Spatially-variant area openings for reference-driven adaptive contour preserving filtering

Abstract : Classical adaptive mathematical morphology is based on operators which locally adapt the structuring elements to the image properties. Connected morphological operators act on the level of the flat zones of an image, such that only flat zones are filtered out, and hence the object edges are preserved. Area opening (resp. area closing) is one of the most useful connected operators, which filters out the bright (resp. dark) regions. It intrinsically involves the adaptation of the shape of the structuring element parameterized by its area. In this paper, we introduce the notion of reference-driven adaptive area opening according to two spatially-variant paradigms. First, the parameter of area is locally adapted by the reference image. This approach is applied to processing intensity+depth images where the depth image is used to adapt the scale-size processing. Second, a self-dual area opening, where the reference image determines if the area filter is an opening or a closing with respect to the relationship between the image and the reference. Its natural application domain are the video sequences.
Type de document :
Communication dans un congrès
2014 22nd International Conference on Pattern Recognition (ICPR), , Aug 2014, Stockholm, Sweden. 2014, 2014 22nd International Conference on Pattern Recognition. <10.1109/ICPR.2014.189>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00926681
Contributeur : Gianni Franchi <>
Soumis le : vendredi 10 janvier 2014 - 09:31:03
Dernière modification le : mardi 12 septembre 2017 - 11:41:16
Document(s) archivé(s) le : jeudi 10 avril 2014 - 22:15:27

Fichier

Spatially_variant_area_opening...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Gianni Franchi, Jesus Angulo. Spatially-variant area openings for reference-driven adaptive contour preserving filtering. 2014 22nd International Conference on Pattern Recognition (ICPR), , Aug 2014, Stockholm, Sweden. 2014, 2014 22nd International Conference on Pattern Recognition. <10.1109/ICPR.2014.189>. <hal-00926681>

Partager

Métriques

Consultations de
la notice

235

Téléchargements du document

156