get $\|\varphi_n\|_{L^2(Q_T)} \leq C_{\Omega, T} \|r L \varphi_n + \Delta \lambda_n\|_{L^2(0, T; H^{-1}(0, 1))}$, so that $\varphi_n \in \Phi$. Then, using (35), we get
\[
\| - r \Delta^{-1}(L \varphi_n) - \lambda_n\|_{L^2(0, T; H^1_0(0, 1))} \leq C_{\Omega, T} \|\varphi_n\|_{L^2(Q_T)}.
\]
Then, from (34), we conclude that $\lim_{n \to +\infty} \|\lambda_n\|_{L^2(0, T; H^1_0(0, 1))} = 0$ leading to a contradiction and to the strong ellipticity of the operator A_r.

The introduction of the operator A_r is motivated by the following proposition:

Proposition 3.1 Let $\varphi_0 \in \Phi$ the unique solution of
\[
a_r(\varphi_0, \varphi) = l(\varphi), \quad \forall \varphi \in \Phi
\]
and let $J^{**} : L^2(0, T; H^1_0(0, 1)) \to L^2(0, T; H^1_0(0, 1))$ the functional defined by
\[
J^{**}(\lambda) = \frac{1}{2} \int_0^T < A_r \lambda, \lambda >_{H^1_0(0, 1), H^1_0(0, 1)} dt - b(\varphi_0, \lambda).
\]
The following equality holds :
\[
\sup_{\lambda \in L^2(0, T; H^1_0(0, 1))} \inf_{\varphi \in \Phi} \mathcal{L}_r(\varphi, \lambda) = - \inf_{\lambda \in L^2(0, T; H^1_0(0, 1))} J^{**}(\lambda) + \mathcal{L}_r(\varphi_0, 0).
\]
Proof For any $\lambda \in L^2(0, T; H^1_0(0, 1))$, let us denote by $\varphi_\lambda \in \Phi$ the minimizer of $\varphi \to \mathcal{L}_r(\varphi, \lambda)$. φ_λ satisfies the equation
\[
a_r(\varphi_\lambda, \varphi) + b(\varphi_\lambda, \lambda) = l(\varphi), \quad \forall \varphi \in \Phi
\]
and can be decomposed as follows : $\varphi_\lambda = \psi_\lambda + \varphi_0$ where $\psi_\lambda \in \Phi$ solves
\[
a_r(\psi_\lambda, \varphi) + b(\psi_\lambda, \lambda) = 0, \quad \forall \varphi \in \Phi.
We then have
\[
\inf_{\phi \in \Phi} \mathcal{L}_r(\phi, \lambda) = \mathcal{L}_r(\phi_\lambda, \lambda) = \mathcal{L}_r(\psi_\lambda + \phi_0, \lambda)
\]
\[
= \frac{1}{2} a_r(\psi_\lambda + \phi_0, \psi_\lambda + \phi_0) + b(\psi_\lambda + \phi_0, \lambda) - l(\psi_\lambda + \phi_0)
\]
\[
:= X_1 + X_2 + X_3
\]
with
\[
\begin{align*}
X_1 &= \frac{1}{2} a_r(\psi_\lambda, \psi_\lambda) + b(\psi_\lambda, \lambda) + b(\phi_0, \lambda) \\
X_2 &= a_r(\psi_\lambda, \phi_0) - l(\psi_\lambda), \quad X_3 = \frac{1}{2} a_r(\phi_0, \phi_0) - l(\phi_0).
\end{align*}
\]
From the definition of \(\phi_0\), \(X_2 = 0\) while \(X_3 = \mathcal{L}_r(\phi_0, 0)\). Eventually, from the definition of \(\psi_\lambda\),
\[
X_1 = -\frac{1}{2} a_r(\psi_\lambda, \psi_\lambda) + b(\phi_0, \lambda) = -\frac{1}{2} \int_0^T <A_r \lambda, \lambda_H> dt + b(\phi_0, \lambda)
\]
and the result follows. \(\square\)

From the ellipticity of the operator \(A_r\), the minimization of the functional \(J^{**}\) over \(L^2(0, T, H^1_0)\) is well-posed. It is interesting to note that with this extremal problem involving only \(\lambda\), we are coming to the primal variable, controlled solution of (1) (see Theorem 3.1 (iii)). Due to the constraint (3), the direct minimization of the null controllability problem by a penalty method with respect to the controlled state is usually avoided in practice. Here, any constraint equality is assigned to the variable \(\lambda\).

From the symmetry and ellipticity of the operator \(A_r\), the conjugate gradient algorithm is very appropriate to minimize \(J^{**}\), and consequently solve the mixed formulation (22). The conjugate gradient algorithm reads as follows:

(i) Let \(\lambda^0 \in L^2(0, T; H^1_0(0, 1))\) be a given function.

(ii) Compute \(\overline{\phi^0} \in \Phi\) solution to
\[
a_r(\overline{\phi^0}, \overline{\phi}) + b(\overline{\phi}, \lambda^0) = l(\overline{\phi}), \quad \forall \overline{\phi} \in \Phi
\]
and \(g^0 = -\Delta^{-1}(L \overline{\phi^0})\) then set \(w^0 = g^0\).

(iii) For \(n \geq 0\), assuming that \(\lambda^n, g^n\) and \(w^n\) are known, compute \(\overline{\phi^n} \in \Phi\) solution to
\[
a_r(\overline{\phi^n}, \overline{\phi}) = b(\overline{\phi}, w^n), \quad \forall \overline{\phi} \in \Phi
\]
and \(\overline{\phi^n} = -\Delta^{-1}(L \overline{\phi^n})\) and then
\[
\rho_n = \|g^n\|^2_{L^2(0, T; H^1_0(0, 1))}/\|g^n\|_{L^2(0, T; H^1_0(0, 1))}.
\]
Update \(\lambda^n\) and \(g^n\) by
\[
\lambda^{n+1} = \lambda^n - \rho_n w^n, \quad g^{n+1} = g^n - \rho_n g^n.
\]
If \(\|g^{n+1}\|_{L^2(0, T; H^1_0(0, 1))}/\|g^n\|_{L^2(0, T; H^1_0(0, 1))} \leq \varepsilon\), take \(\lambda = \lambda^{n+1}\). Else, compute
\[
\gamma_n = \|g^{n+1}\|^2_{L^2(0, T; H^1_0(0, 1))}/\|g^n\|^2_{L^2(0, T; H^1_0(0, 1))}
\]
and update \(w^n\) via
\[
w^{n+1} = g^{n+1} + \gamma_n w^n.
\]
Do \(n = n + 1\) and return to step (iii).
As mentioned in [15] where this approach is discussed at length for Navier-Stokes type systems, this algorithm can be viewed as a sophisticated version of Arrow-Hurwicz-Uzawa type method.

Concerning the speed of convergence of the conjugate gradient algorithm (i)-(iii), it follows from for instance [12] that

$$\|\lambda^n - \lambda\|_{L^2(0,T;H^1_0(0,1))} \leq 2\sqrt{\nu(A_r)} \left(\frac{\sqrt{\nu(A_r)} - 1}{\sqrt{\nu(A_r)} + 1} \right)^n \|\lambda^0 - \lambda\|_{L^2(0,T;H^1_0(0,1))}, \quad \forall n \geq 1$$

where λ minimizes J^{**}. $\nu(A_r) = \|A_r\|\|A_r^{-1}\|$ denotes the condition number of the operator A_r.

Eventually, once the above algorithm has converged we can compute $\varphi \in \Phi$ as solution of

$$a_r(\varphi, \varphi) + b(\varphi, \lambda) = l(\varphi), \quad \forall \varphi \in \Phi.$$

4 Numerical approximation and experiments

4.1 Some domains q_T

Let us first describe the domains $q_T \subset Q_T := (0,1) \times (0,T)$ in which the control is supported we shall use in our numerical experiments.

Let $\gamma^0_T : (0, T) \to (0,1)$ be four C^∞ functions defined as follows

$$\gamma^0_T(t) = \frac{3}{10}, \quad t \in (0, T), \quad (36)$$

$$\gamma^1_T(t) = \frac{1}{2} + \frac{1}{10} \cos \left(\frac{\pi t}{T} \right), \quad t \in (0, T), \quad (37)$$

$$\gamma^2_T(t) = \frac{\beta - \alpha}{T} t + \alpha, \quad t \in (0, T), \quad (38)$$

$$\gamma^3_T(t) = \frac{1}{2} + \frac{1}{4} \cos \left(\frac{8\pi t}{T} \right), \quad t \in (0, T). \quad (39)$$

In what follows we choose in (38) $\alpha = 0.2$ and $\beta = 0.8$.

Remark that for values of the controllability time T which are larger than 2 and $i \in \{0, 1, 2\}$ we have that $|\partial_t \gamma^i_T(t)| < 1$ for every $t \in (0, T)$ and that, if $T \leq 2\pi$, there exist some values of $t \in (0, T)$ such that $|\partial_t \gamma^3_T(t)| \geq 1$. Hence γ^3_T satisfies the hypotheses of Proposition 2.1 for $i \in \{0, 1, 2\}$ and does not satisfy these hypotheses for $i = 3$.

For each $i \in \{0, 1, 2, 3\}$, let a^i_T, $b^i_T : (0, T) \to (0,1)$ be two functions defined by

$$a^i_T(t) = \gamma^i_T(t) - \delta_0, \quad b^i_T(t) = \gamma^i_T(t) + \delta_0, \quad t \in (0, T), \quad (40)$$

for some $\delta_0 > 0$ small enough. We then define the corresponding domains q^i_T as follows :

$$q^i_T = \{(x, t) \in Q_T; a^i_T(t) < x < b^i_T(t), \ t \in (0,T)\}, \quad i \in \{0, 1, 2, 3\}. \quad (41)$$

Remark that, in the definition of a^i_T and b^i_T, we may consider time-dependent value for δ_0. Figure 2 display the domains q^i_T defined by (41) with the controllability time $T = 2.2$ and $\delta_0 = 10^{-1}$.

4.2 Discretization

We now turn to the discretization of the mixed formulation [22] assuming $r > 0$.

Let then Φ_h and M_h be two finite dimensional spaces parametrized by the variable h such that

$$\Phi_h \subset \Phi, \quad M_h \subset L^2(0,T;H^1_0(0,1)), \quad \forall h > 0.$$
Then, we can introduce the following approximated problems: find \((\varphi_h, \lambda_h) \in \Phi_h \times M_h\) solution of

\[
\begin{aligned}
 a_r(\varphi_h, \varphi_h) + b(\varphi_h, \lambda_h) &= l(\varphi_h), & \forall \varphi_h &\in \Phi_h \\
 b(\varphi_h, \lambda_h) &= 0, & \forall \lambda_h &\in M_h.
\end{aligned}
\]

(42)

The well-posedness of this mixed formulation is again a consequence of two properties: the coercivity of the bilinear form \(a_r\) on the subset \(N_h(b) = \{\varphi_h \in \Phi_h; b(\varphi_h, \lambda_h) = 0 \ \forall \lambda_h \in M_h\}\).

Actually, from the relation

\[a_r(\varphi, \varphi) \geq r \eta \|\varphi\|_{\Phi}^2, \ \forall \varphi \in \Phi\]

the form \(a_r\) is coercive on the full space \(\Phi\), and so \(a \text{ fortiori}\) on \(N_h(b) \subset \Phi_h \subset \Phi\). The second property is a discrete inf-sup condition: there exists \(\delta_h > 0\) such that

\[
\inf_{\lambda_h \in M_h} \sup_{\varphi_h \in \Phi_h} \frac{b(\varphi_h, \lambda_h)}{\|\varphi_h\|_{\Phi_h} \|\lambda_h\|_{M_h}} \geq \delta_h.
\]

(43)

For any fixed \(h\), the spaces \(M_h\) and \(\Phi_h\) are of finite dimension so that the infimum and supremum in (43) are reached: moreover, from the property of the bilinear form \(a_r\) it is standard to prove that \(\delta_h\) is strictly positive (see Section 4.5). Consequently, for any fixed \(h > 0\), there exists a unique couple \((\varphi_h, \lambda_h)\) solution of (42). On the other hand, the property \(\inf_h \delta_h > 0\) is in general difficult to prove and depends strongly on the choice made for the approximated spaces \(M_h\) and \(\Phi_h\). We shall analyze numerically this property in Section 4.5.

The finite dimensional and conformal space \(\Phi_h\) must be chosen such that \(L\varphi_h\) belongs to \(L^2(0, T, H^{-1}(0, 1))\) for any \(\varphi_h \in \Phi_h\). This is guaranteed for instance as soon as \(\varphi_h\) possesses second-order derivatives in \(L^2_{loc}(Q_T)\). Therefore, a conformal approximation based on standard triangulation of \(Q_T\) requires spaces of functions continuously differentiable with respect to both variables \(x\) and \(t\).

We introduce a triangulation \(T_h\) such that \(Q_T = \bigcup_{K \in T_h} K\) and we assume that \(\{T_h\}_{h>0}\) is a regular family. We note

\[h := \max\{\text{diam}(K), K \in T_h\}\]

where \(\text{diam}(K)\) denotes the diameter of \(K\). Then, we introduce the space \(\Phi_h\) as follows:

\[\Phi_h = \{\varphi_h \in \Phi_h \in C^1(Q_T) : \varphi_h|_K \in P(K) \ \forall K \in T_h, \ \varphi_h = 0 \text{ on } \Sigma_T\}\]
where $\mathcal{P}(K)$ denotes an appropriate space of polynomial functions in x and t. In this work, we consider for $\mathcal{P}(K)$ the reduced Hsieh-Clough-Tocher (HCT for short) C^1-element. This is a so-called composite finite element and involves 9 degrees of freedom, namely the values of $\varphi_h, \varphi_{h,x}, \varphi_{h,t}$ on the three vertices of each triangle K. We refer to [8] page 356 and to [2, 20] where the implementation is discussed.

We also define the finite dimensional space

$$M_h = \{ \lambda_h \in C^0(Q_T), \lambda_h|_K \in Q(K) \ \forall K \in T_h, \ \lambda_h = 0 \text{ on } \Sigma_T \}$$

where $Q(K)$ denotes the space of affine functions both in x and t on the element K. For any $h > 0$, we have $\Phi_h \subset \Phi$ and $M_h \subset L^2(0, T; H^{-1}(0, 1))$.

For each combination of domains (q_T, Q_T) described in Section 4.1 we consider six levels of triangulations T_h (numbered from $\sharp 0$ to $\sharp 5$, from coarser to finer). The number of triangles for some examples of domains q_T which will be used in the experiments are summarized in Table 1.

Table 1: Number of triangles for different meshes and different control domains q_T

<table>
<thead>
<tr>
<th>\sharp Mesh</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_T^{0}=2$</td>
<td>207</td>
<td>828</td>
<td>3 312</td>
<td>13 248</td>
<td>52 992</td>
<td>211 968</td>
</tr>
<tr>
<td>$q_T^{1}=2$</td>
<td>198</td>
<td>792</td>
<td>3 168</td>
<td>12 672</td>
<td>50 688</td>
<td>202 752</td>
</tr>
<tr>
<td>$q_T^{2}=2$</td>
<td>150</td>
<td>600</td>
<td>2 400</td>
<td>9 600</td>
<td>38 400</td>
<td>153 600</td>
</tr>
<tr>
<td>$q_T^{3}=2$</td>
<td>179</td>
<td>716</td>
<td>2 864</td>
<td>11 456</td>
<td>45 824</td>
<td>183 296</td>
</tr>
<tr>
<td>$q_T^{4}=2$</td>
<td>177</td>
<td>708</td>
<td>2 832</td>
<td>11 328</td>
<td>45 312</td>
<td>181 248</td>
</tr>
<tr>
<td>$q_T^{5}=2$</td>
<td>464</td>
<td>1 856</td>
<td>7424</td>
<td>29 696</td>
<td>118 784</td>
<td>475 136</td>
</tr>
</tbody>
</table>

Figure 3: Meshes $\sharp 1$ associated with the domains $q_T^i : i = 0, 1, 2, 3$ from left to right.

4.3 Change of the norm $\| \cdot \|_{L^2(H^{-1})}$ over the discrete space Φ_h

In contrast to [10] where the boundary controllability is considered with the constraint $L\varphi = 0$ as an $L^2(Q_T)$ function, the equality $L\varphi = 0$ in Φ is assumed in the weaker space $L^2(0, T; H^{-1}(0, 1))$. It is not straightforward to handle numerically the scalar product over H^{-1} which appears in the mixed formulation (42). However, at the finite dimensional level of the discretization, since all the
4 NUMERICAL APPROXIMATION AND EXPERIMENTS

norms are equivalent, a classical trick (see for instance [3,4]) consists in replacing, for any fixed \(h \), the norm \(\|L\varphi_h\|_{L^2(0,T;H^{-1}(0,1))} \) by the norm \(\|L\varphi_h\|_{L^2(Q_T)} \), up to a constant.

In order to do that, first remark that if there exist two constants \(C_0 > 0 \) and \(\alpha > 0 \) such that

\[
\|\psi_h\|^2_{L^2(Q_T)} \geq C_0 h^\alpha \|\psi_h\|^2_{L^2(0,T;H^1_0(0,1))}, \quad \forall \psi_h \in \Phi_h
\]

(44)

then a similar inequality it holds for weaker norms. More precisely, we have

\[
\|\varphi_h\|^2_{L^2(0,T;H^{-1}(0,1))} \geq C_0 h^\alpha \|\varphi_h\|^2_{L^2(Q_T)}, \quad \forall \varphi_h \in \Phi_h.
\]

(45)

Indeed, to obtain (45) it suffices to take \(\psi_h(\cdot, t) = (-\Delta)^{\frac{\alpha}{2}} \varphi_h(\cdot, t) \) in (44). That gives

\[
\int_0^T \left\|(-\Delta)^{\frac{\alpha}{2}} \varphi_h(\cdot, t)\right\|^2_{L^2(0,1)} dt \geq C_0 h^\alpha \int_0^T \left\|(-\Delta)^{\frac{\alpha}{2}} \varphi_{h,x}(\cdot, t)\right\|^2_{L^2(0,1)} dt.
\]

Since \(-\Delta\) is a self-adjoint positive operator and \(\varphi_h \in \Phi_h \subset H^1_0(Q_T) \) we can integrate by parts in both hand-sides of the above inequality and hence we deduce estimate (45). We highlight that the term \(C_0 h^\alpha \) (and so \(C_0 \) and \(\alpha \)) does not depend on \(T \).

Assuming that (44) (and consequently (45)) holds (the constants \(C_0, \alpha > 0 \) will be approximated numerically in Section 4.4), we may consider, for any fixed \(h > 0 \), the following equivalent definitions of the form \(a_{r,h} \) and \(b_h \) over the finite dimensional spaces \(\Phi_h \times \Phi_h \) and \(\Phi_h \times M_h \) respectively:

\[
a_{r,h} : \Phi_h \times \Phi_h \to \mathbb{R}, \quad a_{r,h}(\varphi_h, \varphi_h) = a(\varphi_h, \varphi_h) + r C_0 h^\alpha \iint_{Q_T} L \varphi_h L \varphi_h \, dx \, dt
\]

(46)

\[
b_h : \Phi_h \times M_h \to \mathbb{R}, \quad b_h(\varphi_h, \lambda_h) = \iint_{Q_T} L \varphi_h \lambda_h \, dx \, dt.
\]

(47)

Let \(n_h = \dim \Phi_h, m_h = \dim M_h \) and let the real matrices \(A_{r,h} \in \mathbb{R}^{n_h, n_h}, B_h \in \mathbb{R}^{m_h, m_h}, J_h \in \mathbb{R}^{m_h, m_h} \) and \(L_h \in \mathbb{R}^{n_h, n_h} \) be defined by

\[
a_{r,h}(\varphi_h, \varphi_h) = \langle A_{r,h}(\varphi_h), (\varphi_h) \rangle_{\mathbb{R}^{n_h}, \mathbb{R}^{n_h}}, \quad \forall \varphi_h, \varphi_h \in \Phi_h,
\]

(48)

\[
b_h(\varphi_h, \lambda_h) = \langle B_h(\varphi_h), (\lambda_h) \rangle_{\mathbb{R}^{m_h}, \mathbb{R}^{m_h}}, \quad \forall \varphi_h, \lambda_h \in \Phi_h, \forall \lambda_h \in M_h,
\]

(49)

\[
\iint_{Q_T} \lambda_h L_h \, dx \, dt = \iint_{Q_T} J_h \lambda_h, \lambda_h \rangle_{\mathbb{R}^{m_h}, \mathbb{R}^{m_h}}, \quad \forall \lambda_h, \lambda_h \in M_h,
\]

(50)

\[
l(\varphi_h) = \langle L_h, (\varphi_h) \rangle, \quad \forall \varphi_h \in \Phi_h
\]

(51)

where \(\{ \varphi_h \} \in \mathbb{R}^{n_h, 1} \) denotes the vector associated to \(\varphi_h \) and \(\langle \cdot, \cdot \rangle_{\mathbb{R}^{n_h}, \mathbb{R}^{m_h}} \) the usual scalar product over \(\mathbb{R}^{n_h} \). With these notations, the problem (42) reads as follows: find \(\{ \varphi_h \} \in \mathbb{R}^{n_h, 1} \) and \(\{ \lambda_h \} \in \mathbb{R}^{m_h, 1} \) such that

\[
\begin{pmatrix}
A_{r,h} & B_h^T \\
B_h & 0
\end{pmatrix}
\begin{pmatrix}
\{ \varphi_h \} \\
\{ \lambda_h \}
\end{pmatrix}
= \begin{pmatrix}
L_h \\
0
\end{pmatrix}
\begin{pmatrix}
1 \\
0
\end{pmatrix}
\]

(52)

The matrix \(A_{r,h} \) as well as the mass matrix \(J_h \) are symmetric and positive definite for any \(h > 0 \) and any \(r > 0 \). On the other hand, the main matrix of order \(m_h + n_h \) in (52) is symmetric but not positive definite. We use exact integration methods developed in [13] for the evaluation of the coefficients of the matrices. The system (52) is solved using the direct LU decomposition method.

Let us also mention that for \(r = 0 \), although the formulation (22) is well-posed, numerically, the corresponding matrix \(A_{0,h} \) is not invertible. In the sequel, we shall consider strictly positive values for \(r \).
Once the approximation φ_h is obtained, an approximation v_h of the control v is given by $v_h = -\varphi_h I_{q_T} \in L^2(Q_T)$. The corresponding controlled state y_h may be obtained by solving (1) with standard forward approximation (we refer to [9], Section 4 where this is detailed). Here, since the controlled state is directly given by the multiplier λ_h, we simply use λ_h as an approximation of y and we do not report here the computation of y_h.

4.4 Numerical approximation of C_0 and α in (45).

In order to approximate the values of the constants C_0, α appearing in (44)-(45) we consider the following problem:

\[
\text{find } \alpha > 0 \text{ and } C_0 > 0 \text{ such that } \sup_{\varphi_h \in \Phi_h} \frac{\|\varphi_h\|_{L^2(0,T;H_0^1(0,1))}^2}{\|\varphi_h\|_{L^2(Q_T)}^2} \leq \frac{1}{C_0 h^\alpha}, \quad \forall h > 0. \tag{53}
\]

Since Φ_h is a finite dimensional space, the supremum is, for any fixed $h > 0$, the solution of the following eigenvalue problem:

\[
\forall h > 0, \quad \gamma_h = \sup \left\{ \gamma : K_h \{\psi_h\} = \gamma J_h \{\psi_h\}, \quad \forall \{\psi_h\} \in \mathbb{R}^{m_h} \setminus \{0\} \right\} \tag{54}
\]

where $K_h \in \mathbb{R}^{n_h,m_h}$ and $J_h \in \mathbb{R}^{n_h,m_h}$ are the matrices defined by

\[
\langle K_h \{\psi_h\}, \{\overline{\psi}_h\}\rangle_{\mathbb{R}^{n_h,m_h}} = \int_{Q_T} \psi_{h,x} \overline{\psi}_{h,x} dx dt, \quad \forall \psi_h, \overline{\psi}_h \in \Phi_h,
\]

\[
\langle J_h \{\psi_h\}, \{\overline{\psi}_h\}\rangle_{\mathbb{R}^{n_h,m_h}} = \int_{Q_T} \psi_h \overline{\psi}_h dx dt, \quad \forall \psi_h, \overline{\psi}_h \in \Phi_h.
\]

We then can choose C_0 and α in (53) such that $C_0 h^\alpha = \gamma_h^{-1}$, where γ_h solves the problem (54). Figure 4 displays γ_h^{-1} corresponding to the matrices K_h and J_h associated to the domains Q_T and q_0^T for the six levels of mesh and $T = 2.2$. The values of constants C_0 and α which provide the best fitting are $C_0 \approx 1.48 \times 10^{-2}$ and $\alpha \approx 2.1993$. As expected, we also check that the constant γ_h (and so C_0 and α) does not depend on T nor on the controllability domain. From now on, we use these numerical values in the bilinear form $a_{r,h}$ defined by (46).

![Figure 4: Values of γ_h^{-1} vs. h (●). The line represents $C_0 h^\alpha$ for $C_0 \approx 1.48 \times 10^{-2}$ and $\alpha \approx 2.1993$.](image)
4.5 The discrete inf-sup test

In order to solve the mixed formulation (42), we first test numerically the discrete inf-sup condition (43). Taking $\eta = r > 0$ so that $a_{r,h}(\varphi, \overline{\psi}) = (\varphi, \overline{\psi})_\Phi$ for all $\varphi, \overline{\psi} \in \Phi$, it is readily seen (see for instance [7]) that the discrete inf-sup constant satisfies

$$\delta_h := \inf \left\{ \sqrt{\delta} : B_h A_{r,h}^{-1} B_h^T \{ \lambda_h \} = \delta J_h \{ \lambda_h \}, \quad \forall \{ \lambda_h \} \in \mathbb{R}^{m_h} \setminus \{0\} \right\}, (55)$$

As in the case of boundary controls (see [10]), the matrix $B_h A_{r,h}^{-1} B_h^T$ is symmetric and positive definite so that the real δ_h defined in term of the (generalized) eigenvalue problem (55) is, for any fixed value of the discretization parameter h, strictly positive. This eigenvalue problem is solved using the power iteration algorithm (assuming that the lowest eigenvalue is simple): for any $\{ v_h^0 \} \in \mathbb{R}^{m_h}$ such that $\| v_h^0 \|_2 = 1$, compute for any $n \geq 0$, $\{ \varphi_h^n \} \in \mathbb{R}^{m_h}$, $\{ \lambda_h^n \} \in \mathbb{R}^{m_h}$ and $\{ v_h^{n+1} \} \in \mathbb{R}^{m_h}$ iteratively as follows:

$$\begin{cases}
A_{r,h} \{ \varphi_h^n \} + B_h^T \{ \lambda_h^n \} = 0, \\
B_h \{ \varphi_h^n \} = -J_h \{ v_h^n \}
\end{cases}, \quad \{ v_h^{n+1} \} = \frac{\{ \lambda_h^n \}}{\| \{ \lambda_h^n \} \|_2}.$$

The scalar δ_h defined by (55) is then given by: $\delta_h = \lim_{n \to \infty} (\| \{ \lambda_h^n \} \|_2)^{-1/2}$.

Table 2 reports the values of δ_h for various mesh sizes h, for $r = 10^{-1}$ and $r = 10^{-3}$ and for $q_T = q_T^2$. As expected, we check that δ_h decreases as $h \to 0$ and increases as $r \to 0$. More importantly, this table suggests that the sequence δ_h remains uniformly bounded by below with respect to h. This property remains true for other control domains q_T, as emphasized by Figure 5.

<table>
<thead>
<tr>
<th>q_T</th>
<th>Mesh</th>
<th>h</th>
<th>$r = 10^{-1}$</th>
<th>$r = 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>7.18 \times 10^{-2}</td>
<td>5.95 \times 10^{-2}</td>
<td>1.79 \times 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18.8171</td>
<td>17.5466</td>
<td>17.0642</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.6981</td>
<td>0.8374</td>
<td>0.9246</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.95</td>
<td>5.04</td>
<td>6.03</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>12.5</td>
<td>15.0</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Table 2: δ_h vs. h for $q_T = q_T^2$, $r = 10^{-1}$ and $r = 10^{-3}$.

We may conclude that the finite elements we use do "pass" the discrete inf-sup test. As we shall see in the next section, this fact implies the convergence of the sequence φ_h and λ_h.

![Figure 5: Values of δ_h vs. h for different control domains q_T^i and $r = 10^{-1}$.](image-url)
4.6 Numerical experiments for $q_T = q_T^2$ and comparison with the explicit solution

We first consider the domain $q_T = q_T^2$ (see Figure 2) corresponding to an oblique band of length $2\delta_0 = 0.2$ and $T = 2$. We define also the following three initial data in $V := H^1_0(0,1) \times L^2(0,1)$:

(EX1) $y_0(x) = \sin(\pi x), \quad y_1(x) = 0, \quad x \in (0,1),$

(EX2) $y_0(x) = e^{-500(x-0.8)^2}, \quad y_1(x) = 0, \quad x \in (0,1),$

(EX3) $y_0(x) = \frac{x}{\theta} 1_{(0,\theta)}(x) + \frac{1-x}{1-\theta} 1_{(\theta,1)}(x), \quad y_1(x) = 0, \quad \theta \in (0,1), \quad x \in (0,1).$

In the case where the domain q_T depends on the variable t, there is no in general exact solution of the mixed formulation (22). However, we can obtain a semi-explicit representation (using Fourier decomposition) of the minimizer (φ_0, φ_1) of the conjugate functional J^* (see [22], and consequently of the corresponding adjoint variable φ, the control of minimal square integrable norm $v = -\varphi \mid_{q_T}$ and finally the controlled state y solution of (13). In practice, the obtention of the Fourier representation amounts to solve a symmetric linear system. We refer to the Appendix for the details. This allows to evaluate precisely the error $\|v - v_h\|_{L^2(q_T)}$ with respect to h and confirm the relevance of the method.

Table 3 and 4 collects some numerical values for $r = 10^{-1}$ and $r = 10^3$ respectively corresponding to the initial data (EX1). In the Tables, κ denotes the condition number associated to the linear system (22), independent of the initial data (y_0, y_1). The convergence of $\|v - v_h\|_{L^2(q_T)}$, $\|L\varphi_h\|_{L^2(0,T;H^{-1}(0,1))}$ and $\|y - \lambda_h\|_{L^2(q_T)}$ toward zero as $h \searrow 0$ is clearly observed. This is fully in agreement with the uniform discrete inf-sup property we have observed in Section 4.5. We obtain the following rates of convergence with respect to h for $r = 10^{-1}$ and $r = 10^3$ respectively:

$r = 10^{-1}$: $\|v - v_h\|_{L^2(q_T)} \approx O(h^{1.3}), \|L\varphi_h\|_{L^2(0,T;H^{-1}(0,1))} \approx O(h^{1.3}), \|y - \lambda_h\|_{L^2(q_T)} \approx O(h^{1.94})$

$r = 10^3$: $\|v - v_h\|_{L^2(q_T)} \approx O(h^{0.99}), \|L\varphi_h\|_{L^2(q_T)} \approx O(h^{1.04}), \|y - \lambda_h\|_{L^2(q_T)} \approx O(h^{2.01}).$

We refer to Figure 3 which highlights for $r = 10^{-1}$ the polynomial convergence of the sequences $\|y - \lambda_h\|_{L^2(q_T)}$ (** red**) and $\|v - v_h\|_{L^2(q_T)}$ (** green**) with respect to h. The previous rates suggests that the value of the parameter r has a restricted influence.

<table>
<thead>
<tr>
<th>h</th>
<th>Mesh</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$|v_h|_{L^2(q_T)}$</td>
<td>7.18 $\times 10^{-2}$</td>
<td>3.59 $\times 10^{-2}$</td>
<td>1.79 $\times 10^{-2}$</td>
<td>8.97 $\times 10^{-3}$</td>
<td>4.49 $\times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>$|L\varphi_h|_{L^2(0,T;H^{-1}(0,1))}$</td>
<td>5.37</td>
<td>5.04</td>
<td>4.89</td>
<td>4.81</td>
<td>4.77</td>
<td></td>
</tr>
<tr>
<td>$|v - v_h|_{L^2(q_T)}$</td>
<td>2.286</td>
<td>9.43 $\times 10^{-1}$</td>
<td>3.76 $\times 10^{-1}$</td>
<td>1.5 $\times 10^{-1}$</td>
<td>6.15 $\times 10^{-2}$</td>
<td></td>
</tr>
<tr>
<td>$|y - \lambda_h|_{L^2(q_T)}$</td>
<td>2.45 $\times 10^{-1}$</td>
<td>9.65 $\times 10^{-2}$</td>
<td>4.32 $\times 10^{-2}$</td>
<td>2.29 $\times 10^{-2}$</td>
<td>1.10 $\times 10^{-2}$</td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>5.63 $\times 10^{-3}$</td>
<td>1.57 $\times 10^{-3}$</td>
<td>4.04 $\times 10^{-4}$</td>
<td>1.03 $\times 10^{-4}$</td>
<td>2.61 $\times 10^{-5}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.46 $\times 10^7$</td>
<td>2.67 $\times 10^8$</td>
<td>2.96 $\times 10^9$</td>
<td>3.03 $\times 10^{10}$</td>
<td>3.08 $\times 10^{11}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Example EX1: $q_T = q_T^2; r = 10^{-1}$.

The convergence of the method is also observed for the initial data (EX2), mainly supported around $x = 0.8$ and the less regular data (EX3). Table 5 collects numerical values associated to (EX2), $q_T = q_T^2$ and $r = 10^{-1}$. We obtain the following rates:

$\|v - v_h\|_{L^2(q_T)} \approx e^{5.85}h^{1.4}, \|L\varphi_h\|_{L^2(q_T)} \approx e^{7.96}h^{1.31}, \|y - \lambda_h\|_{L^2(q_T)} \approx e^{1.508}h^{1.62}$

Figure 4 displays other Q_T the dual variable φ_h and the primal variable λ_h for $q_T = q_T^2$. The figures are obtained with the mesh h^3. As expected, these variables are mainly concentrated along the characteristics starting from $x = 0.8$.
Table 4: Example \textbf{EX1}; $q_T = q^2_2$; $r = 10^3$.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>h</th>
<th>$|v_h|_{L^2(q_T)}$</th>
<th>$|L\varphi_h|_{L^2(0,T;H^{-1}(0,1))}$</th>
<th>$|v - v_h|_{L^2(q_T)}$</th>
<th>$|y - \lambda_h|_{L^2(Q_T)}$</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.18×10^{-2}</td>
<td>4.1796</td>
<td>0.0391</td>
<td>2.4977</td>
<td>9.23 $\times 10^{-2}$</td>
<td>6.12 $\times 10^8$</td>
</tr>
<tr>
<td>2</td>
<td>3.59×10^{-2}</td>
<td>4.6185</td>
<td>0.0322</td>
<td>1.1341</td>
<td>4.56 $\times 10^{-2}$</td>
<td>1.44 $\times 10^{10}$</td>
</tr>
<tr>
<td>3</td>
<td>1.79×10^{-2}</td>
<td>4.7589</td>
<td>0.0162</td>
<td>0.5617</td>
<td>7.70 $\times 10^{-3}$</td>
<td>1.55 $\times 10^{12}$</td>
</tr>
<tr>
<td>4</td>
<td>8.97×10^{-3}</td>
<td>4.7557</td>
<td>0.0078</td>
<td>0.2418</td>
<td>1.71 $\times 10^{-3}$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.49×10^{-3}</td>
<td>4.7291</td>
<td>0.0037</td>
<td>0.1201</td>
<td>4.46 $\times 10^{-4}$</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6: Example \textbf{EX1}; $r = 10^{-1}; q_T = q^2_2$; Norms $\|v - v_h\|_{L^2(q_T)}$ (•) and $\|y - \lambda_h\|_{L^2(Q_T)}$ (♦) vs. h.

Figure 7: Example \textbf{EX2}; $r = 10^{-1}; q_T = q^2_2$: Functions φ_h (Left) and λ_h (Right) over Q_T.

Similarly, Table\textbf{8} gives the value corresponding to the third example \textbf{EX3}, here with $\theta = 1/2$. We obtain

$\|v - v_h\|_{L^2(q_T)} \approx e^{1.69} h^{0.53}, \quad \|L\varphi_h\|_{L^2(q_T)} \approx e^{2.88} h^{0.56}, \quad \|y - \lambda_h\|_{L^2(Q_T)} \approx e^{-1.41} h^{1.32}$.

Table\textbf{9} gives the numerical results for the Example \textbf{EX3} with $\theta = 1/3$. We get

$\|v - v_h\|_{L^2(q_T)} \approx e^{1.54} h^{0.47}, \quad \|L\varphi_h\|_{L^2(q_T)} \approx e^{2.91} h^{0.54}, \quad \|y - \lambda_h\|_{L^2(Q_T)} \approx e^{-1.52} h^{1.29}$.

Figure\textbf{10} displays the dual variable φ_h and the primal variable λ_h for $q_T = q^2_2$ and \textbf{EX3} with
4 NUMERICAL APPROXIMATION AND EXPERIMENTS

<table>
<thead>
<tr>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(|v_h|_{L^2(q_T^T)})</td>
<td>(7.18 \times 10^{-2})</td>
<td>(3.59 \times 10^{-2})</td>
<td>(1.79 \times 10^{-2})</td>
<td>(8.97 \times 10^{-3})</td>
</tr>
<tr>
<td>(|L\varphi|_{L^2(0;T;H^{-1}(0,1))})</td>
<td>(4.8469)</td>
<td>(7.6514)</td>
<td>(10.9905)</td>
<td>(12.6256)</td>
</tr>
<tr>
<td>(|v - v_h|_{L^2(q_T^T)})</td>
<td>(3.13 \times 10^1)</td>
<td>(2.91 \times 10^1)</td>
<td>(1.82 \times 10^1)</td>
<td>(6.8984)</td>
</tr>
<tr>
<td>(|y - \lambda_h|_{L^2(Q_T^T)})</td>
<td>(8.4949)</td>
<td>(6.6975)</td>
<td>(3.2515)</td>
<td>(6.24 \times 10^{-1})</td>
</tr>
</tbody>
</table>

Table 5: Example \textbf{EX2}; \(q_T = q_2^2; r = 10^{-1} \).

<table>
<thead>
<tr>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(|v_h|_{L^2(q_T^T)})</td>
<td>(7.18 \times 10^{-2})</td>
<td>(3.59 \times 10^{-2})</td>
<td>(1.79 \times 10^{-2})</td>
<td>(8.97 \times 10^{-3})</td>
</tr>
<tr>
<td>(|L\varphi|_{L^2(0;T;H^{-1}(0,1))})</td>
<td>(4.807)</td>
<td>(4.756)</td>
<td>(4.707)</td>
<td>(4.689)</td>
</tr>
<tr>
<td>(|v - v_h|_{L^2(q_T^T)})</td>
<td>(3.858)</td>
<td>(2.965)</td>
<td>(1.881)</td>
<td>(1.232)</td>
</tr>
<tr>
<td>(|y - \lambda_h|_{L^2(Q_T^T)})</td>
<td>(1.4382)</td>
<td>(8.73 \times 10^{-1})</td>
<td>(6.24 \times 10^{-1})</td>
<td>(4.24 \times 10^{-1})</td>
</tr>
</tbody>
</table>

Table 6: Example \textbf{EX3} with \(\theta = 1/2; r = 10^{-1}; q_T = q_2^2 \).

\(\theta = 1/3 \). The figures are again plotted with the mesh \(\#3 \).

<table>
<thead>
<tr>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(|v_h|_{L^2(q_T^T)})</td>
<td>(7.18 \times 10^{-2})</td>
<td>(3.59 \times 10^{-2})</td>
<td>(1.79 \times 10^{-2})</td>
<td>(8.97 \times 10^{-3})</td>
</tr>
<tr>
<td>(|L\varphi|_{L^2(0;T;H^{-1}(0,1))})</td>
<td>(5.350)</td>
<td>(5.263)</td>
<td>(5.195)</td>
<td>(5.172)</td>
</tr>
<tr>
<td>(|v - v_h|_{L^2(q_T^T)})</td>
<td>(4.230)</td>
<td>(3.339)</td>
<td>(2.095)</td>
<td>(1.382)</td>
</tr>
<tr>
<td>(|y - \lambda_h|_{L^2(Q_T^T)})</td>
<td>(1.3571)</td>
<td>(9.78 \times 10^{-1})</td>
<td>(6.91 \times 10^{-1})</td>
<td>(5.13 \times 10^{-1})</td>
</tr>
</tbody>
</table>

Table 7: Example \textbf{EX3} with \(\theta = 1/3; r = 10^{-1}; q_T = q_2^2 \).

Figure 8: Example \textbf{EX3} with \(\theta = 1/3; r = 10^{-1}; q_T = q_2^2 \); Functions \(\varphi_h \) (Left) and \(\lambda_h \) (Right).
4.7 Various domains q_T with same measure: comparison of the L^2-norm

The optimization of the support domain q_T is particularly relevant in the time dependent situation. As a first step in this direction, we compare numerically in this section the $L^2(q_T)$-norm of the control v_h for various domain q_T having the same measure. Along this section, we take $r = 10^{-1}$ and $T = 2.2$. The four domains we consider are $q_{T=2.2}^i$ for $i = 0, 1, 2, 3$ and are described in Section 4.1.

Table 8 reports the L^2-norms of $v_h = -\varphi_h 1_{q_T}$ obtained with the finer mesh (mesh 5, see Table 1) associated to each domain.

<table>
<thead>
<tr>
<th>Initial data</th>
<th>q_T^0</th>
<th>q_T^1</th>
<th>q_T^2</th>
<th>q_T^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX1</td>
<td>4.3677</td>
<td>3.8770</td>
<td>4.4808</td>
<td>5.5967</td>
</tr>
<tr>
<td>EX2</td>
<td>11.9994</td>
<td>12.0973</td>
<td>10.6268</td>
<td>11.2624</td>
</tr>
<tr>
<td>EX3, $\theta = 1/3$</td>
<td>3.9946</td>
<td>4.5026</td>
<td>5.0132</td>
<td>5.0369</td>
</tr>
</tbody>
</table>

Table 8: L^2-norm $\|v_h\|_{L^2(q_T)}$ for $q_T = q_{2.2}^i$, $i \in \{0, 3\}$ for initial data EX1-EX3.

Figure 9 displays the dual variable φ_h and the primal one λ_h associated to the initial data EX2 and control domains q_T^3.

Figure 9: Example EX2: $q_T = q_{2.2}^3$ - Function φ_h (Left) and λ_h (Right) over Q_T.

Figure 10 displays the dual variable φ_h and the primal one λ_h associated to the initial data EX3, $\theta = 1/3$ and control domains q_T^3.

We remark that any of these domains provides minimal norm controls for every initial data EX1-EX3. In fact, we suspect that the domains minimizing the L^2-norm of the control of minimal L^2-norm are strongly connected with the set generated by the characteristics of the initial data. This questions will be investigated in a future study.

4.8 Behavior of the control as $\delta_0 \searrow 0$

The approach we have developed is valid for any support q_T satisfying the hypothesis of Proposition 2.1, in particular arbitrarily thin domain. In this Section we study numerically the evolution of the norm of the controls of minimal L^2-norm supported in a time dependent domain q_T when the measure of these domains goes to 0. Precisely, we consider smaller and smaller values to the parameter δ_0 defining the "thickness" of the domains q_T as specified by (40)-(41).
Figure 10: Example EX3, $\theta = 1/3$: $q_T = q_{1,2}^3$ - Function φ_h (Left) and λ_h (Right) over Q_T.

In Table 9 we give the L^2 and $L^2(H^{-1})$ norms of the controls obtained for the initial data EX1 and control domains q_T^2 for $\delta_0 = \frac{10^{-1}}{2^i}$ for values of $i \in \{0, 1, 2, \ldots, 6\}$. The numerical values suggest that both norms of the controls are not uniformly bounded (by above) with respect to δ_0; this indicates that the L^2-controllability of (1) with control supported on the curve γ_T^2 (see 38) does not hold. Similar behaviors are obtained for the other domains considered in Section 4.1 when $\delta_0 \to 0$. This does not contradict the result of [6] where the $H^{-1}(\cup_{t \in (0,T)} \gamma(t) \times \{t\})$-controlability is proved in the limit situation.

<table>
<thead>
<tr>
<th>δ_0</th>
<th>10^{-1}</th>
<th>10^{-1}/2</th>
<th>10^{-1}/2^2</th>
<th>10^{-1}/2^3</th>
<th>10^{-1}/2^4</th>
<th>10^{-1}/2^5</th>
<th>10^{-1}/2^6</th>
</tr>
</thead>
<tbody>
<tr>
<td># triangles</td>
<td>68 740</td>
<td>68 464</td>
<td>68 402</td>
<td>68 728</td>
<td>68 422</td>
<td>68 966</td>
<td>68 368</td>
</tr>
<tr>
<td>$|v_h|_{L^2(q_T)}$</td>
<td>4.8308</td>
<td>7.3308</td>
<td>11.5743</td>
<td>18.8056</td>
<td>29.7354</td>
<td>47.3157</td>
<td>123.9704</td>
</tr>
<tr>
<td>$|v_h|_{L^2(H^{-1})}$</td>
<td>0.0035</td>
<td>0.0042</td>
<td>0.0066</td>
<td>0.0107</td>
<td>0.0170</td>
<td>0.0270</td>
<td>0.0704</td>
</tr>
</tbody>
</table>

Table 9: Example EX1; $q_T = q_{1,2}^3$; Norms of the control v_h obtained for the EX1 for control domains q_T^2 for different values of δ_0.

4.9 Other cases

In order to illustrate our approach in a more challenging case we consider the wave equation with a non-constant velocity of propagation c and control supported in a time dependent domain:

$$
\begin{cases}
 y_{tt} - (c(x)y_x)_x = v_1 q_T, & (x, t) \in Q_T \\
 y(x, t) = 0, & (x, t) \in \Sigma_T \\
 y(x, 0) = y_0(x), & x \in (0, 1).
\end{cases}
$$

We take the velocity $c \in C^\infty(0, 1)$ given by

$$
c(x) = \begin{cases}
 1, & x \in [0, 0.45] \\
 \in [1, 5], & (c'(x) > 0), x \in (0.45, 0.55) \\
 5, & x \in [0.55, 1].
\end{cases}
$$

Note that the Fourier expansion developed in Appendix A does not apply in this case. Although the inequality [12] is open in this more general case, the solution of the mixed formulation [22]...
still provides convergent approximations \(\{v_h\} \) of controls. Figure 11 depicts the dual variable \(\varphi_h \) and the primal variable \(\lambda_h \) corresponding to the approximation of the control for problem (56), for initial data given by \textbf{EX3} with \(\theta = 1/3 \) and control domain \(q_2^2 \). The augmentation parameter is \(r = 10^{-1} \).

Figure 11: Example \textbf{EX3}, \(\theta = 1/3 \): \(q_T = q_2^2 \) for a non-constant velocity of propagation - Function \(\varphi_h \) (Left) and \(\lambda_h \) (Right) over \(Q_T \).

Since the control acts in a time dependent domain, the geometric controllability condition can hold for values of the controllability time \(T \) which are smaller than 2 (we refer to [18]). Figure 12 displays \(\varphi_h \) and \(\lambda_h \) corresponding to the example \textbf{EX3} for \(\theta = 1/3, T = 1 \) and \(q_T = q_1^2 \). We mention that in this section the domains \(Q_T \) are discretized using uniform meshes formed by triangles of size \(h \approx 10^{-2} \).

Figure 12: Example \textbf{EX3}, \(\theta = 1/3 \): \(q_T = q_1^2 \) - Function \(\varphi_h \) (Left) and \(\lambda_h \) (Right) over \(Q_T \).

Another, even more challenging situation is the approximation of controls for problem (56) for shorter controllability times. In Figure 13 we display the results obtained for the initial data \textbf{EX3}, domain \(q_T^{T=1} \) and the velocity of propagation is non constant in space and given by (57).

Analyzing the evolution of the norm of \(\lambda_h \) with respect to the time, in all the three examples considered in this section it seems to have the controllability, although the hypotheses of
4 NUMERICAL APPROXIMATION AND EXPERIMENTS

Figure 13: Example EX3, $\theta = 1/3$: $q_T = q_1^2$ for a non-constant velocity of propagation - Function φ_h (Left) and λ_h (Right) over Q_T.

Proposition 2.1 are not completely fulfilled.

4.10 Conjugate gradient for J^{**}

We illustrate here the Section 3.2: we minimize the functional $J^{**}: L^2(Q_T) \to \mathbb{R}$ with respect to the variable λ. We recall that this minimization corresponds exactly to the resolution of the mixed formulation (22) by an iterative Uzawa type procedure. The conjugate gradient algorithm is given at the end of Section 3.2. In practice, each iteration amounts to solve a linear system involving the matrix $A_{r,h}$ of size $n_h = 4m_h$ (see (52)) which is sparse, symmetric and positive definite. We use the Cholesky method.

We consider the singular situation given by the example EX3 with $\theta = 3$, $T = 2$ and $q_T = q_2^2$. We take $\varepsilon = 10^{-10}$ as a stopping threshold for the algorithm (that is the algorithm is stopped as soon as the norm of the residue g^n at the iterate n satisfies $\|g^n\|_{L^2(0,T,H^1_0(0,1))} \leq 10^{-10} \|g^0\|_{L^2(0,T,H^1_0(0,1))}$) or as the number of iterations is greater than 1000. The algorithm is initiated with $\lambda^0 = 0$ in Q_T. Table 10 and 11 display the results for $r = 10^{-1}$ and $r = 10^3$.

We first check that this iterative method gives exactly the same approximation λ_h than the previous direct method (where (52) is solved directly) since, from Proposition (3.1) problem (22) coincides with the minimization of J^{**} for $r > 0$. Then, we observe that the number of iterates is sub-linear with respect to the dimension $m_h = card(\{\lambda_h\})$ of the approximated problem. Once again, this is in contrast with the behavior of the conjugate gradient algorithm when this latter is used to minimize J^* with respect to (φ_0, φ_1) (see [21]).

Figure 14 displays the evolution of the residue $\|g^n\|_{L^2(0,T,H^1_0(0,1))}/\|g^0\|_{L^2(0,T,H^1_0(0,1))}$ with respect to the iteration n for two values of the augmentation parameter: $r = 10^{-1}$ and $r = 10^3$. The computation has been done with the level mesh $\#3$. As expected, we check that a larger value of r improves significantly the convergence of the algorithm: recall that the gradient of J^{**} in $L^2(H^1)$ is given by: $\nabla J^{**}(\lambda) = A_r \lambda - \Delta^{-1}(L\varphi_0) := -\Delta^{-1}(L\varphi)$ and that r acts on the term $\|L\varphi\|_{L^2(H^{-1})}$. For a fixe level of mesh, we observe however a lower error $\|\lambda_h - y\|_{L^2(Q_T)}$ for $r = 10^{-1}$.
5 Concluding remarks and perspectives

We have extended in this work the contribution [10] to a non-cylindrical situation where the support of the controls depend on the time variable. The numerical approximation is based on a direct resolution of the controllability problem through a mixed formulation involving the dual adjoint variable and a Lagrange multiplier, which turns out to coincide with the primal state of the wave equation to be controlled. The well-posedness of this mixed formulation is the consequence of a generalized observability inequality deduced from [6] (and equivalent to the controllability of the equation). The approach leads to a variational formulation over time-space functional Hilbert space without distinction between the time and the space variable and is very appropriate to non-cylindrical situations.

At the practical level, the discrete mixed time-space formulation is solved in a systematic way in the framework of the finite element theory: in contrast to the classical approach, there is no need to take care of the time discretization nor of the stability of the resulting scheme, which is often a delicate issue. The resolution amounts to solve a sparse symmetric linear system. As discussed in [10], Section 4.3 (but not employed here), the space-time discretization of the domain allows an adaptation of the mesh so as to reduce the computational cost and capture the main features of the solution.

Table 10: Conjugate gradient algorithm. EX3 with $\theta = 1/3$, for control domain q^2_2 and $r = 10^{-1}$.

<table>
<thead>
<tr>
<th>h</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>iterate</td>
<td>307</td>
<td>414</td>
<td>624</td>
<td>967</td>
<td>1000</td>
</tr>
<tr>
<td>$|\lambda_h - \tilde{y}|_{L^2(Q_T)}$</td>
<td>1.28×10^{-2}</td>
<td>4.77×10^{-3}</td>
<td>1.5×10^{-3}</td>
<td>6.2×10^{-4}</td>
<td>3.52×10^{-6}</td>
</tr>
</tbody>
</table>

Table 11: Conjugate gradient algorithm. EX3 with $\theta = 1/3$, for control domain q^2_2 and $r = 10^3$.

<table>
<thead>
<tr>
<th>h</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>iterate</td>
<td>87</td>
<td>105</td>
<td>119</td>
<td>140</td>
<td>166</td>
</tr>
<tr>
<td>$|\lambda_h - \tilde{y}|_{L^2(Q_T)}$</td>
<td>1.15×10^{-1}</td>
<td>5.2×10^{-2}</td>
<td>1.65×10^{-2}</td>
<td>6.03×10^{-3}</td>
<td>2.89×10^{-3}</td>
</tr>
</tbody>
</table>

Figure 14: Example EX3. Evolution of the residue $\|g^n\|_{L^2(0,T;H^1_0(0,1))}/\|g^0\|_{L^2(0,T;H^1_0(0,1))}$ w.r.t. the iterate n.
The numerical experiments reported in this work suggest a very good behavior of the approach: the strong convergence of the sequences \(\{v_h\}_{h>0} \), approximation of the controls of minimal square integrable norm, are clearly observed as the discretization parameter \(h \) tends to zero (as the consequence of the uniform inf-sup discrete property).

As briefly discussed in Section 4.7, this work opens now the possibility to optimize the control \(v \) of minimal \(L^2(q_T) \)-norm with respect the support \(q_T \) (equivalently in our case, with respect to the curves \(a \) and \(b \), see (6)) in the spirit of [22, 23, 24]: for any \((y_0, y_1) \in H, T > 0 \) and \(L \in (0, 1) \), the problem reads:

\[
\inf_{q_T \in C_L} \|v_{q_T}\|_{L^2(q_T)}, \quad C_L = \{q_T : q_T \subset Q_T, |q_T| = L|Q_T| \text{ and such that (12) holds}\}
\]

where \(v_{q_T} \) denotes the control of minimal \(L^2(q_T) \) norm for (1) distributed over \(q_T \).

Eventually, we also mention that this approach which consists in solving directly the optimality conditions of a controllability problem may be employed to solve inverse problems where, for instance, the solution of the wave equation has to be recovered from a partial observation, typically localized on a sub-domain \(q_T \) of the working domain: actually, the optimality conditions associated to a least-square type functional can be expressed as a mixed formulation very closed to [22]. These last two issues will be analyzed in a future work.

Appendix: Fourier expansion of the control of minimal \(L^2(q_T) \)-norm and its corresponding controlled solution

We explain the semi-explicit computation in term of Fourier series of \((\varphi_0, \varphi_1)\), initial data of the adjoint solution \(\varphi \) (see (5)) and unique minimizer in \(H \) of \(J^* \) defined by (8). This allows to expand in term of Fourier series the control of minimal \(L^2(q_T) \)-norm for (1) given by \(v = -\varphi_1 1_{q_T} \), and then expand the correspond controlled solution \(y \). These expansion are very useful to check and quantify the convergence of the sequence \((\varphi_h, \lambda_h)_{h>0}\), solution of the discrete mixed formulation (42) with respect to the discretization parameter.

First, we assume the the minimizer \((\varphi_0, \varphi_1) \in L^2(0, 1) \times H^{-1}(0, 1) \) of (8) takes the following expansion:

\[
(\varphi_0(x), \varphi_1(x)) = \sum_{p>0} (a_p, b_p) \sin(p\pi x)
\]

leading to

\[
\varphi(x, t) = \sum_{p>0} \left(a_p \cos(p\pi t) + \frac{b_p}{p\pi} \sin(p\pi t) \right) \sin(p\pi x).
\]

We get

\[
\iint_{q_T} |\varphi|^2 \, dx \, dt = \sum_{p,q>0} a_p \bar{a_q} \iint_{q_T} \cos(p\pi t) \cos(q\pi t) \sin(p\pi x) \sin(q\pi x) \, dx \, dt
\]

\[
+ \sum_{p,q>0} a_p \bar{b_q} \iint_{q_T} \cos(p\pi t) \frac{\sin(q\pi t)}{q\pi} \sin(p\pi x) \sin(q\pi x) \, dx \, dt
\]

\[
+ \sum_{p,q>0} b_p \bar{a_q} \iint_{q_T} \frac{\sin(p\pi t)}{p\pi} \cos(q\pi t) \sin(p\pi x) \sin(q\pi x) \, dx \, dt
\]

\[
+ \sum_{p,q>0} b_p \bar{b_q} \iint_{q_T} \frac{\sin(p\pi t)}{p\pi} \frac{\sin(q\pi t)}{q\pi} \sin(p\pi x) \sin(q\pi x) \, dx \, dt
\]
We also have
\[
\int_0^1 \varphi_0(x)y_1(x) \, dx = \sum_{p>0} a_p \int_0^1 y_1(x) \sin(p\pi x) \, dx
\]
(61)

and \(<\varphi_1, y_0> = H^{-1}, H^1 = \int_0^1 v_x(x)y_{0,x} \, dx \) with
\[
v_x(x) = \sum_{p>0} b_p \left[\int_0^1 \int_0^y \sin(p\pi s) \, ds \, dy - \int_0^x \sin(p\pi s) \, ds \right] = \sum_{p>0} b_p \frac{\cos(p\pi x)}{p\pi}
\]
so that
\[
<\varphi_1, y_0> = H^{-1}, H^1 = \sum_{p>0} b_p \int_0^1 y_{0,x}(x) \frac{\cos(p\pi x)}{p\pi} \, dx.
\]
(62)

The optimality equation associated to the functional \(J^* \) (see 8) then reads
\[
DJ(\varphi_0, \varphi_1) \cdot (\varphi_0, \varphi_1) = \int_{\Omega_T} \varphi \varphi_x \, dx \, dt + <\varphi_1, y_0> = H^{-1}, H^1 = \int_0^1 \varphi_0 y_1 \, dx = 0, \quad \forall (\varphi_0, \varphi_1) \in H
\]
(63)

and can be rewritten in terms of the \((a_p, b_p)_{p>0} \) as follows:
\[
< \left\{ \frac{\alpha_p}{b_p} \right\}_{p>0}, M(q_T) \left(\left\{ \frac{a_p}{b_p} \right\}_{p>0} \right) >= < \left\{ \frac{\alpha_p}{b_p} \right\}_{p>0}, F(y_0, y_1) >, \quad \forall (\alpha_p, b_p) \in l^2 \times h^{-1}
\]
(64)

where \(M(q_T) \) denotes a symmetric positive definite matrix derived from the relation (60) and \(F(y_0, y_1) \) a vector derived from the relation (61,62). The resolution of the infinite dimensional system (64) (reduced to a finite dimension one by truncation of the sums) allows an approximation of the minimizer \((\varphi_0, \varphi_1) \) of \(J \) given by (8), and then of \(\varphi \), solution both of the boundary value problem (5) and of the mixed formulation formulation (22). We recall that the corresponding control is given by \(v = -\varphi_1|x_T| \).

The corresponding controlled solution \(y \) can also be expanded in the Fourier series as \(y(x,t) = \sum_{p>0} b_p(t) \sin(p\pi x) \) where \(b_p \) solves the equation
\[
\begin{cases}
\frac{b_p''(t)}{p^2} + (p\pi)^2 b_p(t) = \sum_{q>0} (a_q \cos(q\pi t) + b_q \sin(q\pi t)) c_{p,q}(t) := f_p(t), & t \in (0,T), \\
\sum_{p>0} b_p(0) \sin(p\pi x) = y_0(x), & \sum_{p>0} b'_p(0) \sin(p\pi x) = y_1(x)
\end{cases}
\]
(65)

where
\[
c_{p,q}(t) = 2 \int_{a(t)}^{b(t)} \sin(p\pi x) \sin(q\pi x) \, dx
\]
(66)

\(b_p \) is given explicitly by
\[
b_p(t) = C_{1p} \cos(p\pi t) + \frac{C_{2p}}{p^2} \sin(p\pi t)
\]
\[
+ \frac{1}{p\pi} \left(\sin(p\pi t) \int_0^t \cos(p\pi s) f_p(s) \, ds - \cos(p\pi t) \int_0^t \sin(p\pi s) f_p(s) \, ds \right)
\]
(67)

where \((C_{1p}, C_{2p})_{p>0} \) are the Fourier’s coefficients of the initial data \((y_0, y_1) \).
References

REFERENCES

