Stable Recovery with Analysis Decomposable Priors

Abstract : In this paper, we investigate in a unified way the structural properties of solutions to inverse problems. These solutions are regularized by the generic class of semi-norms defined as a decomposable norm composed with a linear operator, the so-called analysis type decomposable prior. This encompasses several well-known analysis-type regularizations such as the discrete total variation (in any dimension), analysis group-Lasso or the nuclear norm. Our main results establish sufficient conditions under which uniqueness and stability to a bounded noise of the regularized solution are guaranteed. Along the way, we also provide a strong sufficient uniqueness result that is of independent interest and goes beyond the case of decomposable norms.
Type de document :
Communication dans un congrès
Proc. SampTA'13, Jul 2013, Bremen, Germany. pp.113-116, 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00926732
Contributeur : Image Greyc <>
Soumis le : vendredi 10 janvier 2014 - 10:39:24
Dernière modification le : jeudi 9 février 2017 - 15:20:01
Document(s) archivé(s) le : jeudi 10 avril 2014 - 22:26:27

Fichier

SAMPTA-2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00926732, version 1

Citation

Jalal M. Fadili, Gabriel Peyré, Samuel Vaiter, Charles-Alban Deledalle, Joseph Salmon. Stable Recovery with Analysis Decomposable Priors. Proc. SampTA'13, Jul 2013, Bremen, Germany. pp.113-116, 2013. <hal-00926732>

Partager

Métriques

Consultations de
la notice

223

Téléchargements du document

55