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Using Geometry to Teach and Learn Linear Algebra

Ghislaine Gueudet-Chartier

ABSTRACT. Linear algebra is a difficult topic for undergraduate students. In
France, the focus of beginning linear algebra courses is the study of abstract
vector spaces, with or without an inner product, rather than matrix operations
as is common in many other countries. This paper presents a study of the pos-
sible uses of geometry and “geometrical intuition” in the teaching and learning
of linear algebra. Fischbein’s work on intuition in science and mathematics is
used to analyze the treatment and use of geometry in linear algebra textbooks
as well as mathematicians’ and students’ uses of geometry in linear algebra.
I indicate the possibilities and limitations of such uses of geometry and make
suggestions for a linear algebra course that uses geometry to support learning.

1. Introduction

Prior to a description of the issues studied herein, it is necessary to clarify the
use of the expression “linear algebra” in this paper. “Linear algebra” is used in
accordance with the teaching context in France. This may be different from many
other countries, where undergraduate students encounter mostly matrix-oriented
courses. Though the issues I study are not specific to France, a brief description
of the historical background of the teaching of linear algebra in France can help to
clarify the context of the study.

Linear algebra was first taught in French universities at the graduate level, in
1939. The first courses were strongly connected with the study of Hilbert spaces.
During the 1960s, the introduction of linear algebra into the secondary school cur-
riculum led to many discussions among French mathematicians. These discussions
included some contention about the presentation of geometry.

French mathematicians took two main opposing views. The first one, discussed
in detail in Choquet’s book Teaching Geometry (1964), recommended presenting
geometry defined by axioms (independent of linear algebra), then using it for an
intuitive presentation of linear algebra. Mathematicians like Dieudonné took a dif-
ferent view. They preferred to start directly with linear algebra because, as he
said, geometry was a mere application of linear algebra. Understanding geometry
was an immediate consequence of understanding linear algebra. During the “mod-
ern mathematics” reform, Dieudonné’s position was adopted in France’s national
curriculum, and linear algebra started to be taught in secondary school. However,
difficulties encountered by students led to the failure of this approach, and linear
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172 GHISLAINE GUEUDET-CHARTIER

algebra disappeared from the secondary school curriculum during the 1980s. Since
1986, linear algebra — banished from secondary education — has been a requirement
for undergraduate science students. It remains a difficult topic for them.

Many mathematicians have claimed that using geometry or “geometrical in-
tuition” helps students in their understanding of linear algebra. This claim raises
several questions. In the French teaching context, “linear algebra” is clearly iden-
tified as linear algebra in abstract spaces, with or without an inner product. I
will refer to this later as “general linear algebra” or “the general theory.” But
what is meant by “geometry”? It can be geometry taught in secondary school’
or Euclidean geometry (in its historic, axiomatic meaning). For some mathemati-
cians, linear algebra itself (or at least parts of it) are a kind of geometry. Another
question is: What is meant by “geometrical intuition”? It is certainly linked with
the possibility of using drawings or mental pictures. But intuition does not mean
only visualization, and there is no doubt that it has other aspects. Determining
how geometrical intuition can help students in their learning of linear algebra, and
whether mathematicians try to develop geometrical intuition in their linear algebra
courses by specific choices, are additional issues.

Several published studies have investigated how geometry or geometrical as-
pects of linear algebra can be used to introduce the general theory. They have
reported that teaching based on a geometrical approach can improve students’ un-
derstanding, but have pointed out difficulties stemming from such a choice (see §2).
These studies have confirmed that possible interventions of “geometrical intuition”
in linear algebra requires a thorough study. This was the aim of my doctoral dis-
sertation, which contains most of the results presented here. This paper has three
main parts: a grounding of the study in related theory and research, analysis of
the uses of drawings and geometry in teaching linear algebra, and particular results
from interviews about the role of R? and R? in linear algebra teaching and learning.

Overall presentation of the study (§2). I start with the main theoretical frame-
work for my research. Studying the question of intuition requires appropriate tools;
I found them in Fischbein’s (1987, 1993) work on intuition in science and math-
ematics. In this section, I present the notion of intuitive models, along with the
research questions it allowed me to formulate. I also describe the setting of my
study within the context of related studies. Though these constituted a starting
point for my study, I present them at the end of the section in order to interpret
their results in terms of the notion of geometrical intuition.

Geometry in linear algebra courses (§3). In this section, I present results about
mathematicians’ uses of geometry and drawings in linear algebra courses. These re-
sults come from the analysis of mathematicians’ responses to a questionnaire. Since
my research took place in France, the results of the questionnaire are influenced by
French teaching of linear algebra and geometry. However, this is not the case for
the results in other sections.

Linear algebra in R? and R® as a source of geometrical intuition (84 ond §5).
In these two sections, I focus on a particular intuitive model: linear algebra in R?
and R3 with the dot product. I first establish some possibilities and limitations of
that model through a textbook study (§4.) I then present a detailed analysis of the
effects of the use of that model among students solving a problem in R™ (§5).

1In France, the geometry taught in secondary school is mostly plane and space vector geom-
etry. Vectors are defined intuitively; there are no axioms presented.
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2. Theoretical Framework and Research Questions

Many mathematicians have attempted to clarify the nature of intuition in math-
ematics, in students’ learning as well as in their own research. Most of them have
distinguished different kinds of intuition taking a psychological approach. But the
writings of few provide a means for a precise analysis of intuition. Fischbein (1987)
made a careful study of the nature of intuition, its function, and the factors that
can shape it. His work is therefore the basis of my theoretical framework. Below [
present those elements of Fischbein’s work that are relevant for the present study.

2.1. Intuition in Mathematics: Fischbein’s Theory.

2.1.1. Intuition and the need for certitude. According to Fischbein, every hu-
man being needs to act in accordance with a credible reality. Even within a con-
ceptual structure, one’s reasoning endeavors need a form of certitude. The role
of intuition is to provide that kind of certitude. For Fischbein, intuition is syn-
onymous with intuitive knowledge. It is a type of cognition, characterized by self
evidence, immediacy, and certitude; it always exceeds the given facts. Productive
reasoning requires intuitively acceptable cognition. Thus, when a notion is, for a
given person, intuitively unacceptable, that person will probably produce (deliber-
ately or unconsciously) a more acceptable substitute. Such a substitute is called by
Fischbein an intuitive model. Models are a central factor of intuition in mathemat-
ics. A large part of Fischbein’s book (1987) is devoted to them. In the following
section, I present those aspects of the models used in my study.

2.1.2. Intuition and models. Also, according to Fischbein:

A system B represents a model of a system A if, on the basis of a
certain isomorphism, a description or a solution produced in terms

of A may be reflected consistently in terms of B and vice versa.
(1987, p. 121)

This definition is ver eneral; the word “system” used in it can have several mean-
y g

ings. The following examples (all of them related to the present study), will be
useful to make the definition precise.

Ezample 1. A “system” can be restricted to a single notion. For example, the
system A can be the notion of vector in the plane, and the model B the
drawing of arrows on a sheet of paper.

Ezample 2. A system can also be a whole theory: complex numbers (system A),
associated with the vector geometry of the plane (system B).

Ezample 8. A system is not always a conceptual system: physical space (system

A) can be associated with R3 considered as a vector space with an inner
product (system B).

By Fischbein’s definition, a property in B may be “reflected consistently” in
A. This means that the property can somehow be translated from one system to
the other. Let us consider in Example 1 the relation R4: “the vector u is the sum
of v and w.” Ry can be associated with the drawing Rp of a parallelogram, whose
sides are the arrows associated with v and w, and one of whose diagonals is the
arrow associated with u. The relation Rain A corresponds to a consistent relation
RB in B,

But a model can also lead to misconceptions if it is wrongly used. In Example 1
again, students sometimes claim that two vectors in the plane have the same di-
rection because the associated arrows are both pointing “up, on the right.” In this
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case, the word “direction” exists in both systems. But the notion of the “direction”
of a vector in the plane cannot be reflected consistently in the common notion of
“direction” of an arrow.

In most cases, the word “isomorphism” used by Fischbein in his definition is
not a mathematical isomorphism (but it can happen, as in Example 2). Rather,
the word “isomorphism” is used to indicate a particular set of relations between
some objects and properties of A and some objects and properties of B. Extending
this to additional relations is likely to be misleading.

The three examples given above correspond to three different kinds of models.
Among the models distinguished by Fischbein are the following: figural models,
abstract and intuitive models, and analogical and paradigmatic models. I discuss
each in turn.

Figural models. Fischbein distinguishes between intramathematical and extra-
mathematical models. In the case of an intramathematical analogy, the original
and the model are both mathematical theories or objects. In contrast, an extra-
mathematical object is something that does not lie strictly within mathematics. It
is not a mathematical object, collection of objects, or theory. The extramathemat-
ical models that I will study here correspond to the use of drawings. I refer to such
models as figural models. Here “drawings” means pictorial representations.

- A figural model can be related to geometrical notions; for example, the calcu-
lation of the distance from a given point p to a given plane F' in 3-space can be
associated with a drawing of a parallelogram, a point, and a dotted line containing
the point, perpendicular to the plane (Figure 1). But the same drawing can also
be associated with a polynomial problem: calculation of the distance from z* to
the set F' of polynomials of degree less than 3, in the space R4[X] with the inner
product defined by < plg >= fc,l p(z)g(z)dz .

Three-dimensional objects, and computer-generated graphics are other kinds
of extramathematical models that can be used in linear algebra. I do not discuss
them here because they are used only sparsely in France.

Abstract and intuitive models. Models fall into two distinct categories: abstract
and intuitive. Some mathematical objects are abstract models for concrete realities.
In Example 3, R?® with the dot product is an abstract model of physical space.

In contrast, an intuitive model is one that seems concrete to the perceiver.
Figural models are obviously intuitive. But a mathematical object can also be an
intuitive model for someone who perceives it as a reality. In Example 2, vector
geometry in the plane is a model for complex numbers. The existence of this
intuitive model was very important in the emergence of the notion of complex
numbers because it legitimated their existence. Complex numbers gained legitimate
status with the work of Gauss (1831), who presented a geometric interpretation
of imaginary quantities. Though other mathematicians like Wessel(1799), Buée
(1805), and Warren (1828) had proposed such interpretations before, they probably
lacked Gauss’ influence on the mathematics community.

Analogical and paradigmatic sub-categories. Intuitive models themselves have
two sub-categories: analogical and paradigmatic. An analogical model is external
to the original object modeled; the model and the original belong to two distinct
systems. An analogical model provides the reasoning process with a source of re-
search hypotheses. According to Fischbein, two systems are said to be analogical if
a partial similarity exists, that can lead a person to assume additional similarities.
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FIGURE 1. Distance from a point (or a polynomial) to a plane (or
a subspace of polynomials).

Analogy justifies plausible inferences. Analogies become models if they can be pro-
ductively used in reasoning. Figural models associated with mathematical models
are analogical models.

A paradigmatic model is a subeclass of the original that is used as a model of
the original. It is a particular exemplar of the original. That is, Fischbein’s concept
of paradigmatic model is similar to the concept of prototype in cognitive semantics.
One’s understanding of the original system is influenced (correctly or incorrectly) by
the paradigmatic model. The original mathematical object is represented in one’s
reasoning by that exemplar, and not by its abstract definition. For example, using
R? as a model for the concept of vector space can lead to attributing properties
of R? to all vector spaces. Someone using that model might claim that two two-
dimensional subspaces can never be supplementary subspaces.

The above theoretical considerations led me to a definition of “geometrical
intuition.” It also provided me with an appropriate framework for formulating and
investigating my research questions in a consistent way.

2.2. Research Questions. The first stage here is to clarify what can be called
a geometry. Some mathematicians may consider linear algebra to be a geometry;,
this cannot be relevant in our case. Because my analysis mostly takes place in a
teaching context, I am naturally referring to geometry as a mathematical domain.
The definition of intuition given by Fischbein emphasizes credible reality. In the
use of geometry in the teaching and learning of linear algebra, the link with reality
is central. For this reason, I call “geometry” a mathematical theory whose main
purpose is to provide an abstract model (using Fischbein’s terminology) for physical
space; it is notably restricted to three dimensions. The geometry taught at school
is such an abstract model, as is axiomatic Euclidean geometry.

I will term “geometric intuition” the use of models stemming from a geometry.
These models are intuitive models; they can be either analogical or paradigmatic.
In the first case, this constitutes an intramathematical analogy.

Because of the nature of geometry, a geometric model will always be associated
with an extramathematical, figural model. A geometric model can thus smuggle
uncontrolled elements into the reasoning process. For example, when studying
the general notion of quadratic form, students encounter self-orthogonal vectors.
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That situation cannot be associated with anything in two-dimensional Euclidean
geometry; it is contradictory to a drawing representing two orthogonal vectors in
the plane. .

In the following study, I will use geometric and figural models rather than the
general expression “geometric intuition.” The research questions can be formulated
as follows:

(1) What are the possible uses of geometric models in linear algebra?

(2) How do mathematicians and students use geometric and figural models in
linear algebra?

(3) What are the consequences of the observed uses of models on students’
practices and thinking processes?

These are very general questions, for which my work only provides partial answers.
However, some previous related research on linear algebra provides hints about the
use of geometric and figural models, even if it was not formulated in those terms.
I discuss this research in the following subsection, together with the setting of my
study in the context of these works.

2.3. Related Research. Much research on linear algebra addresses the ques-
tion of possible uses of geometry or geometric aspects of linear algebra. Here I only
present research in which that question is central and whose results are meaningful
in terms of intuitive models. I also discuss its connections to and differences with
my own work.

2.3.1. Modes of description. Hillel (2000) identified three modes of description
in linear algebra: the abstract mode, the algebraic mode, and the geometric mode.
The abstract mode uses the language and concepts of the general theory (e.g., vector
space, dimension, kernels). The algebraic mode uses the language and concepts
of the theory in R™ (e.g., matrices, systems of equations). The geometric mode
uses the language and concepts of 2- and 3-space (e.g., points, lines, planes). His
approach was quite different from mine because Hillel studied the three modes and
the mechanisms that enable one to move from one mode to another, but he did not
examine the question of geometric intuition.

Nonetheless, his description of students’ difficulties with the geometric mode
can be interpreted as consequences of an irrelevant use, or of the use of irrelevant
components, of a figural model. Difficulties attached to the point and arrow depic-
tions of a vector are the most striking. Hillel observed that most mathematicians
use both depictions and he described wrong interpretations of some representa-
tions by students. For example, it is well known that students may claim that it
is possible for two 1-dimensional subspaces to have an empty intersection. This
phenomenon can be interpreted as a misleading intervention of a figural model:
1-subspaces are represented as straight lines, and students believe that they can be
parallel. In this case, the representation of a straight line that does not contain the
origin is an irrelevant component of the model.

The question of how point and arrow depictions in linear algebra affect stu-
dents’ understanding could be studied from the point of view of geometric intuition.
Although I encountered related difficulties in my work with mathematicians and
students, I will not address them explicitly.

2.3.2. Cabri-Geometry in linear algebra. Sierpinska, Dreyfus, and Hillel (1999)
designed a learning environment with Cabri-Geometre II software for the notions
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of vector space, linear transformation, and eigenvector. That environment was
explicitly intended to use geometric intuitions. The intuitive model was provided
by Cabri vectors. I focus here on the difficulties of students discussed by the authors.
At one stage in the reported activities, students encountered the task: “Find the
coordinates of a vector v in the basis v1, v2.” The vectors v, v1, and v, were Cabri-
vectors constructed on the screen by the students. They immediately reorganized
their construction to obtain orthogonal vectors v; and v2. They went on doing a
mechanical calculation of coordinates, not attending to the initial meaning of the
problem. That phenomenon can be interpreted in terms of intuitive models. The
notion of “coordinates” is strongly associated with the drawing of two orthogonal
axes. The students referred to that model because they did not have an appropriate
figural model for the notion of basis vectors at their disposal. The authors had
intended to avoid an explicit introduction of the notion of basis and expected the
students to develop an intuition of it. It is interesting to observe here the emergence
of a very familiar model, one that has the appearance of credible reality. It created
a misleading geometric intuition.

Similar difficulties were observed by Sierpinska (2000). In a further analysis of
the same teaching environment, she identified a phenomenon that she described ast
“Thinking of mathematical concepts in terms of their prototypical examples rather
than definitions.” For example, some students, when asked to construct a linear
transformation with given values on a basis, looked for a well-known geometric
transformation (dilation, rotation, etc.) or for linear combinations of these trans-
formations. These students were using a geometric model for linear applications:
the model of well-known transformations of the plane. That model may have been
derived from previous courses,? but it was insufficient for the given task. In this
case as in the previous one, a familiar, misleading figural model emerged.

To have the appearance of credible reality, an intuitive model must be very
familiar to students. The construction of a model (as a cognitive object) is a long
process that requires regular and frequent rehearsal of the elements of the model.
Teaching designed to help students form intuitive models must thus be long-term,
regular teaching; otherwise more familiar models are likely to emerge.

2.3.3. The concreteness principle and geometric models. The concreteness prin-
ciple was stated by Harel (2000) as follows:

For students to abstract a mathematical structure from a given
model of that structure the elements of that model must be con-
ceptual entities in the students’ eyes; that is to say, the student has
mental procedures that can take these objects as inputs (p.177).

The definition of model given by Fischbein applies to the models mentioned here
because there exists an isomorphism between a subclass of the model and a subclass
of the corresponding mathematical structure. The concreteness principle is quite
close to the following assumption, formulated in Fischbein’s terminology: “For
students to abstract a mathematical structure from a, given model of that structure,
that model must be an intuitive model for the student.” However, establishing
whether “conceptual entities” and “intuitive models” are equivalent would require
a specific study.

In France, the same kind of answers can be produced by students using transformations
they studied in secondary school geometry.
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Harel (2000) conducted a linear algebra teaching experiment using his concrete-
ness principle and a geometric, paradigmatic model. That model can be considered
as paradigmatic because it consisted of a geometric presentation of vector spaces; it
was associated with a figural model. The studied teaching experiment had positive
effects on the students’ performances in linear algebra, including their ability to
prove general linear algebra results. Students belonging to the group (Group B)
that followed the experimental teaching seemed to have had a better control of the
correctness of their answers than the students (Group A) who were taught linear
algebra without geometric representations. The reason for that observation could
be that the students of Group B formed an intuitive model that helped them to
check the consistency of their reasoning. But Harel also observed difficulties at-
tached to the use of a geometric model in linear algebra teaching. Some students
could be captured by the model, and stay inside of it, instead of moving up to the
general theory.

This brief review of previous research shows that several results relative to
geometrical intuition in linear algebra have already been established. Namely, the
use of a figural model can lead to inappropriate intuitions and a geometric model
can be an obstacle if students stay captured in it. An intuitive model must consist
of very familiar objects in order to have the appearance of credible reality.

Before starting with the study of mathematicians’ choices and the presenta-
tion of my results, I need to mention an essential difference between the research
presented above and my own study. Their authors elaborated and discussed lin-
ear algebra teaching experiments. I will consider the possibilities of elaborating
teaching using geometric models, but my study deals with ordinary linear algebra
courses taught at university.

3. Mathematicians and Geometric Models in Linear Algebra

Having observed the difficulties encountered by students in their learning of
linear algebra, many mathematicians have recommended that geometry be taught
before the general theory. But the content of such a geometry course, and the way it
might be used to learn linear algebra, depends on mathematicians’ views, and those
can be very different from one teacher to another. In order to have a better idea of
the different uses of geometrical (and associated figural) models by mathematicians
in their linear algebra courses, I created a questionnaire for mathematicians (see
Appendix A).

I first present my analysis of the mathematicians’ answers to the part of the
questionnaire devoted to the use of drawings in linear algebra, then I present the
conclusions of the analysis of the entire questionnaire. The questionnaire was given
to mathematicians who answered it outside of my presence. They took about one
hour to complete the entire questionnaire. I collected 31 questionnaires, completed
by mathematicians of various ages and research subjects, all of them having recently
taught linear algebra.

3.1. Mathematicians’ use of drawings in linear algebra. The two ques-
tions relevant to mathematicians’ use of drawings in linear algebra in the question-
naire were:

Question 3.1: For each of the drawings in Table 1, indicate if you use it in
your linear algebra courses; if the answer is “yes” indicate which notions
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TABLE 1. Question 3.1

Drawing Used (yes/no) | That drawing illustrates

T

A

<

or properties you illustrate with it. (You can mention several uses of the

same drawing.)
Question 3.2: If you use other drawings, draw them in the following table
?

and indicate the interpretation(s) you associate with th A
with five lines followed.) em. (A blank table

Twenty-eight mathematicians answered Questions 3.1
-1 and 3.2. For th i
of the responses, I used the following criteria: e analysis

e Are the drawings in Question 3.1 used by the teacher?
e Does he (or she) mention other drawings (Question 3.2)?

® Does he (or she) mention interpretations of the drawings related to a
general vector space or limited to dimension 3?

‘ My analysis led to the following conclusions. In general, these mathematicians
did not use many drawings in their linear algebra courses. Of the 28 respondi
16 mathematicians mentioned other drawings they might use in their courses Tnfé
average number of drawings mentioned by the 16 mathematicians was 2.25; t'his is
very low considering the fact that there were five lines that could have i’)ee,n filled
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in the blank table given in the questionnaire. The average number of drawmgs per
teacher, for both parts of the question, was only 3.2.

Moreover, most of the drawings were reported as being used to illustrate situa-
tions occuring in R? or R3. Only 12 (43%) of the mathematicians proposed addi-
tional interpretations referring to an abstract vector space, rather than to R? or
R3. For example, for the first drawing proposed in Table 1, nine mathematicians
gave the interpretation: - “basis of the space,”® and three “orthogonal basis of the
space,” while only three of them mentioned the general notion “orthogonal basis,”
and only one the general notion of basis. For the second drawing, eight mathe-
maticians mentioned using it in teaching as an intersection of planes, and five as
an intersection of subspaces.

The drawings volunteered by the mathematicians were not very different from
those provided in the questionnaire (Table 1). Except for two quadric surfaces,
what the mathematicians offered were mostly combinations of planes, lines (plain
or dotted) and vectors. Only five of them were drawings in the plane; the 31 others
were perspective drawings evoking 3-space, even if they were used to illustrate
situations in a general vector space. Space may have seemed more representative
than the plane, a better candidate for a paradigmatic model. The notions illustrated
included projections (3), orthogonal projections (4), symmetries (2), rotations (2),
supplementary subspaces (3), and coordinates of a vector (2).

In fact, most of the notions and properties mentioned by the mathematicians
already would have been encountered by students in secondary school geometry
in France: lines, planes, symmetries, and projections. This was not the case for
the few examples reported about supplementary subspaces and rotations around
an axis. The three drawings proposed in Table 1 are used in secondary school
textbooks. The first and the third occur frequently in the space geometry course;
the second is used to illustrate the intersection of two planes in space, and sometimes
the corresponding system of equations. So, the second drawing in Table 1 would
be the least familiar of the three for secondary school students; it was also the
least mentioned by the mathematicians. For the second drawing, 15 (54%) of the
mathematicians declared that they used it in their linear algebra courses, whereas
23 (82%) used the first drawing and 20 (71%) used the third. These mathematicians
did not have a well developed, specific, use of drawings for linear algebra. They
reported drawing them mostly when presenting examples in a geometrical context.

3.2. Analysis and Discussion of the Mathematicians’ Responses. Con-
sidering the responses to the entire questionnaire, I was led to distinguish three
groups of mathematicians, including 24 of the 26 mathematicians who answered all
the questions.*

Group A: Many drawings, geometry presented after linear algebra. There were
only four mathematicians in Group A. These mathematicians used many drawings
in their linear algebra courses. The figural model corresponding to their reported
use of drawings was associated with a part of linear algebra that was to be used as

3The term “gpace” refers here directly to geometry. In French, the word “space” used alone
means “geometrical 3-space.”

4 used statistical tools for that global analysis, but the small number of questionnaires
prevented me from referring to the statistical results without explicitly examining the effective
content of the questionnaire. So, the statistical results were only a way to identify possible
connections and the conclusions result from a direct observation of the questionnaires.
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a paradigm for the whole theory: the study of R? and R3. Such use of drawings
would be a geometric model, according to the definition of that concept I use here,
Their use of a paradigmatic model can also be a wider part of linear algebra, not
limited to dimension 3, and could refer to a general vector space.

Group B: Almost no drawings, geometry presented after linear algebra. The
eight mathematicians in Group B used no, or only a few, drawings. They did not
refer to a geometric mode] to introduce linear algebra. They prefered to introduce
the general theory directly and to present geometry afterwards as an application
thereof.

Group C: Many drawings, geometry presented before linear algebra. The 12
mathematicians in Group C referred to an analogical geometric model, stemming
from a geometry independent of linear algebra. They used many drawings in the
geometry course and also in linear algebra. The drawings involved were more or
less the same in both cases.

The two last tendencies, of Groups B and C, were very close to positions
observed in France during the reform of modern mathematics. The structural
choice of Group B corresponds, more or less, to Dieudonné’s views. In contrast,
Choquet advocated a presentation of geometry preceding linear algebra like the
mathematicians of Group C. Groups B and C included 20 of the 26 mathematicians
who completed the entire questionnaire. This may have been an indication of the
influence, still very strong, of the discussions held before and during the reform
of modern mathematics on the choices of French mathematicians in their linear
algebra courses.

Only the mathematicians of Group A seemed to have escaped that influence.
They proposed to students a geometric model inside linear algebra (and thus
paradigmatic). That choice deserves a special study. I will now focus on this
choice, and more precisely, on the use of linear algebra in R? and R? as a geometric
model for general linear algebra.

4. The R2-R3 Model

The study of R? and R? as vector spaces with an inner product is a geometry.
According to the definition given in Section 2, this is an abstract model for physical
space. It seems to be a good candidate for a geometric model in the teaching of
inner product spaces. I will call it “the R2-R3 model.” T start this section with an
overview of its possibilities and limitations. Then I Present an example of the use
of that model in a textbook.

4.1. Possibilities and limitations of the R-R® model. The R?-R? model
can be associated with a figural model, and coordinates offer a natural way to
introduce R™. The link between R"™ and other n-dimensional inner product spaces
is evident for mathematicians.

Historical analysis (Dorier, 2000) of the development of linear algebra has sug-
gested that axiomatic linear algebra finally emerged after several works about in-
finite dimensional spaces, as a way of unifying different mathematical domains.
Linear algebra is a general theory designed to unify several branches of mathemat-
ics. Presenting linear algebra concepts only in R? and R? can appear very arbitrary
to the students (see, for example, Robert’s (1998) work about generalizing, unify-
ing, and formalistic notions and Harel’s (2000) Necessity Principle). When limited
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to R? and R®, some concepts and properties of linear algebra may only seem to be
geometrical tautologies to students. Below are some examples.

e The definition in R? and R3 of a basis as a family of vectors that are
linearly independent and spanning the whole space cannot appear as nec-
essary to students. The notion of dimension is implicit and self-evident
in that context; therefore a basis of R? (or R3) is defined as a set of two
(or three) linearly independent vectors. The notion of spanning the whole
space does not seems to be required in that context.

e The property of existence of a basis for a given space is fundamental in
general linear algebra. In R? and R?, it appears to students as a observable
fact. More generally, results stating the existence of a mathematical object
are only needed in a theoretical context, where that existence cannot be
directly observed.

Yet, there exist concepts and properties already relevant in R? and R® that can be
generalized to any vector space (in fact, most of these properties occur in spaces with
an inner product). For example, the Pythagorean Theorem, which is presented in
the plane in secondary school and used then in several exercises, can be generalized
to any space with an inner product: for a set {ei,...,ex} of orthogonal vectors,
ler + ... + 8;42 = |€1|’2 e b |€k12.

But there are obviously limitations to the use of the R%-R® model. Some
notions and properties of general linear algebra are not relevant in that context.
And, the possibility of unification, central in linear algebra, is lacking in such a
presentation. Moreover, the generalization to R™ and then to other vector spaces
may not be natural for all students. For mathematicians, R™ is a natural model for
any other real vector space of dimension n because of the structural isomorphism.
For students, considering a polynomial or a function as a vector is the result of a
long process.® The use of drawings may aid students’ understanding even when the
vector space is different from R? or R3.

I now will now make these general considerations precise by examining a uni-
versity textbook that uses the R%-R® model.

4.2. A textbook using the R%2-R3 model. Linear Algebra Through Geom-
etry is a textbook by Banchoff and Wermer (1991), designed for undergraduate
students. The title clearly announces that the authors intend to use geometry to
introduce and illustrate linear algebra. In the book’s preface, the authors say:

In this book we lead the student to an understanding of elementary
linear algebra by emphasizing the geometrical significance of the
subject. Our experience in teaching undergraduates over the years
has convinced us that students learn the new ideas of linear alge-
bra best when these ideas are grounded in the familiar geometry of
two and three dimensions. Many important notions of linear alge-
bra already occur in these dimensions in a non-trivial way, and a
student with a confident grasp of the ideas will encounter little dif-
ficulty in extending them to higher dimensions and more abstract
systems (Banchoff & Wermer, 1992).

51t is certainly linked with encapsulation; considering polynomials or functions as vectors
means, in particular, considering them as objects instead of processes (Dubinsky, 1991).
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The approach of the authors is clearly stated here: first build a geometric model
limited to dimensions 2 and 3. They claim that the model will help students when
learning linear algebra because these students will only have to extend now familiar
notions.

Analysis of the book, which I do not give here in detail, made clear that the
geometric model proposed by the authors is the R2-R? model., Chapters 1, 2 and
3 are dedicated to it. Chapter 4 is a transition; it deals with R", in fact, mostly
R4, The remaining chapters are dedicated to general vector spaces. I present here
a brief synthesis of the results of the whole analysis.

Linear algebra notions presented within the R2-R® model. Many notions of el-
ementary linear algebra, and of vector spaces with an inner product, appear in the
model. Yet, there are important exceptions such as vector spaces, vector subspaces,
spanned subspace, and basis. (The less general notion of coordinate basis vectors
is already used for spaces of dimension 1,20r3.)

Use of drawings. There are 92 drawings in the book. Two of them illustrate
general situations (in an arbitrary vector space), and five illustrate situations in
dimension 4. The other 85 (92%) of the drawings are associated with situations in
R, R?, and R3.

The elements of these vector spaces are sometimes represented as arrows, and
sometimes as points. No explicit rationale is given for this, and possible confusions
are not discussed.

Moving from the R%-R® model to the general theory. The book displays two
stages in generalizing from the R2-R3 model to general linear algebra.

Stage 1. Introducing R® (Chapter 4 ). A special chapter is dedicated to general-
izing from the R?-R® model to R™. That chapter is very similar in structure
to the previous ones, thanks to the use of coordinates. A specific choice
is made by the authors; they emphasize R, It appears as a first stage in
the generalization, already outside of the “familiar geometry” but allowing
an explicit description of vectors, thereby avoiding dots in their coordinate
representations. Five drawings are given to illustrate situations in R%. Lin-
ear algebra in R* is used as a first step towards R™, as an intermediate
intuitive (paradigmatic) model.

Stage 2. Abstract vector spaces ( Chapter 5). The introduction of abstract vector
spaces (finite dimensional vector spaces over R) is accompanied by a radical
change in presentation. There are almost no drawings. Some very important
notions, like vector space, vector subspace, spanned subspace and basis are
introduced for the first time. The main link with the preceding chapters is
R™, which is used as a new paradigmatic model.

No direct use is made of the R2-R® model for abstract spaces. Rather, it
is used as a paradigmatic model for R™; then R” itself is used as a paradigmatic
model for other vector spaces. The main link between the R2-R3 model and general
linear algebra is that some of the terms used in the general context have already
been encountered in the geometric context. However, the authors do not suggest
referring to an associated drawing that might reinforce that link and help with the
generalization process.

No geometric model is used for abstract vector spaces. Their introduction
to abstract vector spaces does not appear as a natural generalization. Too many
important notions are not included in the model.
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Using the R2-R? model as a geometric model for R™ seems worthwhile for shap-
ing useful intuitions. Moreover, this can be an important stage in the generalization
process. Studying the R2-R3 model can provide more general indications about pos-
sible thinking processes involved in moving from dimension 2 or 3 to dimension n,
with n > 3. I will now examine a particular example of the way students use the
R2-R?® model for R™.

5. Analysis of the use of the R?-R? model by students

During the second semester of the academic year 2000-2001, T observed a six-
week long linear algebra course for second-year university students. It focused on
quadratic forms and vector spaces with an inner product. All the students had
learned elementary linear algebra during their first year.

The course was taught by Proffesor Thomas®, an experienced teacher and re-
searcher at the university where the study took place. The teaching of the course
consisted of two lectures (13 hours each) and two tutorials (2 hours each) per week.
During the lectures, all 110 of the students sat together in a large lecture hall. They
copied down the lecture notes and mostly remained silent. During the tutorials,
limited to groups of around 30, students attempted to solve exercises with the help
of a'teacher. The exercises were taken from a list given by the teacher T', who gave
the lectures, one tutorial, and organized that particular teaching. After observing
the class, I interviewed Professor Thomas and eight of his students individually.
The student interviews were based on a questionnaire (see Appendix B) and in-
cluded the following task: “Find the length of a diagonal of a cube with edges of
length 1 in R™.”

I present first a brief account of the teacher’s interview. I discuss only the
aspects that can be linked with students’ solution attempts, which I analyze in the
second subsection.

5.1. The Teacher’s Choices. The course was supposed to offer an overall
presentation of quadratic forms, inner products, and symmetric and orthogonal
matrices. The teacher introduced all these notions, but he chose to emphasize the
R? and B3 case in the sense that, after stating general results, he often illustrated
them in R? or R3. Sometimes a result was only established in R? and R?, and the
students were asked to do the generalization as homework (only for results stated
with coordinates). Among the 32 exercises proposed during the corresponding
tutorials, 20 were set exclusively in R? or R?.

Another typical choice of the teacher was the use of many drawings. He made
drawings during the lectures (66 drawings during 15 hours of lecture). He also
explicitly asked students to produce drawings in 10 of the 32 exercises. However,
these drawings were exclusively used to illustrate situations in R? or R®. Comparing
these choices with the results of the mathematicians’ questionnaire (§3) shows that
they were not usual in the French teaching context.

For these reasons, I especially questioned the teacher about his use of drawings,
the role of the R2-R3 model in his course, and its possible use by students. In
summary, he answered these questions as follow:.

6This name for the teacher and the names for students are pseudonyms.
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(1) Drawings. According to Professor Thomas, the drawings did not help
understanding. They were just natural because quadratic forms were ge-
ometrical objects, stemming from physics. He said the drawings must be
used only to illustrate situations in R2 or RS, Though he sometimes drew
to illustrate a situation in R", in such cases he asked the students to think
in R? or R3.

(2) The R2-R? model. According to the teacher, the study of R2-R3 as vector
spaces with the dot product as presented in his course was not intended
to help with general spaces, or even with R®. Such study was inter-
esting in itself and graduate students often had to manipulate general
statements without being conscious of their meaning in small dimensional
spaces. During the interview I insisted on a possible use of the R2-R3
model to learn, or understand, the general theory, Professor Thomas
answered: “For quadratic forms, all the phenomena already happen in
three-dimensional spaces. It js necessary to understand how to mowve up
from 2 to 3 (emphasis added). After that, there is nothing new.”

The sentence emphasized above Was a very important assumption of the teacher:
a student who understands the underlying process when moving from R? to R3 can
cise used in student interviews and possible student answers. His assumption was:

“If they are able to solve it in RS, they are able to solve it.” The actual situation
for students was more intricate.

5.2. Analysis of the students’ interview responses. The interview exer-
‘cise was formulated as follows:

“Find the length of a diagonal of a cube with edges of length 1 in R".”

One student difficulty was linked to the geometrical vocabulary. These students
had never been introduced to “cubes” and “diagonals” in R™. This might have
embarrassed some of them and prevented them from solving the exercise, even if it
were possible to answer without having clear insight into the n-cube’s significance.

During the interviews, I chose to intervene as little as possible in order to avoid
influencing the students’ solving processes. The only hint I gave was to indicate

to second-year students.

Analytic solution method. The first one possible solution method was analytic.
One of the diagonals of the cube can be represented as a vector? 07, where O has
coordinates (0,0, ...,0) and A has coordinates (1,1,...,1). Thus the length of the
diagonal is IO-_}ﬂ = y/n. In this case, considering the problem for n = 2 or 1, = 3
can be helpful; it allows one to find the coordinates of A for these values of . That
result can then be immediately generalized. The students who solved the exercige
in this way were using the R2-R3 model as a paradigmatic model (in Fischbein’s
terminology). Then they moved up to R™ using coordinates. That move can be

purely algebraic; but it can also be helped by the use of a figural model displaying
the coordinates of A for n =2 or n = 3.

It can also be interpreted as a segment.
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Tnductive solution methods. A second solution is by an induction process. For
n = 2, the length of the diagonal is V2. One assumes that the length of the
(n — 1)-cube’s diagonal is v'n — 1. The diagonal of the n-cube is then the sum of
a diagonal of the (n — 1)-cube and of a unit vector orthogonal to it. From the
Pythagorean Theorem, the length of the diagonal is thus v/ (this is the vector
version; the diagonals can also be interpreted as the sides of a right triangle).
A related solution method requires consideration of the case n = 2 and also of
the process leading from n = 2 to n = 3. That process provides the key to the
induction; the associated drawing could display the diagonal of a side and a unit
vector orthogonal to it.
Students’ solution attempts. The eight students’ answers fell info three groups.
Group 1: The obstacle of geometrical vocabulary (Students: Ana, Barbara,
Charles, Diane). These students did not overcome the obstacle of vocabulary.
They were not able to confer any meaning to the term “cube” in R™.
Ana: For n = 3, it’s as cube... For n? I do not see what a cube
can be! For n = 3, the diagonal of a face is V/2; it gives v/3 ... But
for dimension n...
Two students did not try to use a drawing; the other two drew only the 3-cube.

They all solved the problem in dimension 3 and caleulated /3. Barbara also men-
tioned a square as a cube in dimension 2 and calculated /2 in that case. But she

* did not link the two cases (dimension 2 and 3); she did not identify a generalizable

process.
Group 2: Using coordinates (Student: Edouard). There was only one student

in Group 2. I give here details about his reasoning process because it was very
different from that of all the others. He said at the beginning: “I first do it in
dimension 2.” Then he made a drawing (Figure 2). He calculated the value V2
immediately after plotting the diagonal and wrote that on his drawing.

€s

V2

— =
€1

FIGURE 2. Student Edouard. Diagonal of the cube in R2,

He went on, speaking and drawing simultaneously:
Edouard: 1 do the same now in dimension 3. e1, e, €3 is an
3 —_—
orthonormal basis of R®. The diagonal of the cube is OA4, Alis
there... So the coordinates of A are all equal to 1, it gives V3...
And it will always be the same thing, the coordinates of A are 1,

1,1... So |OA] = 7.
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FIGURE 8. Student Edouard. Diagonal of the cube in R®.

The corresponding drawing is shown in Figure 3.

Edouard was the only student who produced a drawing with vectors. He was
also the only student who made a drawing but did not draw a complete 3-cube.
On his first drawing, he plotted the diagonal; on the second, only its endpoints.
He immediately thought in terms of vectors and arrows. Then he recognized an
orthonormal basis on his first drawing, and was thus led to use coordinates. He
identified a linear algebra context; then instead of using drawings stemming from
secondary school geometry like the others, he used a figural model associated with
linear algebra. It helped him answer the question for n = 2 and n = 3, and to
formulate the problem with coordinates. Then the move from the R?-R3 model to
the general case became obvious to him.

Group 3: Induction process (Students: Fanny, Guy, Henri). These three stu-
dents first drew a square and then calculated V2 for n = 2; then they drew a cube
and used the Pythagorean Theorem, explicitly or not, to compute /3 for n = 3.
They all claimed that the general result was V1. They all used a kind of induction
process, but none of them produced a rigorous proof. The most algebraic reasoning

was produced by Fanny, who proposed no geometrical interpretation or justification
for its generalization:

Fanny: For n = 2, it gives va? + a2 = av/2. Then for n — 3,1
have v/a? 4 2a2 = 0+/3. Then it will go on the same way, there is

always another a?, and you get /a2 + (n—1)a2 = av/n.

(rather than labeling them with 1, she labeled the edges a). Even if the calculations
were not very different from those produced by thinking in terms of coordinates, the
reasoning process was not the same. She was first dealing with lengths of segments
and then with algebraic expressions, without any geometrical interpretation.

By contrast, the reasoning of Henri was based on geometrical statements. After
calculating v/2 for n = 2 and using it to deduce /3 for n = 3, he said:

Henri: I would say then there are 1, and V3, and it is orthogonal,
S0 it gives v4 = 2, but I'm not sure, I do not see it clearly... But
I think it works, because v/3 is the diagonal, and the last edge is
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FiGURE 4. Student Henri. The diagonal of the cube in RS,
orthogonal to it. So it is actually 2 for n = 4. And it is always the :
same, so you obtain \[\/714— T4+l +1=4/n
At first he appeared to feel embarrassed because he lacked a picture depicting the H
n-cube. But his drawing of the 3-cube displayed a right triangle formed by the .
diagonal of a face, an edge of the cube, and the corresponding diagonal of the cube &
(as in Figure 4). ¥
After producing this drawing, Henri focused on the orthogonality of the diag-

onal of a face and an edge of the cube. Even if he did not explicitly interpret the
diagonal of the 3-cube as the diagonal of a “face” of the 4-cube, he used it that
way; this allowed him to compute the result for n = 4. He did not try to provide
any further geometrical interpretation, but immediately generalized his result for
any value of n.

The observations described in this section came from a clinical study about a
cted with a small number of students. However, the behaviors

specific task, condu

described illustrate the more general phenomena discussed below.
5.3. Conclusions. The first issue T address here is the use of drawings. They
played a central part in the interview exercise. The two students who did not make
any drawing did not produce a solution. The one student who used vectors was
immediately led to the solution. Representing the whole cube did not help. But the §
then a 3-cube, and interpreted the faces of 1

four students who represented a square,
the 3-cube as squares (one of them even drew the 3-cube on the square), found the

solution.

5.3.1. Using Coordinates. Recall that the teacher said: “If they can do it in R3,
they can do it.” The interviews with students invalidated that claim. The teacher
may have thought that the students were going to solve the exercise analytically,
but only one student did so. The word “cube” placed all the other students in a
hey stayed captured. Moreover, during their tutorials,

geometrical context where t
untered tasks that requested analytic solutions where

the students had never enco
no coordinates were given in the task statement.
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Using coordinates can be a good way to move from dimension 2 or 3 to dimen-
sion n. But students may not use such a process in their reasoning if coordinates
are not a familiar tool for them. In particular, they must be able to formulate
problems presented in the abstract, or geometric, mode in terms of coordinates
(Hillel, 2000). Fostering this ability takes a specially designed course.

5.3.2. Increasing the dimension. The teacher also made & more general claim
about quadratic forms and inner product spaces: “The important point is to be
able to move from dimension 2 to dimension 3.”8 The observations in the particular
interview exercise studied here are consistent with that claim. The four students
who did not identify the process that led from n = 2 to n = 3 did not solve the
exercise. The four others found that the length of the diagonal was /n.

Moving up from dimension n — 1 to dimension n is a complex process. In
particular, it is necessary to interpret the space of dimension n — 1 as a hyperplane
of the space of dimension n. Mathematicians are quite used to such processes; they
readily consider the first space as an hyperplane and then add a supplementary
line to it, to obtain the whole n-space. This is a difficult process for students and
requires familiarity with the notion of subspaces. Such a supplementing process
could be explicitly addressed in linear algebra tutorials. The R2-R3 model could be
used to study how to move from dimension 2 to dimension 3.

9.3.3. Decreasing the dimension. For the task discussed here, it was sufficient
at each stage of the induction to reason in a plane that contained the (n—1)-diagonal
and the n-diagonal. This is a familiar process for mathematicians. Many general
results can be established by reasoning in a well-chosen 2-dimensional space, and
it is then possible to help the reasoning with a drawing. The actual n-dimensional
object cannot be pictured, but it is always possible to cut it along a plane and rep-
resent the obtained section. Henri was led to a solution by the use of such a process
in R*. That possibility (cutting and drawing) could be explicitly emphasized in a
linear algebra course. In that case, there would be no intervention of a geometric
model. The figural model would be directly associated with the pertinent part of
the general situation.

6. Conclusion

In Sections 3, 4, and 5, I reported on different aspects of my work: a mathe-
maticians’ questionnaire, results from a textbook study, and interviews with teacher
and students. Some of the results obtained are general statements about the use
of geometric or figural models in linear algebra; others are relative to the use of
the R%-R3 model. I will now synthesize the answers provided by these approaches
under each of the research questions presented in Section 2.

6.1. What are the possible uses of geometric models in linear al-
gebra? The first answer is: it appears that linear algebra cannot be taught nor
learned as a mere generalization of a geometry. The historical development of lin-
ear algebra (Dorier, 2000) has indicated that the modern theory emerged from the
necessity of unification of several mathematical domains. The intellectual need for
linear algebra (I refer here to Harel’s (2000) Necessity Principle) is grounded in the
unification of several mathematical domains.

8Banchoff and Wermer make a similar claim in their book. It can be formulated as, “If
students can move up from R3 to R%, then they will have no problem with R™.”
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Yet, a geometric model can be helpful, especially because the associated figural
model confers on the geometric model the appearance of concreteness. For example,
the R?-R*® model allows one to present some notions and results of linear algebra
before introducing the general theory as some properties appear as self-evident in a
geometric context. The use of coordinates allows one to move up to R™. However,
there is no evidence that this model can be used effectively to introduce abstract
vector spaces.

6.2. How do mathematicians and students use geometrical and figu-
ral models in linear algebra? Most of the mathematicians in France advocate
one of two opposite approaches. The first group advocates a structural approach
to linear algebra, without geometrical or figural models. The second group recom-
mends a geometry course before linear algebra so that geometry can then provide
models and the associated drawings. In both cases, however, the mathematicians
do not develop a figural model specifically for linear algebra; their drawings are
only used in a geometrical context.

I did not discuss in this paper the general use of geometric models by students.
Yet, the importance of familiarity with models must be emphasized. It was a direct
consequence of the Necessity Principle (Harel, 2000) and was also observed by
Sierpinska (2000). Students may use familiar models in their reasoning processes,
even when a teacher proposes a geometric model for linear algebra. These familiar
models can be inappropriate for linear algebra.

6.3. What are the consequences of the observed uses of models on
students’ practices and thinking processes? I studied this question in a par-
ticular context: the use of the R*-R?® model by students in their solving of a problem
stated in geometric language in R™. The model can help students find an algebraic
description of the problem that can be generalized to higher dimensions, provided
they use coordinates. That possibility is strongly linked with the existence of an
appropriate figural model that allows one to derive an algebraic description.

Understanding the process leading from R? to R® provides another possibility,
if the student extends that process so as to use it in going from R"! to R™. The
figural model is fundamental in that case as well, to help in understanding the
generalization mechanism. But the model can also have negative effects for some
students who stay captured in the geometrical context.

These results indicate that geometric models must be used carefully in linear
algebra courses. Geometry cannot be the only starting point for linear algebra;
other domains must intervene to justify the need for a general theory.

The geometric model requires long-term teaching so that it will become very
familiar to students. A figural model, specially intended for linear algebra, should
be presented. However, the uses of such a model for general vector spaces requires
additional research.

Moreover, because geometric models belong to dimension 2 or 3, it might be
useful to include in a linear algebra course the study of processes used by experts as
they move from dimension n to dimension n+1. And to discuss how they recognize,
in an n-dimensional problem, that the main phenomenon occurs in a well-chosen 2
or 3-dimensional space. Linear algebra teaching could integrate these possibilities
in order to try explicitly to develop students’ geometric intuition. For the moment,
this does not seem to be done by mathematicians, at least in France.

iy —————
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Appendix A: Mathematicians’ Questionnaire
1. Use of geometry in the exercises.

Question 1.1: The following exercise is often proposed to second year stu-
dents.
Let E be an inner product space, and p a projection of E. Prove that P8
an orthogonal projection if and only if, forallz in E, |z| > lp(z)|.

e What solution would you present to the students?

e Are there geometrical aspects in the solution you propose, and for
what purpose do you use them?

e Would you use a drawing in a solution presented to the students? If
the answer is positive, which drawing would you use, and what do
you expect from the use of that drawing?

Question 1.2: The following exercise is often proposed to first year stu-
dents.
Let E be a vector space, and z, y, z three vectors in E, linearly indepen-
dent by pairs. Is the set of the three vectors (z, y, 2) linearly independent?

o If you observe during a tutorial a student who says that (s)he is sure
that the answer is positive, but (s)he can not find a proof, what do

3 you tell him (her) to help? (Give a precise answer, and explain the
i ~ reason for your choice).
® The same exercise is proposed in an examination. A student proposes
the following solution:
No, the vectors drawn hereby provide a counter-example.
With the drawing of Figure 5.

eoiedyie

4 FIGURE 5

— What mark, between 0 and 9, do you attribute to this answer?
. — Which comments do you write on the student’s sheet?
i — Explain your mark and comments.

i v

e

: 2. Use of the geometry taught in secondary school.

j‘ Question 2.1: In secondary school, the students encounter the words “ba-
jis sis” and “orthonormal basis” in the geometry courses. Do you think that
g some of the properties, techniques, results...presented in secondary school
- can be used at university in the linear algebra courses? If your answer is
0.

yic

negative, explain why. If your answer is positive, present the results you
consider useful and explain how they can be used.

Question 2.2: In secondary school, the students encounter the words “pro-

i Jection” and “orthogonal projection” in the geometry courses. Do you
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think that some of the properties, techniques, results...presented in sec-
ondary school can be used at university in the linear algebra courses? If
your answer is negative, explain why. If your answer is positive, present
the results you consider useful and explain how they can be used.

3. Use of drawings in linear algebra

Question 3.1: For each of the drawin in the table, indicate if you use it in
g5

your linear algebra courses; if the answer is “yes” indicate which notions

or properties you illustrate with it. (You can mention several uses of the

same drawing.)

Drawing

Used (yes/no) | That drawing illustrates

<

T

Sy

e

i

Question 3.2: If you use other drawings, draw them in the following table,

and indicate the interpretation(s) you associate with them. (A blank table
with five lines followed.)
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Appendix B: Students’ Questionnaire

Drawings on the exam This section refers to the text of an exam passed by the
students two weeks before the interviews. I also used their own exam sheets. Here
are the two exercises of the exam that I used in the interviews.

Exercise 1 of the exam

Let g be the quadratic form defined by: g(z) = (221 + 3z)%. Give its
matriz, its rank, and draw its isotropic cone.

Exercise 2 of the exam

Let g be the quadratic form defined on R® by:

q(z) = 323 + 223 — x§. Give its rank, and draw its isolropic come. Is q
positive ¢

About Exercise 1 of the exam, I asked the following question:
The isotropic cone is a straight line that can be illustrated by the following figure.
How would you represent an element of that cone?

About Exercise 2 of the exam, I asked the following questions:
If the student drew axes, does he or she think that these axes were part of the

requirement? Was the drawing useful to answer the question: Is g positive?

Other Exercises

Exercise 1
Each of the drawings in the figure represents a subset E; of R%. In each

case, indicate if it is possible to find a quadratic form q of R? such that:
— E; is the kernel of ¢
— B is the isotropic cone of ¥
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B 1

B= {0}

Exercise 2

Let E = Ry[X] be the inner product space of degree 3 polynomials and let
P and Q be two orthogonal elements of E whose length is 1. Can you
determine the length of P+ Q ¢

Exercise 3

Find the length of a diagonal of a cube with edges of length 1 in R™.
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