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Abstract. In this article, we present a new local method for multiobjec-
tive problems. It is an extension of local search algorithms for the single
objective case, with specific mechanisms used to build the Pareto set. The
performance of the local search algorithm is illustrated by experimental
results based on a real problem with three objectives. The problem is
issued from electric car-sharing service with a car manufacturer partner.
Compared to the Multiobjective Pareto Local Search (PLS) well known
in the scientific literature [1], the proposed model aims to improve: the
solutions quality and the time computing.

Keywords: Local search algorithm - Multiobjective optimization - Transporta-
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1 Introduction

Many real world problems require to optimize several objectives simultaneously,
they are called multiobjective optimization problems (MOP). When it does not
exist a unique solution optimizing all objectives in an optimal way, we need to
find other decisional mechanisms. The Pareto dominance is one of these; for
MOP, the Pareto set is composed of all best compromises between the different
objectives. The Pareto set is achieved if there are no other dominant solutions
in the search space. The Pareto front is defined as the image of the Pareto
set in the objective space [2]. In the past few years, a lot of works were based
on multiobjective evolutionary algorithms (MOEA) such NSGA-II[3] , SPEA [4]
and SPEA2 [5], sometime coupled with local search in memetic approaches [6][7].

To solve single objective combinatorial optimization problems, local search
algorithms provide often efficient metaheuristics. They can also be adapted to
multiobjective combinatorial problems like in Pareto Local Search algorithm
(PLS) [1] with a complete exploration of the neighborhood, or with strategy
based on the neighborhood structure [8]. A recent work has been done to unify
local search algorithms applied to MOP, known as Dominance-based Multiob-
jective Local Search (DMLS) [9]. Finally, some algorithms add a Tabu criteria
in the local search [10][11].

* Pre-print version. The final publication is available at link.springer.com



The local search approach we propose, named FLS-MO, is based on the
Pareto optimality. A neighbor is acceptable if and only if it is not dominated
by the solutions found so far. This criteria was used in other approaches as in
[1] but the originality of our method is to be very intensive while maintaining a
good diversity. With this new tradeoff between intensification and diversification
we get good results in comparison with PLS.

2 Fast Local Search for Multiobjective problems

The new algorithm is based on a not dominated local search. The initial solu-
tion is build randomly, marked as not explored and added to the solutions set.
While it exists a not explored solution in the solutions set, the algorithm chooses
randomly such a solution and use it recursively until being in a local optimum.
At each step the first random neighbor that provides a new non-dominated so-
lution is accepted. The algorithm stops when all non-dominated solutions are
marked as explored. The result is an approximation of the Pareto set. The ap-
proach combines two qualities: a good intensification based on exploration of
any non-dominated solution of the set and a good diversification because all
non-dominated solutions are accepted in the set.

Algorithm 1 Fast Local Search for Multiobjective Problems

1: S < init() {init the solution set S with a random individual}
2: s < select(S) {select randomly a not explored solution from S}
3: while s #( do

4: repeat

5: s’ «+ selectNeighbor(s) {select randomly a neighbor of s not dominated by S}
6: if s’ # () then

T: s« s

8: addNotDominated(s) {add s in S and remove all dominated solutions}

9: end if
10:  until s’ =0
11:  mark s as explored

12: s < select(S) {select randomly a not explored solution from S}
13: end while

3 Study Case: charging stations location for electric
car-sharing service

Car-sharing services was first experimented in 1940 [12]. To deploy the service,
we need to locate charging stations where the people take and return the cars. In
our case, it is not necessary to return the vehicle in its starting station. Solving
approaches based on exact methods already exist such as [13] but they consider
simplified problem. We have applied FLS-MO algorithm to approximate the



Pareto set of this problem. The aim is to locate n stations in a given area to
maximise several daily requests of population flows.

The area is discretized into a grid and all the flows are set in a 3D matrix
F = (fi,j,+) where f; ;; represents the number of displacements from the cell 4
to the cell j at time period ¢t. We have 3 objectives to locate the charging stations:

f1 : flow maximization i.e. the locations must allow us to maximize the flows
between themselves

= mag Z Z f(sti, st;) (1)

sti€s stjes\{st;}

f2 : balance maximization i.e. the location must allow us to maximize the
balance between inflows and outflows of a station
] (2)

f3 : minimization of flow standard deviation i.e. the location must allow us
to get an uniform flow along the day

f3= mm l \/| f(stit) — f(stl))zl (3)

= max
sef

With,

2 : set of feasible solutions

s ¢ solution element of {2 corresponding to a network of n charging stations
st; : charging station ¢ from the solution s

T : set of time periods of the day

t : one time period (for instance 15 minutes)

f(sti, st;) : number of people moving from st; to st; on all time periods
f(sty, stj,t) : number of people moving from st; to st; on time period ¢
f(st;,t) : number of people moving from/to st; on time period ¢

f(st;) : average number of people moving from/to st; on all time periods

Folsts) = ymin [Cos o gorny F(5t 5850, Xty e oty F (5t 583, 1) i the bal-
anced part of the in/out flow throughout the day

fT(St’L) = Et max [Estj es\{sti} f(St'u Stja t)7 Zstj cs\{st;} f<8tj7 sti, t)i| is the to-
tal flow going through st; station

4 Performance analysis

In multiobjective optimization the comparison of different algorithms is quite
difficult. Indeed for two approximations of the Pareto front one can be better



for

a criteria but worst for another one. Choosing a comparative indicator would

be a good way to distinguish these sets. Here we have considered the additive e-
indicator [14]. The unary additive e-indicator gives the minimum factor by which
a set A has to be translated to dominate the reference set R. As we do not know

the
the

Mean epsilon value

optimal reference set of the problem we composed an approximated R with
best solutions obtained with PLS and FLS-MO on many runs.
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Fig. 1. e-indicator evolution for PLS and FLS-MO algorithms

Figure 1 shows the comparison on 6 runs between PLS and FLS-MO. It

reflects the evolution in time of e-indicator. The left side shows 6 runs for each
method and the right side shows their mean value on 6 runs. The results given
by FLS-MO seems to be very promising. Figure 1 shows that FLS-MO converges
twice faster than PLS and provides a better average evaluation.
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