Vulnerability of Smart Grids with Variable Generation and Consumption: a System of Systems Perspective
Enrico Zio, Giovanni Sansavini

To cite this version:

HAL Id: hal-00926907
https://hal.archives-ouvertes.fr/hal-00926907
Submitted on 10 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Vulnerability of Smart Grids with Variable Generation and Consumption: a System of Systems Perspective

Enrico Zio, Senior Member, IEEE, and Giovanni Sansavini

Abstract—This paper looks into the vulnerabilities of the electric power grid and associated communication network, in the face of intermittent power generation and uncertain demand within a complex network framework of analysis of smart grids. The perspective is typical for the system of systems analysis of interdependencies in a critical infrastructure (CI), i.e. the smart grid for electricity distribution. We assess how the integration of the two systems copes with requests to increase power generation due to enhanced power consumption at a load bus. We define adequate measures of vulnerability to identify the most limiting communication time delays. We quantify the probability that a reduction in the functionality of the communication system yields a faulty condition in the electric power grid, and find that a factual indicator to quantify the coupling strength between the two networks is the frequency of load-shedding actions due to excessive communication time delay. We evaluate safety margins with respect to communication specifications, i.e. the data rate of the network, to comply with the safety requirements in the electric power grid. Finally, we find a catastrophic phase transition with respect to this parameter, which affects the safe operation of the CI.

Index Terms—Complex Networks, System of Systems, Critical Infrastructures, Smart Grids, Interdependencies, Vulnerability Analysis, Uncertainty

I. INTRODUCTION

The life and development of modern Societies is supported by critical infrastructures (CIs), like the transport and communication networks or the electrical grid, which grant the necessary continuous production and distribution of goods and services [1].

A characteristic of these CIs is that they are highly interconnected and mutually dependent, i.e. interdependent, in complex ways, both physically and through information and communication technologies used for data acquisition and control, leading to the concept of "systems of systems" [2].

This brings the need of assessing and controlling the influences and limitations which interacting CIs impose on their operating conditions [3].

In particular, a focal subject of interest today is the evolution of the networks for electrical energy supply and their conception/renovation as “smart” grids [4]-[8] with distributed generation, as opposed to the centralized power generation structure of the existing electric power grids. One key aspect characterizing smart grids is the combination of the electric power grid with an information and communication network to “improve the observability and controllability of the distribution grid and thereby convert it from a static infrastructure to be operated as designed to a flexible, dynamic infrastructure operated proactively” [4].

The concepts and configurations of smart grids vary sensibly with respect to the implementation at the different levels of the electrical infrastructure, i.e. the transmission and distribution systems (the level of the individual costumer, and the related pricing issues, lies beyond the scope of the study presented in this paper) [5].

At the level of the transmission system, the efficiency and stability of power system operation could be improved substantially by phase angle measurements at many key locations and the use of Flexible AC Transmission System control devices (FACTS), combined with distributed and autonomous control strategies and high-speed communication.

The level of the distribution system is the one usually referred to when introducing concepts of smart grids. Unlike the transmission grids that are arranged as meshed networks, the distribution networks form tree-like, radial structures, characterized by a central distribution hub where power enters and is routed to the loads along the parallel branches of the distribution feeders. If a malfunctioning occurs, circuit breakers automatically disconnect the entire feeder. The use of multiple power injection points, and sensors and remote control switches that can isolate and cut off the problem would guarantee the continuous power supply to the other buses of the feeder [9]. Furthermore, at present stage the disconnection of the entire feeder is the only strategy to balance a load excess when generation is suddenly lost due to an emergency. Conversely, a combination of smart meters and advanced distribution automation would allow controlling individual loads along a distribution feeder so that critical services (such...
as police stations, hospitals, emergency services) can remain connected, while loads that provide less critical services can be dropped. Furthermore, the deployment of small-size diffuse generation would relieve stresses on transmission and distribution systems, and allow the disconnection of the distribution feeder from the main power system to run it as an isolated island, serving only a few critical loads in case of an emergency (this is not currently allowed for technical, legal, safety, and regulatory reasons).

Irrespective of the system level under consideration, the smart grid is an auto-balancing, self-monitoring power grid that has the ability to sense when a part of its system is overloaded and reroute power to reduce overload and prevent a potential outage situation. It enables real-time communication between users and utility, allowing optimal energy usage, and the introduction of renewable energy sources for minimizing the collectivity environmental footprint [4].

The use of renewable energy sources poses challenges to the design and the operations of the electric power grid. The availability of these sources is strictly dependent on the climatic conditions, i.e. cloud cover or wind speed and steadiness. Then, the power output of solar and wind electric generators is affected by uncertainty and intermittency [10]-[12]: paradoxically, due to its intrinsic stochastic nature, electric power from renewable sources could be abundantly available when it is not needed, while scarce in other cases of necessity. Moreover, electrical energy from renewable sources is typically produced in remote areas, e.g., where strong and steady winds are available or solar power plants can be conveniently located. This power has to be routed through the transmission network and delivered to distant locations where it is consumed. Yet, the existing power transmission infrastructure is not currently designed to carry intermittent electrical flows with possibly large peak flows, and in some cases it is inadequate to serve new remote power plants. As an example, a recent study [13] commissioned by the Italian Association of Energy Producers from Renewable Sources (APER) has estimated that between 2008 and 2009 the wind farms located in Southern Italy have lost 700 GWh (25% of the maximum producible energy) due to the limited current-carrying capacity of the high-voltage transmission lines and the scarce power demand in the area near the plants, corresponding to an economic loss of 144 millions of Euros.

The deployment of small-size renewable power generation at the electric distribution level is also rapidly changing the nature of this infrastructure. Traditionally a passive recipient of a unidirectional flow from the transmission network, the distribution network should now support injections of active power from its users. In this perspective, both the transmission and the distribution networks require a real-time control approach with an increasing level of complexity due to the broad space distribution of the generators and to the high degree of variability that characterizes electrical power from renewable sources [6].

Electric transmission networks already have some instrumentation that allows control centers to automatically monitor power flows and open or close circuit breakers at substations as a result of human- and computer-generated control decisions [5]. This communication level is based on heterogeneous technologies and platforms which are poorly integrated [14]. On the contrary, distribution networks lack instruments for the information exchange and the system control.

Considering the present lack of standards, the communication network will have to evolve with the developing Smart Grid. Communication links will need to use all kinds of resources, varying from hard-wired links to fiber optics, power line communication [15], wireless [16], satellites and micro-wave links, in order to serve the large geographical territory covered by the smart grid [7]. All of these communication links constitute opportunities but also introduce vulnerabilities, due to functional failures and exposition to malevolent attacks aiming at causing system-wide instabilities and blackouts, especially if they are not protected in dedicated supports but can be accessed over the Internet.

The coupling between the electric power and communication networks in Smart Grids raises safety and security issues [17]. In the smart grids, the continuous delivery of electric power is supported by the communication infrastructure and, vice versa, the exchange of information relies on the energy input of the electric power grid. Faults originating in one of the two networks impact on the other interdependent one. For example, the interruption or even the delay of the information flow communicating a control action upon the electric power grid may result in power unbalance and system instability that could trigger a blackout [7], [18]. Vulnerability analysis must then be concerned with the interconnected, mutually dependent systems to properly account for the influences and limitations which the interacting electrical power grids and communication networks impose on the individual system operating conditions, for avoiding fault propagation by designing redundancies and alternative modes of operations, and by detecting and recognizing threats.

This paper looks into the vulnerabilities of the electric power grid and associated communication network, in the face of intermittent power generation and uncertain demand within a complex network framework of analysis of smart grids. Complex network approaches for the analysis of distributed systems [19]-[25] take a holistic perspective in which the overall system behavior emerges as the result of the complex interactions of its constituents. The two main objectives of the analysis are (i) to identify preliminary vulnerabilities by topology-driven and dynamic analysis, and (ii) to guide and focus further detailed analyses of critical areas based on physical codes (e.g. incorporating line impedances and Kirchhoff's laws to assess the power flows from the generators to the loads of an electric network). Purely-topological, complex network models of the electric power grid [19]-[25],
which abstract the physical details of the provided service and characterize the topology of network systems, are here extended to capture essential operating features, i.e. the power is routed through the least resistant paths, the components are physically specialized in “generators” and “distributors”, the lines are subjected to limits on their carrying-flow capacities and the power generation and consumption levels vary within a range of uncertain values.

In order to account for the interdependence effects due to the coupling [26], we adopt a framework in which the communication delays are integrated in the electric CI. The communication network is assumed to be made of dedicated control signal channels. The coupling between the two interdependent networks occurs at the components level. Each node of the electric network is coupled with a router that ensures communication with the other elements of the network. The time required to exchange data from the measurement location to a control center or data concentrator, and the time required ultimately to communicate these data to the control devices, is collectively denoted as communication delay or latency. As stated before, excessive communication delay may result in power unbalance and system instability that could trigger a blackout. The calculation method of the communication delay encompasses several sources, including routing delays which are modeled as a series of \(M/1 \) queues, which symbolizes the cumulative time delay along the routing path from the measurement site to the control unit [27]. According to the shorthand notation developed for queuing systems, the three-part descriptor \(M/1 \) denotes a one-server queuing system with exponentially-distributed inter-arrival and service times [28].

We assess the vulnerability of the two interdependent networks subject to the specific hazard defined by the request of increase of power generation due to enhanced power consumption of one load. To this aim, we introduce vulnerability measures that identify the most critical communication time delays, and assess the probability that a reduction in the functionality of the communication system will generate a faulty condition in the electric power grid.

The paper is organized as follows: the embraced interpretation of vulnerability is detailed in Section II; the modeling of the smart grid CI with interdependencies is presented in Section III; Section III.A describes the model of power flow in the electrical transmission network and Section III.B describes the model of information flow in the communication network; Section III.C details the simulation procedure devised for analyzing the vulnerabilities of the two coupled CIs. In Section IV, the proposed model is applied to two interdependent networks whose structures are based on the 380 kV Italian power transmission network [29], [30], and Section IV.A discusses the numerical results. Conclusions are drawn in Section V.

II. VULNERABILITY ANALYSIS OF CRITICAL INFRASTRUCTURES

While the concept of risk is fairly mature and consensually agreed, the concept of vulnerability is still evolving and not yet established. In general terms, risk refers to a combination of the probability of occurrence of a specific event leading to loss, damage or injury and its extent. These quantities and their associated uncertainties are regarded as being numerically quantifiable.

The term vulnerability has been introduced as the concept of risk is somehow limited in portraying the hazard-centric perception of disasters. A hazard of low intensity could have severe consequences, while a hazard of high intensity could have negligible consequences: the level of vulnerability is making the difference [31]. The concept of vulnerability seen as a global system property focuses on three elements [32]: (i) degree of loss and damages due to the impact of a hazard; (ii) degree of exposure to the hazards, i.e., likelihood of being exposed to hazards of a certain degree and susceptibility of an element at the risk of suffering loss and damages; (iii) degree of resilience, i.e., the ability of a system to anticipate, cope with/absorb, resist and recover from the impact of a hazard or disaster.

Vulnerability is here interpreted as a flaw in the design, implementation or operation of an infrastructure system, or its elements, that renders it susceptible to destruction or incapacitation when exposed to a hazard or threat, or reduces its capacity to resume new stable conditions [1], [33]. The latter can be provided with a likelihood (frequency) while a measure for destruction or incapacitation needs specific elaborations. In this study, the vulnerability of the two interdependent networks is expressed in terms of frequency of load-shedding actions due to excessive communication time delay, with respect to several ranges of power increase request.

The goals of vulnerability analysis, and the associated modeling and simulation efforts, could be: (i) given a system and the end state of interest, identify the set of events and event sequences that can cause damages and loss effects; (ii) identify the relevant set of “initiating events” and evaluate their cascading impact on a subset of elements, or the system as a whole; (iii) given a system and the end state of interest, identify the set of events or respective event sequences that would cause this effect; (iv) given the set of initiating events and observed outcomes, determine and elaborate on (inter)dependencies (within the system and among systems) and on coupling effects of different orders [1].

The achievement of these goals relies on the analysis of the system, its parts and their interactions within the system; the analysis must account for the environment which the system lives in and operates, and finally for the objectives the system is expected to achieve. The ultimate goal is to identify the vulnerabilities for managing and reducing them.
III. DYNAMIC MODEL OF INTERDEPENDENT NETWORKS AND SIMULATION PROCEDURE

The electric power grid and the communication network are represented by two graphs $G_1(N_1,K_1)$ and $G_2(N_2,K_2)$ with N_1, N_2 nodes connected by K_1, K_2 links, respectively. In our case, it has been assumed (without loss of generality) that $N_1=N_2=N$ and $K_1=K_2=K$. The networks are specified by $N\times N$ adjacency (connection) matrices whose entries are 1 if there is an edge joining node i to node j or 0, otherwise, and by connection length matrices whose entries are the physical length of the line connecting node i to node j if there is an edge joining node i to node j or 0, otherwise.

In the electric power grid, the nodes correspond to buses. They are further specified into N_G generators, i.e. the providers of the service, and N_D distributors, i.e. the recipient of the service. The edges correspond to connections.

In the communication network, the nodes correspond to routers and the edges to dedicated control signal channels that connect them.

The interdependencies within the CI are due to the presence of routers on each electrical bus. Routers send and receive control commands that try to match the generation profile with the power demand in the electrical network according to the increase of electrical load.

The system, then, does not rely on a centralized control center. Control decisions are locally taken at the router/bus level and communicated to the other interacting buses/routers [33]. During this process, the total time required to the system to balance generation and demand, i.e. the communication time delay, T, is monitored.

A. The functional model of power flow in the electrical transmission network

The functional model of the electric power grid abstracts the physical details while at the same time capturing its essential operating features. The elements of the network are characterized by loading values normalized in the interval $[0, 1]$ that identify how close to the limit capacity they are operating. For generator and distributor nodes, $L' \in [0, 1]$ identifies the fraction of maximum power that generator i is injecting in the network, or alternatively, the fraction of maximum power that distributor i is absorbing from the network. The value $L' = 1$ identifies the maximum power that a generator i can inject in the system, or alternatively, the maximum power that distributor i has agreed to receive by contractual agreement. For lines, $L^y \in [0, 1]$ identifies the fraction of the maximum flow-carrying capacity that the line connecting node i to node j is serving. The value $L^y = 1$ indicates that the line connecting node i to node j, hereafter also called line ij, is operating at its maximum flow carrying-capacity.

The loading scenario is identified when the N values of L' and the K values of L^y are known. To account for the variability that characterizes generation and consumption, the L' values are sampled from uniform probability distributions in the intervals $[LG_{min}, LG_{max}]$ for generators and $[LD_{min}, LD_{max}]$ for distributors.

We assume that the flow of electrical power from generator i to distributor j follows the least resistant path between i and j. We further assume line resistance to be proportional to line length; hence the least resistant paths and the shortest paths coincide. We find the shortest paths that connect any generator i to any distributor j, and rank in descending order the lines with respect to their participation to the shortest paths. The L^y_i values are then also sampled from uniform probability distributions. In particular, two probability distributions are assumed that describe two possible states $[L_{low}, L_{max}]$ for lines that are likely to accommodate low values of power, and $[L_{high}, L_{high}]$ for lines that are likely to accommodate large values of power. To this aim, The L^y_i value is sampled from $[L_{high}, L_{high}]$ if line ij belongs to the first half of the rank, while it is sampled from $[L_{low}, L_{low}]$ if line ij belongs to the second half of the rank. This sampling procedure assigns on the average a higher power flow to those lines that are traversed by many generator-distributor shortest paths, i.e. that have a high betweeness centrality [36].

In the following, we assess how the CI copes with an increase in the electrical power demand. To this aim, starting from an initial loading scenario, we simulate a request of additional power, W, by distributor i. We assume that W is described by a uniform probability distribution $[W_{min}, W_{max}]$. The overall load $L' + W$ may also possibly exceed the maximum contractual power that i has agreed to receive from the system, i.e. 1.

B. The model of information flow in the communication network

In [27], Stahlhut et al. assess how the communication delay for measurements and control signals in a power system impacts the control system response. In the following, we embrace their calculation of the communication delay, and assume that the data transmitted are in the form of packets. The packets are a formatted block of information and are typically arranged in three sections: the header, the payload, and the trailer. The header has the following information: packet length, origin and destination address, packet type, and packet number (if a sequence of packets is being sent). The payload carries the data taken from the measurement. The trailer is at the end of the packet and carries information which permits the receiving device to identify the end of the packet. The time delay calculation encompasses several different delays that occur in communication systems. These delays typically are:

- serial delays: the delay of having bits being sent one after another;
- “between packet” serial delays: the time after a packet is sent to when the next packet is sent;
- propagation delays: the time required to transmit data over a particular communication medium;
- routing delays: the time required for data to be sent through a router, and resent to another location.
The total signal time delay may be represented as

\[T = T_s + T_p + T_r \]
(1)

\[T_r = P_i / D_i \]
(2)

\[T_p = l / v \]
(3)

where \(T_s \) is the serial delay, \(T_p \) is the propagation delay, \(T_r \) is the routing delay, \(P_i \) is the size of the packet (bits/packet), \(D_i \) is the data rate of the network, \(l \) is the length of the communication medium, and \(v \) is the velocity at which the data are sent through the communication medium (e.g., 0.6 to \(c \), where \(c \) is the speed of light).

Routers are a major part of the communication infrastructure in a communication network. There are a number of methods by which routing delay can be approximated [37]-[41]. A simple and fast calculation method of routing delay can be used to approximate the delay at a router: this calculation method is based on a series of M/M/1 queues [28], in which a path from the measurement to the control center is traced, and all of the routing delays are added up to represent the total routing delay for the measurement. For this calculation,

\[T_r = \sum_{i=1}^{N} T_r^{(i)} \]
(4)

where \(T_r \) is the total routing delay, \(T_r^{(i)} \) is the routing delay for a single router at location \(i \), and \(N \) is the total number of routers. The M/M/1 queue is used to approximate the value of \(T_r^{(i)} \) for each router \(i \), and it is modeled as a one-server queuing system with exponentially-distributed inter-arrival and service times [28]. The M/M/1 queue has several associated performance measures such as: the average number of customers in line, the average number of customers in the system, the time waiting in line, and the time required to pass through the system [39], [42]. In this context, the customers are the sensory messages in the communication network. A noteworthy performance measure is the total waiting time (system time), and this encompasses both the amount of time waiting in line (waiting time), as well as the amount of time being served (service time). The total waiting time is quantified as

\[\frac{\lambda}{\lambda + (\mu - \lambda)} \]
(5)

where \(\lambda \) is the rate at which objects come in the system (e.g., packets/s) and \(\mu \) is the rate at which the objects are being served (e.g., packets/s). The routing time \(T_r^{(i)} \) for each router \(i \) can be estimated from (5) and used in (4) to calculate the total routing delay

\[T_r = \sum_{i=1}^{N} \frac{\lambda^{(i)}}{\mu^{(i)} - \lambda^{(i)}} \]
(6)

We assume that information from router \(i \) to router \(j \) flows along the shortest path connecting \(i \) and \(j \). Therefore, the total routing time, \(T_r \), from router \(i \) to router \(j \) is evaluated as the sum of the routing delays of the encountered routers along the shortest path connecting \(i \) and \(j \).

The maximum time delay that the smart grid can tolerate depends on the system task to be executed and ranges from tenths of milliseconds to tenths of seconds [6], [7]. For example, the standard specifies that for an unintentional island in which the distributed generation energizes a portion of the distribution network, the control system shall detect the island and cease to energize the portion within 2s of the formation of an island. Moreover, latencies in the tens of ms allow rapid detection of faults and are the accepted fault detection times [7]. On the contrary, voltage and active power regulation actions should be accomplished within 10s and some minutes, respectively [6].

\section*{C. Simulation procedure}

To test the vulnerability of the grid with respect to the stability upon a power increase request, \(W \), we proceed in successive stages as follows:

1. All \(N \) components of the electric power grid are working under independent uniformly random initial loads. In particular, \(L_i \in [L_{G_i}^{\text{min}}, L_{G_i}^{\text{max}}] \) for generator \(i = 1, \ldots, N_G \), \(L_i \in [L_{D_i}^{\text{min}}, L_{D_i}^{\text{max}}] \) for distributor \(i = 1 + N_G, \ldots, N_G + N_L \), and \(L_j \in [L_{W_j}^{\text{min}}, L_{W_j}^{\text{max}}] \), if line \(ij \) belongs to the first or second half of the betweenness centrality rank (Section III.A), respectively, \(i, j = 1, \ldots, N \). These values identify the loading scenario.

2. A distributor node \(i \) is chosen randomly and its power demand is increased from \(L_i \) to \(L_i + W \), where \(W \) is sampled from the uniform probability distribution \([W_{\text{min}}, W_{\text{max}}]\).

3. The \(N_G \) generators that are connected to \(i \) are sorted by ascending distance from \(i \), i.e., ascending resistance. The closest generator \(j = 1 \) is selected. Communication delay \(T \) is set to zero.

4. Distributor \(i \) queries generator \(j \) for additional power \(W \). Generator \(j \) answers providing the value of the power available to \(i \), i.e., \(SG(j) = \min(W, 1 - L_i) \), where \(L_i \) is the maximum additional power that \(j \) can provide. Communication time delay, \(T \), is updated.

5. Check whether the shortest path between \(i \) and \(j \) can accommodate the additional power \(SG(j) \). To this aim, every line \(ij \) on the shortest path between \(i \) and \(j \) is tested for infringement of the current-carrying capacity limit in the new configuration, i.e., \(L_i + SG(j) \leq 1 \). If at least one limit is exceeded the additional power is updated to the maximum power value that satisfies all the line constraints, i.e.
for every line yz on the shortest path between distributor i and generator j, $SG(yz) = 0$ in case that a line yz is already operating at its maximum flow-carrying capacity. The residual power that distributor i still requires, $U(i)$, and the power that generator j could not supply, $UG(j)$, are evaluated as $U(i) = UG(j) = W - \sum_{yz} SG(yz)$. They are recorded for the vulnerability evaluation. Communication time delay, T, is updated.

6. The generator index j is incremented by 1, and the procedure is returned to step 4 until $U(i) = 0$, in case of a successful system state, or $j = N_G$ and $U(i) > 0$, in case the power request is not satisfied. The final communication time delay, T, is recorded.

The value of $U(i)$ at the end of the simulation is the fraction of the additional load W that has to be shed in order to balance the power generation and the power consumption. Therefore, we assume that load can be continuously shed.

Furthermore, it can be noticed that the power that generator j could not supply, $UG(j)$, can be greater than 0 for two different causes: either j is operating at its maximum capacity, or there is no path for the power produced by j for reaching the distributor i where it is needed. This feature of the algorithm is consistent with the behavior of smart grids that include intermittent and remotely-generated electricity from renewable energy sources, as discussed in Section I.

To incorporate the effects of load and generation uncertainties, the above algorithm is embedded in a Monte Carlo simulation framework, in which a large number of additional load requests, e.g., 100000 in this study, is simulated for the same range of $[LG_{\text{min}}, LG_{\text{max}}]$, $[LD_{\text{min}}, LD_{\text{max}}]$, $[L_{\text{high}}_{\text{min}}, L_{\text{high}}_{\text{max}}]$, $[L_{\text{low}}_{\text{min}}, L_{\text{low}}_{\text{max}}]$ and $[W_{\text{min}}, W_{\text{max}}]$, in order to obtain statistically significant results for various realizations of the same average loading condition.

During the simulations, relevant statistics are recorded to evaluate different vulnerability indexes, i.e. the distribution of the communication time delay, T, in case of a successful (no load-shedding is required to balance consumption and generation) or unsuccessful (load-shedding is required to balance consumption and generation) final system state.

The effects of the interdependencies between the electric power grid and the communication network are evaluated with respect to the communication time delay, T, that elapses from the instant in which the request for power increase is done, until the request is fulfilled. As seen in Section III.B, the maximum time delay requirements, T_{MAX}, for the smart grid range from tenths of milliseconds up to tenths of seconds depending on the system task to be executed. In this respect, various communication network configurations differing for the value of the data rate, D_c, can be tested to quantify the probability that a malfunction in the communication system, i.e. a communication delay, will generate a faulty condition in the electric power grid. The compliance with T_{MAX}, i.e. $T < T_{\text{MAX}}$, is evaluated at the end of the simulations.

IV. Case study

The approach to evaluate the vulnerability of the smart grid CI with interdependencies between power and communication networks introduced in Section III, is exemplified with reference to the topological network of the 380 kV Italian power transmission network (Fig. 1), focusing only on its structure with no further reference on the electrical properties, coupled with a dedicated communication network. For simplicity, but with no loss of generality, we assume that the two networks have the same topologies. The developed methodology can be applied to interdependent networks with different topologies. The 380 kV Italian power transmission network is a branch of a high voltage level transmission, which can be modeled as a network of $N=127$ nodes ($N_G=30$ generator and $N_D=97$ distributor nodes) connected by $K=171$ links [29], [30], defined by its $N \times N$ adjacency (connection) matrix a_{ij} and connection length matrix l_{ij}. We assume that the communication network consists of dedicated control signal channels, which follow the same layout of the overhead electrical lines. Therefore, both the electric power grid and the communication network are described by the same a_{ij} and l_{ij} matrices (without loss of generality): the topology and the geographical location of the 380 kV Italian power transmission network components serve as reference.
We test the vulnerability of the two interdependent networks with respect to the stability upon a power increase request, W, for eight increasing ranges of $[W_{\text{min}}, W_{\text{max}}]$ reported in Table II, while the other system parameters are constant and specified in Table I. We assume that the electric power grid operates with an average 20% safety margin for all the components except for the highly loaded lines which operate with an average 15% safety margin. The data for the communication network have been taken from [27] and assume a dedicated communication network.

Table I

Specifications of the Electric Power Grid and of the Communication Network Used in the Simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG_{min}</td>
<td>0.7</td>
</tr>
<tr>
<td>LG_{max}</td>
<td>0.9</td>
</tr>
<tr>
<td>LD_{min}</td>
<td>0.7</td>
</tr>
<tr>
<td>LD_{max}</td>
<td>0.9</td>
</tr>
<tr>
<td>$L_{\text{high}, \text{min}}$</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_r</td>
<td>5 Mbps</td>
</tr>
<tr>
<td>T_b</td>
<td>0</td>
</tr>
<tr>
<td>P_s</td>
<td>2 kb</td>
</tr>
<tr>
<td>v</td>
<td>0.6c</td>
</tr>
<tr>
<td>λ</td>
<td>50 packets/s</td>
</tr>
<tr>
<td>μ</td>
<td>50 Mbps</td>
</tr>
</tbody>
</table>

Then, we test the vulnerability of the two interdependent networks with respect to the stability upon a power increase request, $W \in [W_{\text{min}}, W_{\text{max}}]$, for thirteen values of data rate of the network, D_r, in Table III which identify different dedicated network configurations for the communication CI. We aim at quantifying the probability that a malfunction in the communication system, i.e. a communication delay, will generate a faulty condition in the electric power grid.

A. Numerical results

Table II reports the frequency of unsatisfied power request, i.e. load-shedding intervention, with respect to the eight sampling intervals $[W_{\text{min}}, W_{\text{max}}]$. As W_{max} increases, a greater amount of additional load W is requested on the average and
the generators closest to the increasing load cannot provide the total required amount. Thus, distant generators are queried, but power cannot always find a path to reach the increasing load due to growing likelihood of line limit infringement along the path, and the system has little chances to fully satisfy \(W \).

<table>
<thead>
<tr>
<th>Sampling interval for the additional power request, (W)</th>
<th>Frequency of unsatisfied request</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0.10, 0.15])</td>
<td>0.6670 %</td>
<td>0.1252 %</td>
</tr>
<tr>
<td>([0.10, 0.20])</td>
<td>1.1950 %</td>
<td>0.1263 %</td>
</tr>
<tr>
<td>([0.10, 0.25])</td>
<td>2.6000 %</td>
<td>0.1717 %</td>
</tr>
<tr>
<td>([0.10, 0.30])</td>
<td>6.565 %</td>
<td>0.384 %</td>
</tr>
<tr>
<td>([0.10, 0.35])</td>
<td>11.788 %</td>
<td>0.316 %</td>
</tr>
<tr>
<td>([0.10, 0.40])</td>
<td>17.587 %</td>
<td>0.554 %</td>
</tr>
<tr>
<td>([0.10, 0.45])</td>
<td>23.083 %</td>
<td>0.425 %</td>
</tr>
<tr>
<td>([0.10, 0.50])</td>
<td>28.835 %</td>
<td>0.553 %</td>
</tr>
</tbody>
</table>

The frequency of unsatisfied power request in Table II characterizes the self-limitations that the electric power grid imposes on its own operations due to its structural configuration, the limits on flow-carrying capacities of lines, the intermittent nature of power generation from renewable energy sources and the uncertainties in the load demand profile. We now devote our attention to the temporal aspects that characterize the power balance procedure in the CI. In this respect, Fig. 2 shows the probability distribution function of the communication time delay, \(\text{PDF}(T) \), when the request to increase load is not satisfied by generators, i.e. \(U > 0 \), for the eight sampling intervals \([W_{\text{min}}, W_{\text{max}}]\) in Table II. Fig. 2 is relative to situations in which the additional load request \(W \) could not be met by generators, and the communication signal spans the entire extension of the network to query for additional generation capability. This appears from the larger \(T \) values in the \(\text{PDF}(T) \) plot, which are the communication time delays needed to route the power to the increasing load bus from remote regions of the network.

The differences in the communication time delay, \(T \), distribution for normal operations and load shedding appear in Fig. 3, where the CDF(\(T \))’s are plotted for these two situations and encompass the eight sampling intervals \([W_{\text{min}}, W_{\text{max}}]\) in Table II. We expect that CDF(\(T \)) for normal operations (solid curve in Fig. 3) is shifted to smaller \(T \) values than the one relative to load-shedding interventions (dashed curve in Fig. 3). When the extra power request is satisfied, \(U = 0 \), only a fraction of the total number of generators is queried for additional power. On the contrary, when the extra power request is not satisfied, \(U > 0 \), the communication signal spans the entire generation set looking for additional generation capability that is not found.

The communication time delay, \(T \), is distributed within the intervals \(T \in [62.6, 951] \) ms and \(T \in [643, 2000] \) ms, in case of normal operations and of load-shedding actions, respectively.
Given the maximum admissible communication time delay, T^{MAX}, Fig. 3 allows identifying the frequency of load-shedding due to the excess of communication latency, i.e. $T > T^{\text{MAX}}$, even for those loading scenarios that would eventually result in $U = 0$ otherwise (solid line in Fig. 3). As detailed in Section III.B, T^{MAX} depends on the system task to be executed and ranges from tenths of milliseconds up to tenths of seconds. In this context, T^{MAX} can be thought of as the maximum time delay before instabilities arise in the electric power grid due to the imbalance between generation and consumption. If the value T^{MAX} equal to 100 ms is assumed, we evaluate $\text{CDF}(T = T^{\text{MAX}} = 100 \text{ ms}) = 96.77\% \pm 0.06\%$, and we discover that due to latency constraints the frequency of faulty conditions is $3.23\% \pm 0.06\%$ even for those scenarios that we classified as normal operations because the additional power request is fully satisfied, i.e. $U = 0$ (solid line in Fig. 3). If a narrower latency constraint is assumed, e.g., $T^{\text{MAX}} = 50 \text{ ms}$, we evaluate $\text{CDF}(T = T^{\text{MAX}} = 50 \text{ ms}) = 87.85\% \pm 0.10\%$, and conclude that the frequency of faulty conditions is $12.2\% \pm 0.10\%$ even for those scenarios that we classified as normal operations because the additional power request is fully satisfied, i.e. $U = 0$.

The frequency of faulty conditions due to the excess of communication time delay, T, quantifies the limitations that the communication system imposes on the operations of the interdependent electric system. It can be used to measure the strength of the interdependency or the degree of the coupling between these two systems within the CI.

After having found an index that quantifies the extent to which the delay in the communication network impacts on the operations of the electric power grid, we investigate how the frequency of faulty conditions due to the excess of communication time delay, T, varies with respect to different configurations of the communication network. We test several networks characterized by decreasing values of the data rate, D_r (Table III first column), that is defined as the number of bits that are conveyed or processed per unit of time. Since higher investments correspond to higher D_r, this kind of analysis allows identifying the optimal communication network that respects the constraint relative to the frequency of faulty conditions due to the excess of communication time delay, T. Alternatively, we can evaluate the extent to which a malfunction that reduces the speed of communication, D_r, will impact on the power grid due to the interdependencies between the two systems.

Fig. 4 shows the cumulative distribution functions of the communication time delay, T, for decreasing values of the data rate of the communication network, D_r, reported in Table III first column, and $W \in [0.10, 0.25]$. These results correspond to scenarios of the electric power grid for which a final balance between generation and consumption could be found, i.e. $U = 0$. Fig. 4 allows evaluating the extent to which D_r values influence the degree of coupling between the two CIs. Smaller D_r values produce $\text{CDF}(T)$ that are shifted to larger T values. If we assume a maximum admissible communication time delay, T^{MAX}, from Fig. 4 we identify the frequency of load-shedding due to the excess of communication latency, i.e. $T > T^{\text{MAX}}$, even for those loading scenarios that would eventually result in U equal to 0 otherwise. As an example, if T^{MAX} is equal to 100 ms, the scenarios that are found to the right of the vertical dash-dotted line in Fig. 4 will require load-shedding activity.

We quantify the effects of the interdependency between the two networks by two complementary indexes that provide safety margins with respect to the coupled operations of the two CIs. The 95th percentile of the distribution of T quantifies the minimum admissible time delay, T^{MIN}, that limits to 5% the frequency of load-shedding due to excessive latency. From Table III second column and Fig. 5, we see how the 95th percentile varies with D_r.

For small D_r, e.g., $D_r = 2 \cdot 10^4 \text{ bps}$, the system must tolerate
a minimum latency T_{MAX} greater than or equal to 2.069 s ± 0.140 s, in order to limit to 5% the frequency of load-shedding due to excessive latency. In other words, power increase operations that must be safely carried out within a time smaller than 2.069 s ± 0.140 s should not be attempted, if one wants to comply with the safety margin of 5% load-shedding frequency. Conversely, if D_r is equal to $5 \cdot 10^6$ bps, the system can admit a minimum latency as small as T_{MAX} equal to or greater than 0.6678 ± 0.0149 s, and the frequency of load-shedding due to excessive latency would still be limited to 5%.

<table>
<thead>
<tr>
<th>Data rate of the network, D_r [bps]</th>
<th>95th Percentile of the communication time delay, T [ms]</th>
<th>$P(T \leq T_{\text{MAX}}) = \text{CDF}(T = T_{\text{MAX}} = 100\text{ms})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5 \cdot 10^6$</td>
<td>66.789 ± 1.489</td>
<td>96.77% ± 0.06%</td>
</tr>
<tr>
<td>$2.5 \cdot 10^6$</td>
<td>80.94 ± 2.95</td>
<td>96.47% ± 0.06%</td>
</tr>
<tr>
<td>$1 \cdot 10^6$</td>
<td>108.986 ± 1.029</td>
<td>94.69% ± 0.07%</td>
</tr>
<tr>
<td>$5 \cdot 10^5$</td>
<td>148.97 ± 4.31</td>
<td>88.89% ± 0.10%</td>
</tr>
<tr>
<td>$3 \cdot 10^5$</td>
<td>202.22 ± 3.25</td>
<td>81.14% ± 0.13%</td>
</tr>
<tr>
<td>$2 \cdot 10^5$</td>
<td>268.91 ± 6.27</td>
<td>72.48% ± 0.14%</td>
</tr>
<tr>
<td>$1 \cdot 10^5$</td>
<td>468.9 ± 12.5</td>
<td>31.18% ± 0.15%</td>
</tr>
<tr>
<td>$9 \cdot 10^4$</td>
<td>513.33 ± 3.31</td>
<td>30.99% ± 0.15%</td>
</tr>
<tr>
<td>$7 \cdot 10^4$</td>
<td>640 ± 53</td>
<td>0%</td>
</tr>
<tr>
<td>$5 \cdot 10^4$</td>
<td>869 ± 41</td>
<td>0%</td>
</tr>
<tr>
<td>$2 \cdot 10^4$</td>
<td>2069 ± 140</td>
<td>0%</td>
</tr>
<tr>
<td>$9 \cdot 10^3$</td>
<td>4513 ± 300</td>
<td>0%</td>
</tr>
<tr>
<td>$5 \cdot 10^3$</td>
<td>8069 ± 200</td>
<td>0%</td>
</tr>
</tbody>
</table>

Because the admissible latency T_{MAX} is a constraint in the system, a somewhat more intuitive safety margin is provided with respect to $P(T \leq T_{\text{MAX}}) = \text{CDF}(T = T_{\text{MAX}})$, i.e. the probability of final safe conditions (no load-shedding is required), given the admissible latency T_{MAX}. In Table III third column and Fig. 6, $P(T \leq T_{\text{MAX}} = 100\text{ms}) = \text{CDF}(T = T_{\text{MAX}} = 100\text{ms})$ values are presented as functions of D_r, given $W \in [0.10, 0.25]$ and $T_{\text{MAX}} = 100\text{ms}$. From Table III third column, we see that when $D_r = 1 \cdot 10^6$ bps, the probability of final safe conditions is 31.18% ± 0.15% and, consequently, the frequency of load-shedding due to excessive latency is 68.82% ± 0.15%.

Fig. 6 displays how the probability of final safe conditions decreases as D_r progressively decreases from $D_r = 1 \cdot 10^6$ bps to $D_r = 5 \cdot 10^3$ bps. $P(T \leq T_{\text{MAX}} = 100\text{ms})$ exhibits a catastrophic transition in the range $D_r \in [3 \cdot 10^3, 7 \cdot 10^3]$ bps, as D_r values decrease below $3 \cdot 10^3$ bps. No final safe condition is realized below $D_r = 7 \cdot 10^3$ bps, i.e. every additional power request, W, involves some load-shedding actions due to excessive latency in the communication, $T > T_{\text{MAX}}$.

The information in Fig. 6 can be used during the design phase of the CI with the aim of identifying the communication specifications that comply with the required safety standards, given T_{MAX}, i.e. the smallest admissible time delay, and W^min, i.e. the electric load profile. In our example, a communication network with $D_r \geq 1.26 \cdot 10^6$ bps has to be selected to comply with the 95% safety margin, i.e. 5% probability of load-shedding, when $T_{\text{MAX}} = 100\text{ms}$ and $W \in [0.10, 0.25]$. Furthermore, the information in Fig. 6 can be used during operations to quantify the extent to which a possible loss of quality in the communication, i.e. a D_r reduction, impacts on the electric power grid. In our example, a D_r reduction from $D_r = 5 \cdot 10^6$ bps (normal operations) to $D_r = 1.94 \cdot 10^5$ bps (anomalous operations), entails a reduction of the safety margin from 96.77% ± 0.06% to approximately 70%, i.e. the probability of load-shedding increases from 3.23% ± 0.06% to approximately 30%. Yet, most important is the fact that an additional small D_r reduction to $D_r = 7 \cdot 10^4$ bps entails the complete disappearance of the safety margin. Therefore, the knowledge of the relation in Fig. 6 is vital for operating the CI with interdependencies in a region of the system parameters that is far from the catastrophic phase transition point.

V. CONCLUSIONS

In this paper, we have looked into the vulnerabilities that arise when complex networks are coupled, with reference to smart grids modeled as a combination of the electric power grid and the communication network. We have adopted a modeling framework in which the communication delays are integrated in the electric CI. The complex network approach proposed extends the purely-topological models of the electric power grid to capture essential operating features, i.e. the power is routed through the least resistant paths, the components are physically specialized in “generators” and “distributors”, and the lines are subjected to limits on their carrying-flow capacities; moreover, it includes the further
complexity that arises from the variability of power generation from renewable energy sources and intermittent load consumption. However, given the somewhat abstract level of the modeling supporting complex network analysis, the insights gained with respect to the vulnerable areas in the system (first findings) may not be clear-cut, and major hidden vulnerabilities may still be expected. Then, to accurately model the physical behavior of the interconnected systems, computational frameworks that propagate the flows of power and information based on physical laws have to be embraced, and more detailed information about the system and its operating environment may be needed. For large, real-scale systems, this requires the development of adequate computational methodologies through clustering computing, co-operative simulation, or similar architectures [44]-[48].

We have quantified the limitations that both the electric power grid and the communication network impose on the operations of the CI with interdependencies, when a load bus demands additional power from the generators. In the application to the 380 kV Italian power transmission network, with the assumptions made and the numerical data used, we have observed that a factual indicator for quantifying the coupling strength between the two integrated systems is the frequency of load-shedding actions due to excessive communication time delay. By means of this indicator, we have evaluated the extent to which a loss of quality in the communication impacts on the electric power grid, and we have selected appropriate communication specifications, i.e. the data rate of the network, that comply with the required safety requirements in the electric power grid.

Finally, we have detected a catastrophic phase transition point in the frequency of faulty conditions with respect to the data rate of the communication network. The CI with interdependencies safely operate only in a region of the system parameters that are far from this catastrophic transition point. To this aim, the introduction of adequate safety margins with respect to the data rate of the communication network is suggested.

In summary, the main contributions to the knowledge generated for the network general case are: (i) the extension of the purely-topological complex network modeling framework by inclusion of relevant physical aspects of the system; (ii) the use of the frequency of load-shedding actions due to excessive communication time delay as a quantitative indicator for quantifying the vulnerability of the smart grid; (iii) the detection of a catastrophic phase transition with respect to the data rate of the communication network in the smart grid.

[APPENDIX]
[Appendix was removed because it was related to the results of Section IV.A which were also removed.]

ACKNOWLEDGMENT
The authors are very thankful to the four anonymous reviewers for helping in improving the paper through their observations and suggestions.

REFERENCES