Actinopolyspora saharensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil of Algeria
Atika Meklat, Noureddine Bouras, Abdelghani Zitouni, Florence Mathieu, Ahmed Lebrihi, Peter Schumann, Cathrin Spröer, Hans-Peter Klenk, Nasserdine Sabaou

To cite this version:
Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 9939

To link to this article: DOI:10.1007/s10482-012-9859-z

http://dx.doi.org/10.1007/s10482-012-9859-z

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Actinopolyspora saharensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil of Algeria

Atika Meklat · Noureddine Bouras · Abdelghani Zitouni · Florence Mathieu · Ahmed Lebrihi · Peter Schumann · Cathrin Spröer · Hans-Peter Klenk · Nasserdine Sabaou

Abstract A novel halophilic actinomycete, strain H32T, was isolated from a Saharan soil sample collected in El-Oued province, south Algeria. The isolate was characterized by means of polyphasic taxonomy. Optimal growth was determined to occur at 28–32 °C, pH 6.0–7.0 and in the presence of 15–25 % (w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid and the characteristic whole-cell sugars were arabinose and galactose. The predominant menaquinones were found to be MK-10(H4) and MK-9(H4). The predominant cellular fatty acids were determined to be anteiso C17:0, iso-C15:0 and iso-C16:0. The diagnostic phospholipid detected was phosphatidylcholine. Phylogenetic analyses based on the 16S rRNA gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Actinopolyspora. The 16S rRNA gene sequence similarity indicated that strain H32T was most closely related to ‘Actinopolyspora algeriensis’ DSM 45476T (98.8 %) and Actinopolyspora halophila DSM 43834T (98.5 %). Furthermore, the result of DNA–DNA hybridization between strain H32T and the type strains ‘A. algeriensis’ DSM 45476T, A. halophila DSM 43834T and Actinopolyspora mortivallis DSM 44261T demonstrated that this isolate represents a different genomic species in the genus Actinopolyspora. Moreover, the physiological and biochemical data allowed the differentiation of strain H32T from its closest phylogenetic neighbours. Therefore, it is proposed that strain H32T represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed. The type strain is H32T (=DSM 45459T=CCUG 62966T).
Keywords Actinopolyspora · A. saharensis sp. nov. · Halophilic actinomycete · Sahara · Polyphasic taxonomy

Introduction

The genus Actinopolyspora was proposed by Gochnauer et al. (1975) and its description has been emended recently by Tang et al. (2011). It currently encompasses the species Actinopolyspora halophila (Gochnauer et al. 1975), Actinopolyspora mortivallis (Yoshida et al. 1991), Actinopolyspora xinjiangensis (Guan et al. 2011), Actinopolyspora egyptensis (Hozzein and Goodfellow 2011), Actinopolyspora alba and Actinopolyspora erythraea (Tang et al. 2011) and Actinopolyspora algeriensis (Meklat et al. 2012). The two species ‘A. egyptensis’ (Hozzein and Goodfellow 2011) and ‘A. algeriensis’ (Meklat et al. 2012) were described recently but these names have not yet been validated. The genus is characterized by a cell wall of type IVA (Goodfellow 2012), and the presence of iso-C_{15:0} and anteiso-C_{17:0} as the major fatty acids and the absence of mycolic acids (Gochnauer et al. 1989; Tang et al. 2011). The G+C contents of the genomic DNA are 64–69 mol%.

During a study on halophilic actinomycetes from Saharan soils in El-Oued province (south Algeria), strain H32T was isolated and purified. The present study was carried out to determine the taxonomic status of this strain by using a polyphasic approach. Based on phenotypic and genotypic evidence, it is proposed that the strain H32T represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed.

Materials and methods

Isolation and maintenance of isolate

During an investigation of actinomycete diversity in Saharan soils (Meklat et al. 2011), strain H32T was isolated from a soil sample collected from El-Oued province (33°19’59”N, 6°52’59”E), south Algeria. Isolation was carried out by a dilution-plate method using humic acid-vitamin agar medium (Hayakawa and Nonomura 1987) supplemented with actidione (50 μg ml-1) and 20 % (w/v) NaCl. After 4 weeks of incubation at 30 °C, the isolate, which formed a white colony, was transferred and purified on complex medium (CM) agar (Chun et al. 2000) supplemented with 20 % (w/v) NaCl. The purified strain was maintained on CM agar slants at 4 °C and as 20 % (v/v) glycerol suspensions at -20 °C. Strain H32T was deposited in the German Collection of Microorganisms and Cell Cultures (DSMZ) as strain DSM 45459T, and in the Culture Collection, University of Göteborg, Sweden (CCUG) as strain CCUG 62966T.

Phenotypic characterization

Characterization of strain H32T was determined after growth at 30 °C for 3 weeks using the media of the International Streptomyces Project, ISP 2 and ISP 4 (Shirling and Gottlieb 1966), and also CM agar (Chun et al. 2000) and nutrient agar (Waksman 1961). The colours of the substrate and aerial mycelia and any soluble pigments produced were determined by comparison with ISCC-NBS colour charts (Kelly and Judd 1976). The morphological characteristics of strain H32T, including spore-chain morphology, spore size and surface ornamentation, were assessed by light microscopy (B1, Motic) and scanning electron microscopy (Hitachi S450). Several physiological tests were used to characterize actinomycete strain. Growth at different temperatures (10, 15, 25, 30, 32, 35, 40 and 45 °C), various pH values (5.0, 6.0, 7.0, 8.0 and 9.0 using the buffer system described by Xu et al. 2005) and NaCl concentrations (0, 7, 10, 15, 20, 25, 28, 30, 32 and 35 %; w/v) were determined by using nutrient agar medium, with the cultures incubated for 21 days at 30 °C. Utilization of carbohydrates and decarboxylation of organic acids were evaluated using the method of Gordon et al. (1974). Degradation of different other organic compounds was studied as described by Goodfellow (1971). Lysozyme sensitivity and production of nitrate reductase were determined according to the methods of Gordon and Barnett (1977) and Marchal et al. (1987), respectively. Chemotaxonomy

For the chemotaxonomic analyses, strain H32T was grown in complex broth medium containing 15 % (w/v)
NaCl at 30 °C for 10 days on a rotary shaker (250 rpm). Biomass was harvested by centrifugation at 3,500 rpm and washed several times with distilled water. Analysis of diaminopimelic acid and whole-cell sugars was carried out using the methods of Becker et al. (1964) and Lechevalier and Lechevalier (1970). Phospholipids were analyzed according to the procedures developed by Minnikin et al. (1977). Menaquinones were isolated according to Minnikin and O’Donnell (1984) and were analyzed by HPLC (Kroppenstedt 1982, 1985). The cellular fatty acid composition was studied as described by Sasser (1990) using the microbial identification system.

Phylogenetic analyses

The genomic DNA of H32T was extracted according to the method of Liu et al. (2000). PCR amplification of the 16S rRNA gene and sequencing of the purified PCR products were carried out as described by Rainey et al. (1996). The sequences obtained were compared with sequences present in the public sequence databases as well as with the EzTaxon-e server (http://eztaxon-e.ezbiocloud.net/; Kim et al. 2012), a web-based tool for the identification of prokaryotes based on 16S rRNA gene sequences from type strains. The 16S rRNA sequence of strain H32T was aligned using the CLUSTAL W (Larkin et al. 2007) against corresponding nucleotide sequences retrieved from GenBank. Phylogenetic trees were constructed by using the neighbour-joining (Saitou and Nei 1987) with Jukes and Cantor (1969) model, maximum-likelihood (Felsenstein 1981) with Kimura 2-parameter (Kimura 1980) model and maximum-parsimony (Fitch 1977) methods. The topology of the tree was evaluated by bootstrap analysis based on 1,000 replicates (Felsenstein 1985). DNA–DNA hybridization was carried out as described by De Ley et al. (1970) incorporating the modifications described by Huss et al. (1983). The experiments were done as duplicates in 2 × SSC in the presence of 10 % formamide at 71 °C.

Results and discussion

Strain H32T was observed to grow well on CM agar, NA and ISP 2 media, with a well-developed white-yellow aerial mycelium that fragmented into rod-shaped spores. The spores were determined to have a smooth surface (Fig. 1) and be non-motile. Growth was found to be weak on ISP 4 medium, with the aerial mycelium poorly developed. The substrate mycelium showed light yellow or pale yellow colouration and exhibited a good fragmentation. A light yellowish diffusible pigment was found to be produced on CM agar medium after incubation for three weeks.

Strain H32T was determined to contain meso-diaminopimelic acid (but not glycine) in its cell wall. Whole-cell hydrolysates were found to contain arabinose and galactose (in addition to ribose), which is typical of cell-wall type IV and whole-cell sugar pattern type A (Lechevalier and Lechevalier 1970). The diagnostic phospholipid detected was phosphatidylcholine, corresponding to phospholipid type PIII (Lechevalier et al. 1977). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown phospholipids and three unknown glycolipids were also detected (Supplementary Fig. S1a, b and c). The predominant menaquinones were determined to be MK-10 (H4) (29.4 %) and MK-9 (H4) (22.4 %) and minor amounts of MK-10 (H2) (9.4 %), MK-11...
(H₄) (8.3 %), MK-8 (H₄) (5.9 %), MK-9 (H₄) (5.3 %), MK-11 (H₄) (3.0 %) and MK-10 (H₄) (1.9 %) were also detected. The fatty acids profile was composed as follows: anteiso-C₁₇:₀ (30.8 %), iso-C₁₅:₀ (20.4 %), iso-C₁₆:₀ (15.6 %), iso-C₁₇:₀ (9.3 %) and anteiso-C₁₅:₀ (9.1 %). The morphological and chemical characteristics described above clearly support the placement of strain H32ᵀ within the genus *Actinopolyspora*.

Good growth was found to occur at 28–32 °C, pH 6.0–7.0 and in the presence of 15–25 % of NaCl. The organism is resistant to kanamycin (5 μg ml⁻¹), erythromycin (10 μg ml⁻¹), streptomycin (10 μg ml⁻¹), penicillin (25 μg ml⁻¹) and lysozyme (0.005 % w/v), but sensitive to chloramphenicol (25 μg ml⁻¹). Detailed results of the physiological and biochemical analyses are given in Table 1 and in the species description. It is evident from Table 1 that there are several phenotypic characteristics that clearly separate strain H32ᵀ from the nearest recognized species *A. algeriensis* and *A. halophila*.

Phylogenetic analysis of an almost complete 16S rRNA gene sequence (GenBank accession number HQ918198) showed that strain H32ᵀ was related to members of the genus *Actinopolyspora* and exhibited highest 16S rRNA gene sequence similarity to *A. algeriensis* (98.8 %) and *A. halophila* (98.5 %), whereas the sequence similarities between strain H32ᵀ and other members of the genus *Actinopolyspora* ranged from 96.5 to 97.2 %. The phylogenetic relationship between strain H32ᵀ and the other *Actinopolyspora* species is seen in the neighbour-joining dendrogram (Fig. 2). Maximum parsimony and maximum-likelihood calculation resulted in a similar tree topology (Supplementary Fig. S2). DNA–DNA relatedness between strain H32ᵀ and the type strains *A. algeriensis* DSM 45476ᵀ, *A. halophila* DSM 43834ᵀ and *A. mortivallis* DSM 44261ᵀ were respectively mean values of 30.5 % (30.4 and 30.6 %), 55.1 % (54.3 and 56.0 %) and 31.5 % (28.1 and 34.1 %). These hybridization values were significantly less than 70 %, the threshold value for the delineation of genomic species (Wayne et al. 1987). Thus, on the basis of polyphasic taxonomic evidence, it is suggested that strain H32ᵀ represents a novel species of the genus *Actinopolyspora*, for which the name *Actinopolyspora saharensis* sp. nov. is proposed.

Description of *A. saharensis* sp. nov.

Actinopolyspora saharensis (sa.ha.ren’sis, N.L. fem. adj. saharensis pertaining to Sahara, where the type strain was isolated).

Halophilic filamentous actinomycete that forms well-fragmented substrate mycelium. Aerial mycelium is well-developed white-yellow colour on ISP 2, nutrient agar and CM agar media, and is irregularly branched and forms straight to flexuous chains of 10–30 rod-shaped spores. A light yellowish soluble pigment is produced on CM agar medium.

Table 1 Differential characteristics of strain H32ᵀ (*Actinopolyspora saharensis* sp. nov.) compared with its closest relative recognized species of the genus *Actinopolyspora*

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilization of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-cellobiose</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Erythritol</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>d-galactose</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>d-glucose</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Inositol</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-lactose</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-maltose</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-mannitol</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d-mannose</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raffinose</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicin</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>d-xylose</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Decomposition of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casein</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xanthine</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production of nitrate reductase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance to lysozyme (0.005 % w/v)</td>
<td>+</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth in the presence of 7 and 32 % of NaCl</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The phenotypic properties of strains *A. saharensis* H32ᵀ, *A. halophila* DSM 43834ᵀ and *A. algeriensis* DSM 45476ᵀ grown under the same conditions were determined in the present study. Strains: 1 *A. saharensis* H32ᵀ, 2 *A. halophila* DSM 43834ᵀ, 3 *A. algeriensis* DSM 45476ᵀ, + positive, – negative

* Variable or doubtful results were obtained by Yoshida et al. (1991), Guan et al. (2010), Horzein and Goodfellow (2011) and Tang et al. (2011)
Temperature and pH ranges for growth are 20–35 °C and pH 5.0–8.0, with optima at 28–32 °C and pH 6.0–7.0. The NaCl concentration range for growth is 10–30 %, with optimal growth occurring at 15–20 %. Utilizes adonitol, arabinose, cellobiose, fructose, galactose, glucose, glycerol, lactose, maltose, mannose, rhamnose, sucrose, trehalose and xylose but not erythritol, inositol, mannitol, melezitose, melibiose, raffinose, ribose, salicin and sorbitol. Positive for adenine, gelatin, hypoxanthine, starch, Tween 80 and xanthine hydrolysis but negative for casein, guanine, testosterone and tyrosine hydrolysis. Citrate is decarboxylated but not acetate, benzoate, butyrate, oxalate, propionate, pyruvate, succinate and tartrate. L-proline is used as a source of nitrogen but not L-alanine and L-serine. Nitrate reductase is produced. Whole-cell hydrolysates contain meso-diaminopimelic acid, arabinose and galactose. The diagnostic phospholipid is phosphatidylcholine (type PIII sensu Lechevalier et al. 1977). The predominant menaquinones are MK-10 (H4) and MK-9 (H4). The major fatty acids are anteiso-C17:0, iso-C15:0, iso-C16:0, iso-C17:0 and anteiso-C15:0.

The type strain, H32T (=DSM 45459T=CCUG 62966T), was isolated from a Saharan soil sample collected from El-Oued province (south Algeria). The GenBank accession number for the 16S rRNA gene sequence of strain H32 is HQ918198.

Acknowledgments The authors are grateful to Khaled Kherraz for soil sampling from El-Oued province, Gabriele Pöter (DSMZ) for growing A. saharensis cultures and for assistance with chemotaxonomical analyses and Bettina Sträubler for assistance with DNA–DNA hybridizations.

Fig. 2 Phylogenetic tree for species of the genus *Actinopolyspora* calculated from almost complete 16S rRNA gene sequences using Jukes and Cantor (1969) evolutionary distance methods and the neighbour-joining method of Saitou and Nei (1987). This illustrates the taxonomic position of strain H32T relative to the other species of the genus. Numbers at the nodes are bootstrap values, expressed as a percentage of 1,000 resamplings (only values >50 % are shown). Bar 0.01 nucleotide substitution per site

References

Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

