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Lyapunov techniques for stabilization of switched linear systems of

conservation laws

Pierre-Olivier Lamare, Antoine Girard and Christophe Prieur

Abstract— In this paper, the exponential stability in L
2-

norm is investigated for a class of switched linear systems
of conservation laws. The state equations and the boundary
conditions are both subject to switching. We consider the prob-
lem of synthesizing stabilizing switching controllers. By means
of Lyapunov techniques, three control strategies are developed
based on steepest descent selection, possibly combined with a
hysteresis and a low-pass filter. Some numerical examples are
considered to illustrate our approach and to show the merits
of the proposed strategies.

I. INTRODUCTION

Physical networks may be represented by hyperbolic par-

tial differential equations in one space dimension, yielding

systems of conservation laws or balance laws. Among the

different networks, we have in mind the hydraulic networks

(see [3], [4]), road traffic networks (see [12]), or gas pipeline

networks (see [7]). Due to the range of those applications in

the engineering field, an important research on the theorical

aspects in modelling and control of such systems is made.

The present paper deals with switched linear systems of

conservation laws, and their control.

In such systems, some parameters may evolve in time.

For example, it can be the boundary conditions in an open

channel controlled by mobile spillways, or the state equations

of a road where the speed limitation changes during the time.

Of course, the state equations and the boundary conditions

can both be subject to abrupt changes. Therefore a switched

system occurs: a system where there is both a continuous

dynamic (given by the state equation) and a discrete dynamic

(given by a switching signal).

Some results are available in literature for the stability

and stabilizability of switched hyperbolic systems of balance

laws or conservation laws. In [16] some sufficient condi-

tions for the asymptotic stability are stated, uniformly with

respect to a class of switching signals. In [1], a result of

stability is given under an arbitrary switching signal using

the propagation of the solution along the characteristics. For

switched systems governed by semigroups of linear evolution

operators and their stability under an arbitrary switching

signal, see [11]. In [8] a star-shaped network with a central

node, and the wave equation governing on each edge, is
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studied. It is shown that a switching feedback stabilization

at the exterior end of the edge is effective under some

sufficient conditions. Moreover it is proved that the problem

has solutions under the proposed switching rule. The well-

posedness issue and the dependence of the solutions on the

initial data for a networked transport systems defined on

directed graph is explored in [9], while an analysis based on

functions of bounded variation in an extended way is used

in [10] to prove well-posedness for a quasilinear system of

first-order hyperbolic PDEs. In this last two references the

switching modeling is view as a tool for systems for which

different time and spatial scales interact.

An approach commonly used to study the stability and

to design the boundary control of system of conservation

laws is the Lyapunov analysis [2], [3]. In this paper we use

this approach (as in [16]) to design three swiching rules for

our switched hyperbolic system of conservation laws. We

show that, under a sufficient condition, global exponential

stability in L2-norm is obtained with these switching rules.

The sufficient condition takes the form of a linear matrix

inequality (LMI). Hence the verification of this condition

is expressed as an optimization program, which can be

solved numerically. Moreover an upper bound on the speed

of convergence is given, and it is possible to numerically

optimize it in the three cases proposed in this paper.

The paper is organized as follows. In Section II, we

introduce the class of switched linear hyperbolic systems of

conservation laws considered in this paper. In Section III,

the common Lyapunov function used in our analysis is in-

troduced, and some preliminary results are derived, then the

three switching rules are proposed, with the corresponding

results obtained with them. Finally in Section IV, an example

is studied to illustrate our main results.

Due to space limitation, the proofs of all results are

omitted.

Notation. The set R
+ is the set of nonnegative real

numbers. The set of square real matrices of dimension n

is denoted by R
n×n. Given a matrix A, the transpose of the

matrix A is denoted by A⊤. Given n real numbers a1, . . . , an
the matrix A ∈ R

n×n with these numbers on the diagonal

is denoted by diag(a1, . . . , an). The identity matrix of

dimension n is denoted by In, while the zero matrix of

dimension n is denoted by 0n. For a symmetric matrix

A ∈ R
n×n, A being positive definite is denoted A > 0, while

A being positive semi-definite is denoted A ≥ 0. The usual

Euclidian norm in R
n is denoted by |.|. The set of functions

y : [0, 1] → R
n such that |y|2L2([0,1]) =

∫ 1

0
|y(x)|2 dx < ∞,

is denoted by L2([0, 1]). Given a continuous function y



on an open interval (x1, x2) and taking value in R
n, the

infinity norm is denoted by |y|L∞ = inf {C; |y| ≤ C a.e.}.

The restriction of a function y : [0, 1] → R
n on an open

interval (x1, x2) ⊂ [0, 1] is denoted by y|(x1,x2).

II. PROBLEM FORMULATION

We are concerned with n×n linear hyperbolic systems of

conservation laws of the form:


















∂ty(t, x) + Λσ(t)∂xy(t, x) = 0 ,
t ∈ R

+, x ∈ (0, 1) ,
(1a)

y(t, 0) = Gσ(t)y(t, 1) , t ∈ R
+ , (1b)

y(0, x) = y0(x) x ∈ [0, 1] , (1c)

where y : [0, 1] × R
+ → R

n, σ : R
+ → I where I =

{1, . . . , N} is a finite set of indices. The function σ is called

switching signal of the system. The times of discontinuities

of σ, 0 < t1 < t2 < . . . are called switching times.

For all i ∈ I, Gi belongs to R
n×n, Λi is a diagonal posi-

tive definite matrix in R
n×n i.e. Λi = diag(λi,1, . . . , λi,n)

for suitable positive values λi,1 . . . λi,n.

Now we explicit the type of function y that we consider

for the solution of system (1).

Definition 2.1: A piecewise continuous function y :
[0, 1] → R

n is a continuous function on [0, 1] except maybe

on a finite number of points 0 = x0 < x1 < · · · < xp = 1
such that for all l ∈ {0, . . . , p− 1} there exists yl continuous

on [xl, xl+1] and yl = y|(xl,xl+1). The set of all piecewise

continuous functions is denoted by Cpw([0, 1]).
Let

‖y‖ = max

{

max
l∈{0,...,p}

{|y(xl)|} ,

max
l∈{0,...,p−1}

{

∣

∣y|(xl,xl+1)

∣

∣

L∞

}

}

.

(2)

One easily verifies that ‖.‖ is the classical norm L∞ for the

space Cpw([0, 1]). Now we assume that the initial data y0 lies

in Cpw([0, 1]). The trace of y ∈ Cpw([0, 1]) is well defined.

Indeed the application T : (Cpw([0, 1]), ‖.‖) → (Rn, |.|),
T : y 7→ y(1) is linear and continuous. In this paper it is

assume that the function y(t, ·) lies in Cpw([0, 1]) for all t ≥
0, so the number of discontinuities in the solution is supposed

to grow but staying finite along the time. In other words, the

results presented in this paper are valid as long as no Zeno

behaviors occur (see [14] for example for a definition of this

phenomena).

The aim of this work is to design an output controller.

It will be a switching rule which depends only on the

measurement at the boundary of the domain, in order to

stabilize the system in the following sense:

Definition 2.2: Given a switching signal, system (1) is

said to be globally exponentially stable (in L2−norm), if

there exist positive constants c and α such that the solution

of (1) exists, is unique and satisfies the inequality

|y(t, ·)|L2([0,1]) ≤ ce−αt
∣

∣y0
∣

∣

L2([0,1])
, (3)

for all t ≥ 0.

Now, we will make clear the notion of switching signal

dependent of the measurement at the boundary. In general,

the state of a hyperbolic system of conservation laws is

measured at the boundaries of the domain thanks to a set

of sensors. In our case the system is only observed at the

point x = 1 at any time because of the positive values of

velocities λi,1 . . . λi,n. The sensor values are defined as

w(t) = y(t, 1) . (4)

The output function is defined as soon as y(t, ·) ∈
Cpw([0, 1]), since the trace of a function in Cpw([0, 1]) is

well-defined (see above).

According to the sensor values, the system (1) will evolve

in a particular mode. Thus the switching rule is denoted by

σ[w] : R
+ → I

t 7→ σ[w](t) .
(5)

Moreover the switching rule is a causal decision: the switch-

ing rule does not depend on the future value of the system

state but only on current and past values. Mathematically it

can be written as follows:

w(t) = w′(t) , ∀t ∈ [0, τ ] ⇒ ∀t ∈ [0, τ ] , σ[w](t) = σ[w′](t) .

To summarize, the process evolves in a mode, a sensor

measures the state w(t) of the process at the boundary, then

depending on this value, a switching rule imposes the mode

in which the system must evolve afterwards.

In order to design this switching rule, we will perform an

analysis based on Lyapunov techniques.

Let us conclude this section with two remarks.

Remark 2.3: In system (1), the matrices Λi are diagonal

positive definite. This assumption is made only for the sake

of simplicity in our analysis. Indeed we can consider more

general diagonal matrices for Λi. Suppose that there exists

m > 0 such that for all i ∈ I, Λi is a diagonal matrix

satisfying Λi = diag(λi,1, . . . , λi,n) with λi,k > 0 for k ∈
{1, . . . ,m} and λi,k < 0 for k ∈ {m+ 1, . . . , n}. The matri-

ces Λi are written as Λi =
(

Λ+

i
0n−m,m

0m,n−m Λ−

i

)

, where Λ+
i =

diag(λi,1, . . . , λi,m) and Λ−
i = diag(λi,m+1, . . . , λi,n)

are respectively diagonal positive definite matrices and diag-

onal negative definite matrices. We introduce the notations

y+ = (y1, . . . , ym)
⊤

, y− = (ym+1, . . . , yn)
⊤

, such that

y = (y+, y−)
⊤

. The system in its general form is


























∂ty(t, x) + Λσ[w](t)∂xy(t, x) = 0 ,
t ∈ R

+, x ∈ (0, 1) ,
(6a)

(

y+(t, 0)
y−(t, 1)

)

= Gσ[w](t)

(

y+(t, 1)
y−(t, 0)

)

, (6b)

y(0, x) = y0(x) , (6c)

where Gi =
(

G
++

i
G

+−

i

G
−+

i
G

−−

i

)

, such that G++
i , G+−

i , G−−
i

and G−+
i are matrices respectively in R

(n−m)×(n−m),

R
(n−m)×m, Rm×(n−m) and R

m×m. By the change of vari-

able z(t, x) = ( y+(t,x),y−(t,1−x) )
⊤

we obtain a new system

in the same form as (1).



As in [16] only the case where the number of negative

and positive eigenvalues of Λi are the same, for all i ∈ I, is

considered. ◦
Remark 2.4: An attractive result to analyze the stability

of the systems without switching is given in [2]. With the

same notation of [2], for all matrices M ∈ R
n×n we denote

ρ1(M) = inf
{

‖∆M∆−1‖,∆ ∈ Dn,+

}

,

where Dn,+ denotes the set of diagonal positive definite

matrices in R
n×n. Thanks to Proposition 3.2 of [2] one has

that, for all matrices M ∈ R
n×n,

ρ1(M) ≤ ρ(|M |) ,
where ρ(|M |) denotes the spectral radius of the matrix whose

elements are the absolute values of the elements of M .

Theorem 2.3 of [2] gives the following result: if ρ1(G) < 1
then the system (1) without switching is stable, and a fortiori

if ρ (|G|) < 1 the same result is obtained. We will use this

result for the example of Section IV below. ◦
III. STABILIZATION

A. Lyapunov function

In this section, preliminary results on Lyapunov functions

are derived. Following [2], the candidate Lyapunov function

that is considered in this paper is written as, for all y ∈
L2([0, 1]),

V (y) =

∫ 1

0

y(x)⊤Qy(x)e−µxdx, µ > 0 , (7)

for a given diagonal positive definite matrix Q ∈ R
n×n. For

the system with any constant control input σ(t) = i, it is

shown in [2] that ρ1(Gi) < 1 is a sufficient condition for

the existence of a Lyapunov function of the form (7) that

stabilizes system (1).

Let y be a solution of system (1). We shall denote in the

following

∀t ≥ 0, V = V (y(t, ·)) and V̇ =
d

dt
V (y(t, ·)) . (8)

In the sequel, we denote by λ the smallest eigenvalue of the

matrices Λi, for all i ∈ I,

λ = min
i∈{1,...,N}

(

min
j∈{1,...,n}

λi,j

)

. (9)

With these notations at hand we are able to state our first

lemma, giving an inequality for the time derivative of V

along the solutions of the switched system of conservation

laws (1). This inequality will be useful to design the switch-

ing rules, and to give the proof of stability of the system (1)

with them.

Lemma 3.1: The time derivative of the candidate Lya-

punov function V along the solution of (1) satisfies

V̇ ≤ −2αV + qi(w(t)) , (10)

where i ∈ I is the active mode at time t, qi(w(t)) =
w(t)⊤

[

G⊤
i QΛiGi −QΛie

−µ
]

w(t) and α = 1
2µλ.

Remark 3.2: Lemma 3.1 still holds when Q is a sym-

metric, positive definite matrix such that Q and Λi commute

for all i ∈ I. ◦

B. Switching strategies

1) Argmin: In this section, we consider the closed-loop

dynamics of the switched system of conservation laws (1)

when using output definition (5).

Following the idea developed in [6] and recalling the

notation qi in Lemma 3.1 we define the memoriless switching

rule

σ[w](t) = argmin
i∈{1,...,N}

qi(w(t)) . (11)

The idea of the argmin switching rule is to choose the

mode which optimizes the decrease of the Lyapunov function

at any time. So we need a condition which ensures that there

always exists a mode for which the system is decreasing. To

this end, let us define the simplex

Γ :=

{

γ ∈ R
N

∣

∣

∣

∣

∣

N
∑

i=1

γi = 1, γi ≥ 0

}

. (12)

To study the stability of the switched system of conserva-

tion laws (1) we need the following

Assumption 3.3: There exist γ ∈ Γ, a diagonal definite

positive matrix Q and a parameter µ > 0 such that

N
∑

i=1

γi
(

G⊤
i QΛiGi − e−µQΛi

)

≤ 0 . (13)

Remark 3.4: An important issue is the numerical com-

putation of γ ∈ Γ, µ > 0 and of a diagonal positive

definite matrix Q such that (13) holds. In the case where

N = 2 a solution consists in performing a line search over

the parameters γ and µ and, for each pair (γ, µ), to solve

a convex problem in the variables Q written in terms of

the LMI (13). This can be done numerically in polynomial

time. Otherwise the problem is bilinear and the numerical

verification of Assumption 3.3 can be quite complex. ◦
Remark 3.5: Denoting Pi = Λ

1
2

i GiΛ
− 1

2

i , the condition

(13) is rewritten as
∑N

i=1 γi
(

P⊤
i QPi − e−µQ

)

≤ 0. As

noted in [6] this last condition implies that the convex

combination Pγ =
∑N

i=1 γiPi is asymptotically stable. Thus

to check the existence of a matrix Q and a positive parameter

µ such that Assumption 3.3 holds, it is useful to verify the

existence of a stable convex combination of matrices Pi. The

converse does not hold in general: the existence of a stable

Pγ does not imply that Assumption 3.3 holds. ◦
Assumption 3.3 implies that there always exists a mode

i ∈ I such that qi(w(t)) ≤ 0. Thus we can give our first

result of exponential stability of the system (1) with the

argmin switching rule.

Theorem 3.6: Under Assumption 3.3, system (1) with

switching rule (11) is globally exponentially stable. More

precisely, letting V and α as in Lemma 3.1, (3) holds along

the solutions of (1) with (11).

2) Argmin with hysteresis: The first result shows that

under Assumption 3.3, the switched system of conservation

laws (1) with the argmin switching rule is globally expo-

nentially stable. The limitation of this rule is a possible

fast switching behavior (see Table I in Section IV for



Inv:

qσ[w](t−)(w(t)) < 0

qσ[w](t−)(w(t)) = 0;

σ[w](t) :=
argmin
i∈{1,...,N}

qi(w(t))

Fig. 1. Argmin with hysteresis automaton.

an example). Unfortunately, in many applications this is

undesirable. So the goal is to use strategies to slow down

the switching. The first one is the hysteresis strategy.

For all t > 0 we denote by σ[w](t−) the limit from the

left of t of the value of σ[w](t). Roughly speaking, it is the

value of σ[w] “just before t”.

The strategy is the following:

σ[w](t) =

{

σ[w](t−) , if qσ[w](t−)(w(t)) < 0 ,
argmin
i∈{1,...,N}

qi(w(t)), if qσ[w](t−)(w(t)) = 0 .

(14)

This strategy is illustrated by an automaton in Figure 1.

The automaton must be understood as follows: while the

property qσ[w](t−)(w(t)) < 0 holds, the mode does not

change, whereas if the equality qσ[w](t−)(w(t)) = 0 holds

then there is a transition between the mode where the system

was evolving and a new mode. This transition is represented

by the arrow on the right of the automaton. To know the new

mode where the system has to evolve there is a computation

of σ[w](t) := argmin
i∈{1,...,N}

qi(w(t)).

With Assumption 3.3 at hand the global exponential

stability of the argmin switching rule with hysteresis may

be stated:

Theorem 3.7: Under Assumption 3.3, system (1) with

switching rule (14) is globally exponentially stable. More

precisely, letting V and α as in Lemma 3.1, (3) holds along

the solutions of (1) with (14).

Remark 3.8: The parameter µ plays a special feature

with this strategy. Indeed, the quadratic function qi, i =
1 . . . N , define conic regions

Ωi := {x ∈ R
n | qi(x) ≤ 0} . (15)

These regions may overlap, and their union is R
n by As-

sumption 3.3. The switching signal changes of mode when

the system trajectory hits the boundary of a region, and

the next switching happened only if the trajectory leaves an

overlap region. For a geometrical illustration of the hysteresis

behavior see Figure 2 in the case of two conic regions Ω1

and Ω2. A question of interest with the hysteresis is the size

of the overlap regions. Indeed, larger is the overlap regions

larger is the minimum time between two switching times. In

(13) the parameter µ has a direct influence on the size of

the overlap region: largest is µ smaller is the overlap region.

Therefore a special care in the value of µ has to be taken.

◦

Ω1

Ω2

Fig. 2. A possible trajectory for the system. The first conic region Ω1 is
in plain line, the second Ω2 is in dashed line. The overlap regions are filled
in gray.

ṁ(t) = −2αm(t)
+qσ[w](t−)(w(t))

Inv: m(t) < 0

m(t) = 0;

σ[w](t) :=
argmin
i∈{1,...,N}

qi(w(t))

Fig. 3. Argmin, hysteresis and filter automaton.

3) Argmin, hysteresis and filter: Thanks to Lemma 3.1 it

holds

V̇ ≤ −2αV + qσ[w](t)(w(t)) . (16)

Keeping in mind the objective of decreasing the number of

switching times, a low-pass filter is added to the switching

rule (14): instead of imposing that qσ[w](t)(w(t)) ≤ 0 at any

time t ≥ 0, we just impose that a weighted averaged value

of qσ[w](s)(w(s)) is negative or zero.

Let us define:

m(t) = e−2αt

∫ t

0

e2αsqσ[w](s)(w(s))ds , ∀t ≤ 0 , (17)

where α is the coefficient of decay of the system as in (16).

The time derivative of m is given by

ṁ(t) = −2αm(t) + qσ[w](t)(w(t)) . (18)

The control consists in keeping m(t) negative or zero at any

time (see automaton in Figure 3). The justification for the

choice of the function m comes from Gronwall’s inequality

[see for example [5, pages 708-709]].

Roughly speaking, the rule consists in doing the average

of qσ[w](s)(w(s))s with different weights given by eαs in the

formula. The close past has as much weight in the average

than the far past. An explicit description could stated as

follow:

σ[w](t) =

{

σ[w](t−) , if m(t) < 0 ,
argmin
i∈{1,...,N}

qi(w(t)) if m(t) = 0 . (19)

So we are able to give our last result of global exponential

stability with the above strategy when Assumption 3.3 is

satisfied:



Theorem 3.9: Under Assumption 3.3, system (1) with the

switching rule (19) is globally exponentially stable. More

precisely, letting V and α as in Lemma 3.1, (3) holds along

the solution of (1) with (19).

Remark 3.10: It must be stressed for this last case that

the candidate Lyapunov function is not monotonically de-

creasing contrarily to the two precedent cases. Indeed the

strict decrease of V is not obtained. Nonetheless the global

exponential stability is proved thanks to the good property

of the function V . ◦
IV. SIMULATIONS

Let us illustrate our main results by means of numerical

simulations. It will illustrate also the interest of the switching

strategies when the system of conservation laws (1) is

unstable for any constant switching signal σ(t) = i.

Consider the system (1) with two modes (I = {1, 2}).
The initial conditions are selected as the first three elements

of an orthonormal basis of L2([0, 1]). More specifically the

following three initial conditions

y0k(x) =

( √
2 sin((2k − 1)πx)√

2 sin(2kπx)

)

, k = 1, 2, 3, (20)

are considered. The matrices of the system (1) are Λi =
diag (2, 1) , i ∈ {1, 2}. Thanks to Remark 2.4 to have

boundary matrices Gi which destabilize the unswitched sys-

tem, the matrices must satisfy ρ(|Gi|) > 1. It is a necessary

condition but not a sufficient one. The instability of the

system with the proposed matrices is checked numerically

with a Weighted Essentially Non Oscillatory scheme (see

[15]). Boundary matrices G1 and G2 are proposed as

G1 =

(

1.1 0
−0.3 0.1

)

, G2 =

(

0 0.2
0.1 −1

)

.

The respective spectrum of |G1| and |G2| is {0.1; 1.1} and

{0.0196; 1.0196}. See Figure 4 for the constant control input

i = 1 and the initial condition y02 (x) where the instability is

observed. Firstly the parameter µ is fixed to the value 0.1.

The Lyapunov matrix Q is set as identity matrix in R
2×2.

With γ1 = 1
4 and γ2 = 3

4 , it is obtained

2
∑

i=1

γi
(

G⊤
i QΛiGi − e−µQΛi

)

=

(

−1.1747 −0.0825
−0.0825 −0.0923

)

.

The eigenvalues of the previous matrix are: −1.1809 and

−0.0861. Therefore it is a symmetric negative definite ma-

trix, and Assumption 3.3 holds.

The three rules proposed in Theorems 3.6, 3.7 and 3.9

stabilize the switched system (1). The time evolution of the

two components with the argmin switching rule (11) is shown

in Figure 5 with the initial condition y02 (x). The results

obtained with the three switching rules are reported in Table

I. As it was expected the switching rule (11) is the one which

produces larger number of switches by time unit, then it is

the switching rule (14) and finally (19).

Up to now the speed of exponential convergence has been

fixed, no optimization of µ has been done. Now, as it was

aforementionned in Remark 3.4, the speed can be optimized

Fig. 4. Time evolution of the first component y1 (top) and of the second
component y2 (bottom) of the solution of the unswitched system (1) with
the active mode i = 1 for the example.

by two line searches over µ and γ1 (γ2 is related to γ1 by the

relation γ2 = 1− γ1). Thus it gives successive LMIs solved,

e.g. by the Multi-Parametric Toolbox [13]. The algorithm

ends at the value µ = 0.455. The Lyapunov matrix Q is

equal to the identity and γ1 is found to be equal to 0.45. One

checks that the rule (14) gives more switching times with

the optimized µ = 0.455 than with µ = 0.1, see the third

column of Table I. This difference is due to the fact that the

intersection of Ω1 and Ω2 (defined by (15)) is tighter with the

optimized µ = 0.455 than with µ = 0.1, in other words the

grey domain of Figure 2 is smaller. Furthermore, with argmin

switching rule (11) the number of switches per time unit is

similar between the two cases, see second column of Table

I. Despite the optimization on µ, the speed of convergence

computed numerically along the solution to (1) is not better

with the two first rules (11) and (14). However the speed of

convergence seems to be larger with the switching rule (19)

with the optimized µ = 0.455 than with µ = 0.1.

V. CONCLUSION

In this paper, three switching rules to stabilize hyperbolic

systems of conservation laws of the form (1) have been

derived. These switching rules correspond to an output

feedback law. The analysis of exponential stability is based

on Lyapunov techniques. This method has been adapted to

the design problem of a stabilizing switching rule. The three

switched controllers gave different performances which have

been discussed and compared by some numerical simula-

tions.



Fig. 5. Time evolution of the first component y1 (top) and of the second
component y2 (bottom) of the solution of (1) with the argmin rule for the
example.

Argmin Hysteresis Low-pass filter
Initial condition
y0
k

Exponential
Stability.
Lyapunov
Function.

Exponential
Stability.
Lyapunov
Function.

Exponential
Stability.

Theoretical bound on the speed of convergence: 0.05
(without optimization on µ)

Number of switches by time unit.
k = 1 4.2 2.8 0.2
k = 2 21.2 13.7 0.1
k = 3 18.5 17.1 0.1

Speed of convergence
k = 1 1.4278 1.3393 0.0960
k = 2 1.6332 1.5466 0.1279
k = 3 1.4989 1.4596 0.1209

Theoretical bound on the speed of convergence: 0.2275
(with optimization on µ)

Number of switches by time unit.
k = 1 4.2 4.2 0.4
k = 2 21.2 21.3 0.3
k = 3 18.5 18.4 0.3

Speed of convergence
k = 1 1.4455 1.4461 0.3851
k = 2 1.6510 1.7648 0.3607
k = 3 1.5166 1.5751 0.3508

TABLE I

COMPARISON OF THE DIFFERENT SWITCHING STRATEGIES FOR THE

EXAMPLE WITH THREE INITIAL CONDITIONS IN L2([0, 1]) BASIS.

PERFORMED DURING 10 UNITS OF TIME.

The first switching rule is based on an argmin computa-

tion. It allows to maximize the decay rate of the Lyapunov

function at any time. In order to decrease the number of

switches in a time interval, a hysteresis strategy to this rule

was added. It means that the system stays in the current

mode, if it makes the Lyapunov function decrease. In order

to reduce again the number of switches a low-pass filter was

added to the last rule.

A sufficient condition on the matrices Gi and Λi has been

derived to get the exponential stability of the system with

these three switching rules. Finally, an example was given

to illustrate the results.

This work leaves many questions open. In particular,

question of existence of solutions has to be investigated when

closing the loop with a switching rule. In our analysis we

have supposed that y lies in Cpw([0, 1]) but this assumption

was not checked with the three rules (but observed only

numerically). Furthermore the overshoot reduction, or time

performance may be tackled in a future work.
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