
HAL Id: hal-00925911
https://hal.science/hal-00925911v3

Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variations on Memetic Algorithms for Graph Coloring
Problems

Laurent Moalic, Alexandre Gondran

To cite this version:
Laurent Moalic, Alexandre Gondran. Variations on Memetic Algorithms for Graph Coloring Problems.
Journal of Heuristics, 2018, 24 (1), pp.1–24. �10.1007/s10732-017-9354-9�. �hal-00925911v3�

https://hal.science/hal-00925911v3
https://hal.archives-ouvertes.fr

Variations on Memetic Algorithms
for Graph Coloring Problems

Laurent Moalic∗1 and Alexandre Gondran†2

1Université de Haute-Alsace, LMIA, Mulhouse, France
2MAIAA, ENAC, French Civil Aviation University, Toulouse, France

Abstract
Graph vertex coloring with a given number of colors is a well-known and much-studied

NP-complete problem. The most effective methods to solve this problem are proved to
be hybrid algorithms such as memetic algorithms or quantum annealing. Those hybrid
algorithms use a powerful local search inside a population-based algorithm. This paper
presents a new memetic algorithm based on one of the most effective algorithms: the
Hybrid Evolutionary Algorithm (HEA) from Galinier and Hao (1999). The proposed
algorithm, denoted HEAD - for HEA in Duet - works with a population of only two indi-
viduals. Moreover, a new way of managing diversity is brought by HEAD. These two main
differences greatly improve the results, both in terms of solution quality and computa-
tional time. HEAD has produced several good results for the popular DIMACS benchmark
graphs, such as 222-colorings for <dsjc1000.9>, 81-colorings for <flat1000_76_0> and
even 47-colorings for <dsjc500.5> and 82-colorings for <dsjc1000.5>.

1 Introduction

Given an undirected graph G = (V,E) with V a set of vertices and E a set of edges, graph
vertex coloring involves assigning each vertex with a color so that two adjacent vertices (linked
by an edge) feature different colors. The Graph Vertex Coloring Problem (GVCP) consists
in finding the minimum number of colors, called chromatic number χ(G), required to color
the graph G while respecting these binary constraints. The GVCP is a well-documented and
much-studied problem because this simple formalization can be applied to various issues such
as frequency assignment problems [1, 2], scheduling problems [3, 4, 5] and flight level allocation
problems [6, 7]. Most problems that involve sharing a rare resource (colors) between different
operators (vertices) can be modeled as a GVCP. The GVCP is NP-hard [8].

Given k a positive integer corresponding to the number of colors, a k-coloring of a given
graph G is a function c that assigns to each vertex an integer between 1 and k as follows :

c : V → {1, 2..., k}
v 7→ c(v)

The value c(v) is called the color of vertex v. The vertices assigned to the same color i ∈
{1, 2..., k} define a color class, denoted Vi. An equivalent view is to consider a k-coloring as a
partition of G into k subsets of vertices: c ≡ {V1, ..., Vk}.
∗laurent.moalic@uha.fr
†alexandre.gondran@enac.fr

1

We recall some definitions :

• a k-coloring is called legal or proper k-coloring if it respects the following binary con-
straints : ∀(u, v) ∈ E, c(u) 6= c(v). Otherwise the k-coloring is called non legal or non
proper ; and edges (u, v) ∈ E such as c(u) = c(v) are called conflicting edges, and u and
v conflicting vertices.

• A k-coloring is a complete coloring because a color is assigned to all vertices; if some
vertices can remain uncolored, the coloring is said to be partial.

• An independent set or a stable set is a set of vertices, no two of which are adjacent.
It is possible to assign the same color to all the vertices of an independent set without
producing any conflicting edge. The problem of finding a minimal graph partition of
independent sets is then equivalent to the GVCP.

The k-coloring problem - finding a proper k-coloring of a given graph G - is NP-complete [9]
for k > 2. The best performing exact algorithms are generally not able to find a proper
k-coloring in reasonable time when the number of vertices is greater than 100 for random
graphs [10, 11, 12]. Only for few bigger graphs, exact approaches can be applied success-
fully [13]. In the general case, for large graphs, one uses heuristics that partially explore the
search-space to occasionally find a proper k-coloring in a reasonable time frame. However,
this partial search does not guarantee that a better solution does not exist. Heuristics find
only an upper bound of χ(G) by successively solving the k-coloring problem with decreasing
values of k.

This paper proposes two versions of a hybrid metaheuristic algorithm, denoted HEAD’ and
HEAD, integrating a tabu search procedure with an evolutionary algorithm for the k-coloring
problem. This algorithm is built on the well-known Hybrid Evolutionary Algorithm (HEA)
of Galinier and Hao [14]. However, HEAD is characterized by two original aspects: the use
of a population of only two individuals and an innovative way to manage the diversity. This
new simple approach of memetic algorithms provides excellent results on DIMACS benchmark
graphs.

The organization of this paper is as follows. First, Section 2 reviews related works and
methods of the literature proposed for graph coloring and focuses on some heuristics reused
in HEAD. Section 3 describes our memetic algorithm, HEAD solving the graph k-coloring
problem. The experimental results are presented in Section 4. Section 5 analyzes why HEAD
obtains significantly better results than HEA and investigates some of the impacts of diversifi-
cation. Finally, we consider the conclusions of this study and discuss possible future researches
in Section 6.

2 Related works

Comprehensive surveys on the GVCP can be found in [15, 16, 17]. These first two studies
classify heuristics according to the chosen search-space. The Variable Space Search of [18]
is innovative and didactic because it works with three different search-spaces. Another more
classical mean of classifying the different methods is to consider how these methods explore
the search-space; three types of heuristics are defined: constructive methods, local searches
and population-based approaches.

We recall some important mechanisms of TabuCol and HEA algorithms because our algo-
rithm HEAD shares common features with these algorithms. Moreover, we briefly present

2

some aspects of the new Quantum Annealing algorithm for graph coloring denoted QA-
col [19, 20, 21] which has produced, since 2012, most of the best known colorings on DIMACS
benchmark.

2.1 TabuCol

In 1987, Hertz and de Werra [22] presented the TabuCol algorithm, one year after Fred Glover
introduced the tabu search. This algorithm, which solves k-coloring problems, was enhanced
in 1999 by [14] and in 2008 by [18, 23]. The three basic features of this local search algorithm
are as follows:

• Search-Space and Objective Function: the algorithm is a k-fixed penalty strategy. This
means that the number of colors is fixed and non-proper colorings are taken into account.
The aim is to find a coloring that minimizes the number of conflicting edges under the
constraints of the number of given colors and of completed coloring (see [16] for more
details on the different strategies used in graph coloring).

• Neighborhood: a k-coloring solution is a neighbor of another k-coloring solution if the
color of only one conflicting vertex is different. This move is called a critic 1-move. A
1-move is characterized by an integer couple (v, c) where v ∈ {1, ..., |V |} is the vertex
number and c ∈ {1, ..., k} the new color of v. Therefore the neighborhood size depends
on the number of conflicting vertices.

• Move Strategy: the move strategy is the standard tabu search strategy. Even if the
objective function is worse, at each iteration, one of the best neighbors which are not
inside the tabu list is chosen. Note that all the neighborhood is explored. If there
are several best moves, one chooses one of them at random. The tabu list is not the
list of each already-visited solution because this is computationally expensive. It is more
efficient to place only the reverse moves inside the tabu list. Indeed, the aim is to prevent
returning to previous solutions, and it is possible to reach this goal by forbidding the
reverse moves during a given number of iterations (i.e. the tabu tenure). The tabu
tenure is dynamic: it depends on the neighborhood size. A basic aspiration criterion is
also implemented: it accepts a tabu move to a k-coloring, which has a better objective
function than the best k-coloring encountered so far.

Data structures have a major impact on algorithm efficiency, constituting one of the main
differences between the Hertz and de Werra version of TabuCol [22] and the Galinier and Hao
version [14]. Checking that a 1-move is tabu or not and updating the tabu list are operations
performed in constant time. TabuCol also uses an incremental evaluation [24]: the objective
function of the neighbors is not computed from scratch, but only the difference between the
two solutions is computed. This is a very important feature for local search efficiency. Finding
the best 1-move corresponds to find the maximum value of a |V | × k integer matrix. An
efficient implementation of incremental data structures is well explained in [15].

Another benefit of this version of TabuCol is that it has only two parameters, L and λ to
adjust in order to control the tabu tenure, d, by:

d = L+ λF (s)

where F (s) is the number of conflicting vertices in the curent solution s. Moreover, [14] has
demonstrated on a very large number of instances that with the same setting (L a random

3

integer inside [0; 9] and λ = 0.6), TabuCol obtained very good k-colorings. Indeed, one of the
main disadvantages of heuristics is that the number of parameters to set is high and difficult
to adjust. This version of TabuCol is very robust. Thus we retained the setting of [14] in all
our tests.

2.2 Memetic Algorithms for graph coloring and HEA

Memetic Algorithms [25] (MA) are hybrid metaheuristics using a local search algorithm inside
a population-based algorithm. They can also be viewed as specific Evolutionary Algorithms
(EAs) where all individuals of the population are local minimums (of a specific neighborhood).
In MA, the mutation of the EA is replaced by a local search algorithm. It is very important to
note that most of the running time of a MA is spent in the local search. These hybridizations
combine the benefits of population-based methods, which are better for diversification by
means of a crossover operator, and local search methods, which are better for intensification.

In graph coloring, the Hybrid Evolutionary Algorithm (HEA) of Galinier and Hao [14] is a
MA; the mutation of the EA is replaced by the tabu search TabuCol. HEA is one of the best
algorithms for solving the GVCP; From 1999 until 2012, it provided most of the best results for
DIMACS benchmark graphs [26], particularly for difficult graphs such as <dsjc500.5> and
<dsjc1000.5> (see table 1). These results were obtained with a population of 10 individuals.

The crossover used in HEA is called the Greedy Partition Crossover (GPX). The two main
principles of GPX are: 1) a coloring is a partition of vertices into color classes and not an
assignment of colors to vertices, and 2) large color classes should be transmitted to the child.
Figure 1 gives an example of GPX for a problem with three colors (red, blue and green) and 10
vertices (A, B, C, D, E, F, G, H, I and J). The first step is to transmit to the child the largest
color class of the first parent. If there are several largest color classes, one of them is chosen
at random. After having withdrawn those vertices in the second parent, one proceeds to step
2 where one transmits to the child the largest color class of the second parent. This process is
repeated until all the colors are used. There are most probably still some uncolored vertices
in the child solution. The final step (step k+1) is to randomly add those vertices to the color
classes. Notice that GPX is asymmetrical: the order of the parents is important; starting the
crossover with parent 1 or parent 2 can produce very different offsprings. Notice also that
GPX is a random crossover: applying GPX twice with the same parents does not produce the
same offspring. The final step is very important because it produces many conflicts. Indeed if
the two parents have very different structures (in terms of color classes), then a large number
of vertices remain uncolored at step k+1, and there are many conflicting edges in the offspring
(cf. figure 4). We investigate some modifications of GPX in section 5.

2.3 QA-col: Quantum Annealing for graph coloring

In 2012 Olawale Titiloye and Alan Crispin [19, 20, 21] proposed a Quantum Annealing algo-
rithm for graph coloring, denoted QA-col. QA-col produces most of the best-known colorings
for the DIMACS benchmark. In order to achieve this level of performance, QA-col is based
on parallel computing. We briefly present some aspects of this new type of algorithm.

In a standard Simulating Annealing algorithm (SA), the probability of accepting a can-
didate solution is managed through a temperature criterion. The value of the temperature
decreases during the SA iterations. As MA, a Quantum Annealing (QA) is a population-based
algorithm, but it does not perform crossovers and the local search is an SA. The only interaction
between the individuals of the population occurs through a specific local attraction-repulsion

4

Figure 1: An example of GPX crossover for a graph of 10 vertices (A, B, C, D, E, F, G, H, I
and J) and three colors (red, blue and green). This example comes from [14].

process. The SA used in QA-col algorithm is a k-fixed penalty strategy like TabuCol : the
individuals are non-proper k-colorings. The objective function of each SA minimizes a linear
combination of the number of conflicting edges and a given population diversity criterion as
detailed later. The neighborhood used is defined by critic 1-moves like TabuCol. More pre-
cisely, in QA-col, the k-colorings of the population are arbitrarily ordered in a ring topology:
each k-coloring has two neighbors associated with it. The second term of the objective func-
tion (called Hamiltonian cf. equation (1) of [19]) can be seen as a diversity criterion based on
a specific distance applicable to partitions. Given two k-colorings (i.e. partitions) ci and cj ,
the distance, which we called pairwise partition distance, between ci and cj is the following :

dP (ci, cj) =
∑

(u,v)∈V 2, u6=v

[ci(u) = ci(v)]⊕ [cj(u) = cj(v)]

where ⊕ is the XOR operation and [] is Iverson bracket: [ci(u) = ci(v)] = 1 if ci(u) = ci(v)
is true and equals 0 otherwise. Then, given one k-coloring ci of the population, the diversity
criterion D(ci) is defined as the sum of the pairwise partition distances between ci and its two
neighbors ci+1 and ci−1 in the ring topology : D(ci) = dP (ci, ci−1)+ dP (ci, ci+1) which ranges
from 0 to 2n(n − 1); The value of this diversity is integrated into the objective function of
each SA. As with the temperature, if the distance increases, there will be a higher probability
that the solution will be accepted (attractive process). If the distance decreases, then there
will be a lower probability that the solution will be accepted (repulsive process). Therefore in
QA-col the only interaction between the k-colorings of the population is realized through this
distance process.

Although previous approaches are very efficient the reasons for this are difficult to assess.

5

They use many parameters and several intensification and diversification operators and thus
the benefit of each item is not easily evaluated. Our approach has been to identify which
elements of HEA are the most significant in order to define a more efficient algorithm.

3 HEAD: Hybrid Evolutionary Algorithm in Duet

The basic components of HEA are the TabuCol algorithm, which is a very powerful local
search for intensification, and the GPX crossover, which adds some diversity. The intensifica-
tion/diversification balance is difficult to achieve. In order to simplify the numerous parame-
ters involved in EAs, we have chosen to consider a population with only two individuals. We
present two versions of our algorithm denoted HEAD’ and HEAD for HEA in Duet.

3.1 First hybrid algorithm: HEAD’

Algorithm 1 describes the pseudo code of the first version of the proposed algorithm, denoted
HEAD’.

Algorithm 1: - HEAD’ - first version of HEAD : HEA in Duet for k-coloring problem
Input: k, the number of colors; IterTC , the number of TabuCol iterations.
Output: the best k-coloring found: best

1 p1, p2, best← init() /* initialize with random k-colorings */
2 generation← 0
3 do
4 c1 ← GPX (p1, p2)
5 c2 ← GPX (p2, p1)
6 p1 ← TabuCol(c1,IterTC)
7 p2 ← TabuCol(c2,IterTC)
8 best← saveBest(p1, p2, best)
9 generation++

10 while nbConflicts(best) > 0 and p1 6= p2

This algorithm can be seen as two parallel TabuCol algorithms which periodically interact
by crossover. After randomly initializing the two solutions (with init() function), the algo-
rithm repeats an instructions loop until a stop criterion occurs. First, we introduce some
diversity with the crossover operator, then the two offspring c1 and c2 are improved by means
of the TabuCol algorithm. Next, we register the best solution and we systematically replace
the parents by the two children. An iteration of this algorithm is called a generation. The
main parameter of TabuCol is IterTC , the number of iterations performed by the algorithm,
the other TabuCol parameters L and λ are used to define the tabu tenure and are consid-
ered fixed in our algorithm. Algorithm 1 stops either because a legal k-coloring is found
(nbConflicts(best) = 0) or because the two k-colorings are equal in terms of the set-theoretic
partition distance (cf. Section 5).

A major risk is a premature convergence of HEAD’. Algorithm 1 stops sometimes too
quickly: the two individuals are equal before finding a legal coloring. It is then necessary to
reintroduce diversity into the population. In conventional EAs, the search space exploration
is largely brought by the size of the population: the greater the size, the greater the search
diversity. In the next section we propose an alternative to the population size in order to
reinforce diversification.

6

3.2 Improved hybrid algorithm: HEAD

Algorithm 2: HEAD - second version of HEAD with two extra elite solutions
Input: k, the number of colors; IterTC , the number of TabuCol iterations; Itercycle = 10, the number

of generations into one cycle.
Output: the best k-coloring found: best

1 p1, p2, elite1, elite2, best← init() /* initialize with random k-colorings */
2 generation, cycle← 0
3 do
4 c1 ← GPX (p1, p2)
5 c2 ← GPX (p2, p1)
6 p1 ← TabuCol(c1,IterTC)
7 p2 ← TabuCol(c2,IterTC)
8 elite1 ← saveBest(p1, p2, elite1) /* best k-coloring of the current cycle */
9 best← saveBest(elite1, best)

10 if generation%Itercycle = 0 then
11 p1 ← elite2 /* best k-coloring of the previous cycle */
12 elite2 ← elite1
13 elite1 ← init()
14 cycle++

15 generation++

16 while nbConflicts(best) > 0 and p1 6= p2

Algorithm 2 summarizes the second version of our algorithm, simply denoted HEAD. We
add two other candidate solutions (similar to elite solutions), elite1 and elite2, in order to
reintroduce some diversity to the duet. Indeed, after a given number of generations, the
two individuals of the population become increasingly similar within the search-space. To
maintain the population diversity, the idea is to replace one of the two candidates solutions
by a solution previously encountered by the algorithm. We define one cycle as a number of
Itercycle generations. Solution elite1 is the best solution found during the current cycle and
solution elite2 the best solution found during the previous cycle. At the end of each cycle, the
elite2 solution replaces one of the population individuals. Figure 2 presents the graphic view
of algorithm 2.

This elitist mechanism provides relevant behaviors to the algorithm as it can be observed
in the computational results of section 4.2. Indeed, elite solutions have the best fitness value of
each cycle. It is clearly interesting in terms of intensification. Moreover, when the elite solution
is reintroduced, it is generally different enough from the other individuals to be relevant in
terms of diversification. In the next section, we show how the use of this elitist mechanism
can enhance the results.

4 Experimental Results

In this section we present the results obtained with the two versions of the proposed memetic
algorithm. To validate the proposed approach, the results of HEAD are compared with the
results obtained by the best methods currently known.

7

GPX

p
1

p
2

c
2

c
1

p
2

p
1

on
e

ge
ne

ra
t i

on

TabuCol

on
e

c y
c l

e
=

 I
te

r cy
c l

e g
en

e r
at

io
ns

?

?
elite

1

elite
2

p
2

p
1

Figure 2: Diagram of HEAD

4.1 Instances and Benchmarks

In 1992-93, the second DIMACS challenge on maximum clique and graph coloring [26]1 defined
the first library of graph coloring instances that became the benchmark in this area. This
library was extended in 2002 with the Graph Coloring and its Generalizations symposium
series. Various classes of graphs are represented: some come from real-world, others are
randomly generated, others are translations from other problems... Our tests are performed
on 34 random graphs with various number of vertices (from one hundred to several thousand)
and density ranging from 0.1 to 0.9. Theses instances are selected among the most studied
graphs and the most difficult 2.

We briefly recall the main features of studied graphs: <dsjc>, <dsjr>, <flat>, <r>,
<le> and <C> which are randomly or quasi-randomly generated graphs. <dsjcn.d> graphs
and <Cn.d> graphs are random graphs with n vertices, with each vertex connected to an
average of n× 0.d vertices; 0.d is the graph density. The chromatic number of these graphs is
unknown. Likewise for <rn.d[c]> and <dsjrn.d> graphs which are geometric random graphs
with n vertices and a density equal to 0.d. [c] denotes the complement of such a graph. <flat>
and <le> graphs have another structure: they are built for a known chromatic number. The
<flatn_χ> graph or <len_χ[abcd]> graph has n vertices and χ is the chromatic number.

4.2 Computational Results

HEAD and HEAD’ were coded in C++. The results were obtained with an Intel Core i5
3.30GHz processor - 4 cores and 16GB of RAM. Note that the RAM size has no impact on
the calculations: even for large graphs such as <dsjc1000.9> (with 1000 vertices and a high
density of 0.9), the use of memory does not exceed 125 MB. The main characteristic is the
processor speed.

1ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
2http://mat.gsia.cmu.edu/COLOR02/

8

As shown in Section 3, the proposed algorithms have two successive calls to local search
(lines 6 and 7 of the algorithms 1 and 2), one for each child of the current generation. Almost
all of the time is spent on performing the local search. Both local searches can be parallelized
when using a multi-core processor architecture. This is what we have done using the OpenMP
API (Open Multi-Processing), which has the advantage of being a cross-platform (Linux,
Windows, MacOS, etc.) and simple to use. Thus, when an execution of 15 minutes is given,
the required CPU time is actually close to 30 minutes if using only one processing core.

LS Hybrid algorithm
1987/2008 1999 2008 2010 2011 2012 2012

Instances HEAD TabuCol HEA AmaCol MaCol ExtraCol IE2COL QA-col
[22, 18, 23] [14] [23] [27] [28] [29] [19, 20, 21]

dsjc125.1 5 5 - 5 5 - - -
dsjc125.5 17 17 - 17 17 - - -
dsjc125.9 44 44 - 44 44 - - -
dsjc250.1 8 8 - 8 8 - - -
dsjc250.5 28 28 28 28 28 - - 28
dsjc250.9 72 72 - 72 72 - - -
dsjc500.1 12 13 - 12 12 - - -
dsjc500.5 47 49 48 48 48 - - 47
dsjc500.9 126 127 - 126 126 - - 126
dsjc1000.1 20 - 20 20 20 20 20 20
dsjc1000.5 82 89 83 84 83 83 83 82
dsjc1000.9 222 227 224 224 223 222 222 222
dsjr500.1c 85 85 - 86 85 - - 85
le450_5a 5 5 - 5 - - - -
le450_5b 5 5 - 5 - - - -
le450_5c 5 5 - 5 - - - -
le450_5d 5 5 - 5 - - - -
le450_15a 15 15 - 15 15 - - -
le450_15b 15 15 - 15 15 - - -
le450_15c 15 16 15 15 15 - - 15
le450_15d 15 15 - 15 15 - - 15
le450_25a 25 25 - 25 25 - - -
le450_25b 25 25 - 25 25 - - -
le450_25c 25 26 26 26 25 - - 25
le450_25d 25 26 - 26 25 - - 25

flat300_28_0 31 31 31 31 29 - - 31
flat1000_50_0 50 50 - 50 50 50 50 -
flat1000_60_0 60 60 - 60 60 60 60 -
flat1000_76_0 81 88 83 84 82 82 81 81

r250.5 65 - - - 65 - - 65
r1000.1c 98 - - - 98 101 98 98
r1000.5 245 - - - 245 249 245 234
C2000.5 146 - - - 148 146 145 145
C4000.5 266 - - - 272 260 259 259

Table 1: Best coloring found by the principal methods known to date for 34 graphs.

Table 1 presents results of the principal methods known to date for 34 graphs. For each
graph, the lowest number of colors found by each algorithm is indicated (upper bound of
χ). For TabuCol [22] the reported results are from [18, 23] (2008) which are better than
those of 1987. The most recent algorithms, QA-col (Quantum Annealing for graph color-
ing [19, 20, 21]) and IE2COL (Improving the Extraction and Expansion method for large
graph COLoring [29]), provide the best results. More precisely, QA-col dominates HEAD for
three graphs (<r1000.5>, <C2000.5> and <C4000.5>). However to reach this result, QA-
col takes a very large amount of time and is based on a cluster of PC using 10 processing cores
simultaneously. HEAD is also dominated by IE2COL for the two largest graphs (<C2000.5>

9

and <C4000.5>), but this latter algorithm is specifically designed for very large graphs (> 900
vertices). Note that HEA [14], AmaCol [23], MaCol [27], ExtraCol [28] and IE2COL are also
population-based algorithms using TabuCol and GPX crossover or an improvement of GPX
(GPX with n > 2 parents for MaCol and ExtraCol and the GPX process is replaced in Ama-
Col by a selection of k color classes among a very large pool of color classes). Only QA-col
has another approach based on several parallel simulated annealing algorithms interacting
together with an attractive/repulsive process (cf. section 2.3). It is therefore meaningful to
compare HEAD to MaCol, which is currently one of the very best EAs graph coloring heuris-
tics. Compared to MaCol, HEAD is able to reach better results for six graphs: <dsjc500.5>,
<dsjc1000.5>, <dsjc1000.9>, <flat1000_76_0>, <C2000.5> and <C4000.5>. On the
other hand, MaCol dominates HEAD for only one graph <flat300_28_0>.

Instances k IterTC GPX Success Iter Cross Time
(min)

dsjc125.1 5 400 Std 20/20 7.1× 103 9 <0.01
dsjc125.5 17 5000 Std 20/20 1.3× 105 13 <0.01
dsjc125.9 44 1000 Std 20/20 9.7× 103 5 <0.01
dsjc250.1 8 1000 Std 20/20 4.1× 104 20 <0.01
dsjc250.5 28 6000 Std 17/20 1× 106 79 0.01
dsjc250.9 72 5000 Std 20/20 6.9× 105 43 0.02
dsjc500.1 12 8000 Std 15/20 2.5× 106 158 0.03
dsjc500.5 48 8000 Std 9/20 5.3× 106 334 0.2
dsjc500.9 126 25000 Std 10/20 2.5× 107 517 1
dsjc1000.1 20 7000 Std 7/20 8.2× 106 588 0.2
dsjc1000.5 83 40000 Std 16/20 1.37× 108 1723 10
dsjc1000.9 222 60000 Std 1/20 4.45× 108 3711 33

223 30000 Std 4/20 6.6× 107 1114 5
dsjr500.1c 85 4200000 Std 1/20 5.8× 106 1 0.2

85 1000 R(85) 13/20 5× 105 279 0.02
le450_5a 5 30000 Std 20/20 5.9× 104 1 <0.01
le450_5b 5 60000 Std 20/20 1.1× 105 1 <0.01
le450_5c 5 8000 Std 20/20 8.3× 103 1 <0.01
le450_5d 5 8000 Std 20/20 4.6× 103 1 <0.01
le450_15a 15 30000 Std 20/20 2.2× 105 3 <0.01
le450_15b 15 30000 Std 20/20 1.1× 105 2 <0.01
le450_15c 15 110000 Std 1/20 5.4× 105 3 0.01
le450_15d 15 100000 Std 1/100 4.0× 105 3 0.01
le450_25a 25 1000 Std 20/20 9.1× 102 1 <0.01
le450_25b 25 1000 Std 20/20 6.6× 102 1 <0.01
le450_25c 25 21000000 Std 20/20 3.5× 109 57 38

25 300000 U(0.98) 10/20 2.86× 108 477 2.4
le450_25d 25 21000000 Std 20/20 5.7× 109 135 64

25 340000 U(0.98) 10/20 2.15× 108 317 2
flat300_28_0 31 4000 Std 20/20 1× 106 117 0.02
flat1000_50_0 50 130000 Std 20/20 1.1× 106 4 0.3
flat1000_60_0 60 130000 Std 20/20 2.3× 106 9 0.5
flat1000_76_0 81 40000 Std 1/20 1.49× 109 18577 137

82 40000 Std 18/20 1.57× 108 1969 11
r250.5 65 12000 Std 1/20 8.11× 108 33828 12

65 2000 R(20) 6/20 5.31× 108 132773 10
r1000.1c 98 65000 Std 1/20 2.32× 106 18 0.1

98 25000 R(98) 20/20 6.5× 106 130 0.4
r1000.5 245 360000 Std 20/20 2.6× 109 3636 135

245 240000 U(0.98) 17/20 6.48× 108 1352 39
C2000.5 148 140000 Std 10/10 1.7× 109 6308 794
C4000.5 275 140000 Std 8/10 1.1× 109 4091 3496

Table 2: Results of HEAD’, the first version of HEAD algorithm (without elites)

10

Table 2 presents the results obtained with HEAD’, the first version of HEAD (without
elite). This simplest version finds the best known results for most of the studied graphs
(28/34); Only QA-col (and IE2COL for <C> graphs) occasionally finds a solution with less
color. The column IterTC indicates the number of iterations of the TabuCol algorithm (this
is the stop criterion of TabuCol). This parameter has been determined for each graph after an
empirical analysis for finding the most suitable value. The column GPX refers to the GPX
used inside HEAD’. Indeed, in section 5, we define two modifications of the standard GPX
(Std): the unbalanced GPX (U([0 ; 1])) and the random GPX (R(J0 ; kK)). One can notice that
the choice of the unbalanced or the random crossover is based on the study of the algorithm
in the standard mode (standard GPX). If the algorithm needs too many generations for con-
verging we introduce the unbalanced GPX. At the opposite, if the algorithm converges quickly
without finding any legal k-coloring we introduce the random crossover. Section 5 details the
modifications of the GPX crossover (section 5.2.1 for the random GPX and section 5.2.2 for
the unbalanced GPX).

The column Success evaluates the robustness of this method, providing the success rate:
success_runs/total_runs. A success run is one which finds a legal k-coloring. The average
number of generations or crossovers performed during one success run is given by the Cross
value. The total average number of iterations of TabuCol preformed during HEAD’ is

Iter = IterTC ×Cross× 2.

The column Time indicates the average CPU time in minutes of success runs.
HEAD’ success rate is rarely 100%, but in case of success, the running time is generally

very short. The main drawback of HEAD’ is that it sometimes converges too quickly. In such
instances it cannot find a legal solution before the two individuals in a generation become
identical. The first option to correct this rapid convergence, is to increase the number of
iterations IterTC of each TabuCol. The second option is to use the random GPX instead of
the standard one (section 5.2.1). However, these options are not considered sufficient. The
second version, HEAD, adds more diversity while performing an intensifying role.

Table 3 shows the results obtained with HEAD. For all the studied graphs except four
(<flat300_28_0>, <r1000.5>, <C2000.5> and <C4000.5>), HEAD finds the best known
results. Only the QA-col, using ten CPU cores simultaneously, and IE2COL for large graphs,
achieve this level of performance. In particular, <dsjc500.5> is solved with only 47 colors
and <flat1000_76_0> with 81 colors.

The computation time of HEAD is generally close to that of HEAD’ but the former
algorithm is more robust with a success rate of almost 100%. In particular, the two graphs
<dsjc500.5> and <dsjc1000.1> with 48 and 20 colors respectively are resolved each time,
and in less than one CPU minute on average (CPU 3.3GHz). Using a multicore CPU, these
instances are solved in less than 30 seconds on average, often in less than 10 seconds. As
a comparison, the shortest time reported in the literature for <dsjc1000.1> is 32 minutes
for QA-col [20] (2011) with a 3GHz processor, 65 minutes for IE2COL (2012) with a 2.8GHz
processor, 93 minutes for ExtraCol [28] (2011) with a 2.8GHz processor and 108 minutes for
MaCol [27] (2010) with a 3.4GHz processor.

5 Analysis of diversification

HEAD shares common features with HEA, but it obtains significantly better results with
respect to solution quality and computing time. It is beneficial to analyze why the new
mechanisms introduced with HEAD gives rise to such a large change.

11

Instances k IterTC GPX Success Iter Cross Time
(min)

dsjc125.1 5 400 Std 20/20 5.8× 103 7 <0.01
dsjc125.5 17 5000 Std 20/20 1.4× 105 13 <0.01
dsjc125.9 44 1000 Std 20/20 8.5× 103 4 <0.01
dsjc250.1 8 1000 Std 20/20 5.1× 104 25 <0.01
dsjc250.5 28 6000 Std 20/20 9× 105 77 0.01
dsjc250.9 72 5000 Std 20/20 9.6× 105 96 0.02
dsjc500.1 12 4000 Std 20/20 3.8× 106 483 0.1
dsjc500.5 47 8000 Std 2/10000 2.4× 107 1517 0.8

48 8000 Std 20/20 7.6× 106 479 0.2
dsjc500.9 126 15000 Std 13/20 2.9× 107 970 1.2
dsjc1000.1 20 3000 Std 20/20 3.4× 106 567 0.2
dsjc1000.5 82 60000 Std 3/20 1× 109 8366 48

83 40000 Std 20/20 9.6× 107 1200 6
dsjc1000.9 222 50000 Std 2/20 1.2× 109 11662 86

223 30000 Std 19/20 1.26× 108 2107 10
dsjr500.1c 85 4200000 Std 1/20 5.8× 106 1 0.2

85 400 R(85) 20/20 4× 105 408 0.02
le450_5a 5 30000 Std 20/20 39× 103 1 <0.01
le450_5b 5 60000 Std 20/20 1.5× 105 1 <0.01
le450_5c 5 8000 Std 20/20 8.7× 103 1 <0.01
le450_5d 5 8000 Std 20/20 4.7× 103 1 <0.01
le450_15a 15 30000 Std 20/20 2.2× 105 3 <0.01
le450_15b 15 30000 Std 20/20 1.1× 105 2 <0.01
le450_15c 15 110000 Std 3/20 1.4× 106 7 0.02
le450_15d 15 100000 Std 1/20 2.13× 106 7 0.03
le450_25a 25 1000 Std 20/20 8.98× 102 1 <0.01
le450_25b 25 1000 Std 20/20 6.44× 102 1 <0.01
le450_25c 25 22000000 Std 20/20 2.7× 109 62 30

25 220000 U(0.98) 20/20 3.89× 108 885 5
le450_25d 25 21000000 Std 20/20 7× 109 161 90

25 220000 U(0.98) 20/20 2.35× 108 534 2
flat300_28_0 31 4000 Std 20/20 9× 105 120 0.02
flat1000_50_0 50 130000 Std 20/20 1.2× 106 5 0.3
flat1000_60_0 60 130000 Std 20/20 2.3× 106 9 0.5
flat1000_76_0 81 60000 Std 3/20 1× 109 8795 60

82 40000 Std 20/20 8.4× 107 1052 5
r250.5 65 10000 Std 1/20 6.98× 108 34898 13

65 4000 R(20) 20/20 3.91× 108 48918 6.3
r1000.1c 98 45000 Std 3/20 3.7× 106 42 0.2

98 25000 R(98) 20/20 3.9× 106 78 0.24
r1000.5 245 360000 Std 20/20 4.6× 109 6491 244

245 240000 U(0.98) 20/20 5.3× 108 1104 25
C2000.5 146 140000 Std 8/10 1.78× 109 6358 281

147 140000 Std 10/10 7.26× 108 2595 124
C4000.5 266 140000 Std 4/10 2.5× 109 9034 1923

267 140000 Std 8/10 1.6× 109 5723 1433

Table 3: Results of the second version of HEAD algorithm (with elites) including the indication
of CPU time

A first answer can be formulated with regard to computing time. It can be observed that
99% of the running time of HEA, Amacol, MaCol and HEAD is spent during calculating
TabuCol algorithms. Considering a population of 10 k-colorings in the case of HEA and
Amacol (20 in case of MaCol) requires more time than only two such individuals for HEAD.

In our study HEAD is not considered as a standard MA, but rather as two separated
TabuCol algorithms. After a given number of iterations, instead of stopping the two TabuCol,
we reintroduce diversity with the crossover operator GPX. The difficulty is to reintroduce the
correct dose of diversity. Indeed the danger of the crossover is that of completely destroying

12

the solution structure. GPX is a powerful crossover operator compared to others [24] because
it transmits the biggest color classes of the two parents, thus keeping a large part of the
parents’ structures. Very interesting and relevant studies about how to manage diversity for
graph coloring heuristics can be found in [30, 31].

We present in this section an analysis of GPX crossover indicating that it is more accurate
to have parents that are not too far away in the search-space - according to the distance
presented below (section 5.1).

Several tests are also performed in this section in order to analyze the role of diversification
in the HEAD algorithm. The two main mechanisms leading to diversification in HEAD are
the GPX crossover and the population update process. In a first set of tests (section 5.2),
we slightly modify the dose of diversification in the GPX crossover and analyze the results.
In a second set of tests (section 5.3), we focus on the population update process: in HEAD,
the two produced children systematically replace both parents, even if they have worse fitness
values than their parents. If the replacement is not systematic, the diversification decreases.

5.1 Distance between parents and GPX crossover

GPX crossover is a diversification operator: it generates solutions in numerous uncharted
regions of the search-space. However, there is a risk of providing too much diversity, and thus
breaking the structure of the current solution. This is the principal failing of basic crossovers
used before GPX [24].

An interesting feature of GPX is its ability to explore new areas of the search-space without
breaking the structures of current k-colorings. There are many parameters that affect the dose
of diversity of GPX. One of the easily identifiable parameters is the distance between the two
parents.

The set-theoretic partition distance [14, 32] between two k-colorings c1 and c2 is defined
as the least number of 1-move steps (i.e. a color change of one vertex) for transforming c1 to
c2. This distance has to be independent of the permutation of the color classes, then before
counting the number of 1-moves, we have to match each color class of c1 with the nearest color
class of c2. This problem is a maximum weighted bipartite matching if we consider each color
class of c1 and c2 as the vertices of a bipartite graph; an edge links a color class of c1 with a color
class of c2 with an associated value corresponding to the number of vertices shared by those
classes. The set-theoretic partition distance is then calculated as follows: dH(c1, c2) = n − q
where n is the number of vertices of the initial graph and q the result of the matching; i.e.
the maximal total number of sharing vertices in the same class for c1 and c2. Figure 3 gives
an example of the computation of this distance between two 3-colorings. The possible values
range from 0 to less than n. Indeed it is not possible to have totally different k-coloring.

If we highlight two k-colorings that have very low objective functions but that are very
different (in terms of the dH distance), then they would have a high probability of producing
children with very high objective functions following crossover. The danger of the crossover is of
completely destroying the k-coloring structure. On the other hand, two very close k-colorings
(in terms of the dH distance) produce a child with an almost identical objective function.
Chart 4 shows the correlation between the distance separating two k-colorings having the same
number of conflicting edges (objective functions equal to 40) and the number of conflicting
edges of the child produced after GPX crossover. This chart is obtained considering k = 48
colors into the <dsjc500.5> graph. More precisely, this chart results of the following steps:
1) First, 100 non legal 48-colorings, called parents, are randomly generated with a fitness
(that is a number of conflicting edges) equal to 40. Tabucol algorithm is used to generate

13

11

1

A B C C D E G

color class blue D E F G

color class green H I J

A F I

B H J

color class red 1

1

2

3
color class red

coloring 1 coloring 2

Figure 3: A graph with 10 vertices (A, B, C, D, E, F, G, H, I and J), three colors (red,
blue and green) and two 3-colorings: coloring 1 and coloring 2. We defined the weighted
bipartite graph corresponding to the number of vertices shared by color classes of coloring 1
and coloring 2. The bold lines correspond to the maximum weighted bipartite matching. The
maximal total number of sharing vertices in the same class is equal to q = 3+2+1 = 6. Then
the set-theoretic partition distance between those two 3-colorings is equal to: dH(coloring 1,
coloring 2) = n− q = 10− 6 = 4. This distance is independent of the permutation of the color
classes.

these 100 parents (Tabucol is stopped when exactly 40 conflicted edges are found). 2) A GPX
crossover is performed on all possible pairs of parents, generating for each pair two new non
legal 48-colorings, called children. Indeed, GPX is asymmetrical, then the order of the parents
is important. By this way, 9900 (= 100× 99) children are generated. 3) We perform twice the
steps 1) and 2), therefore the total number of generated children is equal to 19800. Each point
of the chart corresponds to one child. The y-axis indicates the fitness of the child. The x-axis
indicates the distance dH in the search-space between the two parents of the child. There is a
quasi-linear correlation between these two parameters (Pearson correlation coefficient equals
to 0.973).

Moreover, chart 4 shows that a crossover never improves a k-coloring. As stated in sec-
tion 2.2, the last step of GPX produces many conflicts. Indeed, if the two parents are very
far in terms of dH , then a large number of vertices remain uncolored at the final step of GPX.
Those vertices are then randomly added to the color classes, producing many conflicting edges
in the offspring. This explains why in MA, a local search always follows a crossover operator.

Figure 5 presents the evolution of the objective function (i.e. the number of conflicting
edges) of the two k-colorings of the population at each generation of HEAD. It also indicates the
dH distance between the two k-colorings. This figure is obtained by considering one typical
run to find one 48-coloring of <dsjc500.5> graph. The objective function of the two k-
colorings (f(p1) and f(p2)) are very close during the whole run: the average of the difference
f(p1) − f(p2) on the 779 generations is equal to −0.11 with a variance of 2.44. Figure 5
shows that there is a significant correlation between the quality of the two k-colorings (in
terms of fitness values) and the distance dH between them before the GPX crossover: the
Pearson correlation coefficient is equal to 0.927 (respectively equal to 0.930) between f(p1)
and dH(p1, p2) (resp. between f(p2) and dH(p1, p2)). Those plots give the main key for
understanding why HEAD is more effective than HEA: the linear anti-correlation between the
two k-colorings with approximately same objective function values f(p1) ' f(p2) is around
equal to 500−10×dH(p1, p2). The same level of correlation with a population of 10 individuals
using HEA cannot be obtained except with sophisticated sharing process.

Diversity is necessary when an algorithm is trapped in a local minimum but diversity

14

0 50 100 150 200 250 300 350 400

dH distance between parents with same fitness f1 = f2 = 40

0

50

100

150

200

250

300

350

400

ch
ild

fit
n

es
s

(n
u

m
b

er
of

co
n

fli
ct

in
g

ed
ge

s)

Figure 4: Each point of the chart, called child-solution, corresponds to one non-legal 48-
coloring of the <dsjc500.5> graph; It has been produced by the GPX crossover of two
other non-legal 48-colorings, called parents-solutions. Both parents are randomly generated
with the same fitness value (the same number of conflicting edges). Their distance dH in the
search-space is indicated on the abscissa axis. The number of conflicting edges of the child is
indicated on the ordinate axis.

should be avoided in other case. The next subsections analyze several levers which may able
to increase or decrease the diversity in HEAD.

5.2 Dose of diversification in the GPX crossover

Some modifications are performed on the GPX crossover in order to increase (as for the first
test) or decrease (as for the second test) the dose of diversification within this operator.

5.2.1 Test on GPX with increased randomness: random draw of a number of
color classes

In order to increase the level of randomness within the GPX crossover, we randomize the GPX.
It should be remembered (cf. section 2.2) that at each step of the GPX, the selected parent
transmits the largest color class to the child. In this test, we begin by randomly transmitting
x ∈ J0 ; kK color classes chosen from the parents to the child; after those x steps, we start
again by alternately transmitting the largest color class from each parent (x is the random
level). If x = 0, then the crossover is the same as the initial GPX. If x increases, then the
randomness and the diversity also increase. To evaluate this modification of the crossover, we
count the cumulative iterations number of TabuCol that one HEAD run requires in order to
find a legal k-coloring. For each x value, the algorithm is run ten times in order to produce
more robust results. For the test, we consider the 48-coloring problem for graph <dsjc500.5>
of the DIMACS benchmark. Figure 6 shows in abscissa the random level x and in ordinate

15

Figure 5: Red and green lines indicate the number of conflicting edges of the two 48-colorings
of the population: f(p1) and f(p2) (left ordinate axis) at each generation of one run of HEAD
applied on <dsjc500.5> graph (abscissa axis). The blue line indicates the distance between
the two k-colorings during the run: dH(p1, p2) (right ordinate axis).

the average number of iterations required to find a legal 48-coloring.
First, 0 ≤ x ≤ k, where k is the number of colors, but we stop the computation for x ≥ 15,

because from x = 15, the algorithm does not find a 48-coloring within an acceptable computing
time limit. This means that when we introduce too much diversification, the algorithm cannot
find a legal solution. Indeed, for a high x value, the crossover does not transmit the good
features of the parents, therefore the child appears to be a random initial solution. When
0 ≤ x ≤ 8, the algorithm finds a legal coloring in more or less 10 million iterations. It is not
easy to decide which x-value obtains the quickest result. However this parameter enables an
increase of diversity in HEAD. This version of GPX is called random GPX and noted R(x)
with x ∈ J0 ; kK in tables 2 and 3. It is used for three graphs <r250.5>, <r1000.1c> and
<dsjr500.1c> because the standard GPX does not operate effectively. The fact that these
three graphs are more structured that the others may explain why the random GPX works
better.

5.2.2 Test on GPX with decreased randomness: imbalanced crossover

In the standard GPX, the role of each parent is balanced: they alternatively transmit their
largest color class to the child. Of course, the parent which first transmits its largest class, has
more importance than the other; this is why it is an asymmetric crossover. In this test, we give
a higher importance to one of the parents. At each step of the crossover, we randomly draw
the parent that transmits its largest color class with a different probability for each parent.
We introduce x ∈ [0 ; 1], the probability of selecting the first parent; 1 − x is the probability
of selecting the second parent. For example, if x = 0.75, then, at each step of GPX, parent 1
has a 3 in 4 chance of being selected to transmit its largest color class (parent 2 has a 1 in 4

16

Figure 6: Average iteration number required to find a legal 48-coloring for the <dsjc500.5>
graph in function of the randomness level; abscissa: x, the randomness level; ordinate: the
average iteration number

chance). If x = 0.5, it means that both parents have an equal probability (a fifty-fifty chance
to be chosen); this almost corresponds to the standard GPX. If x = 1, it means that the child
is a copy of parent 1; there are no more crossovers and therefore HEAD is a TabuCol with two
initial solutions. When x becomes further from the value 0.5, the chance and diversity brought
by the crossover decrease. Figure 7 shows in abscissa the probability x and in ordinate the
average number of necessary iterations required to find a legal 48-coloring (as in the previous
test).

It can be remarked initially that the results are clearly symmetrical with respect to x. The
best results are obtained for 0.4 ≤ x ≤ 0.6. The impact of this parameter is weaker than that
of the previous one: the control of the reduction in diversification is finer. This version of
GPX is called unbalanced GPX and noted U(x) with x ∈ [0 ; 1] in tables 2 and 3. It is used
for three graphs <le450_25c>, <le450_25d> and <r1000.5> since the standard GPX does
not operate effectively.

5.3 Test on parent replacement: systematic or not

In HEAD, the two children systematically replace both parents, even if they have worse fitness
values than their parents. This replacement rule is modified in this test. If the fitness value
of the child is lower than that of its parents, the child automatically replaces one of the
parents. Otherwise, we introduce a probability x corresponding to the probability of the
parent replacement, even if the child is worse than his parents. If x = 1, the replacement is
systematic as in standard HEAD and if x = 0, the replacement is performed only if the children
are better (lower fitness value). When the x-value decreases, the diversity also decreases.
Figure 8 shows in abscissa the parent replacement probability x and in ordinate the average
number of iterations required to find a legal 48-coloring (as in the previous test).

If the parent replacement probability x = 0 or a very low 0.1, then more time is required to
produce the results. The absence or the lack of diversification is shown to penalize the search.

17

Figure 7: Average number of iterations required to find a legal 48-coloring for <dsjc500.5>
graph according to the imbalanced crossover; abscissa: x, probability to select the first parent
at each step of GPX ; ordinate: average iteration number

However, for a large range of values: 0.3 ≤ x ≤ 1, it is not possible to define the best policy
for x criterion. The dramatic change in behavior of HEAD occurs very quickly around 0.2.

These studies enable a clearer understanding of the role of the diversification operators
(crossover and parent updating).

The criteria presented here, such as the random level of the crossover or the imbalanced
level of the crossover, have shown their efficiency on some graphs. These GPX modifica-
tions could successfully be applied into future algorithms in order to manage the diversity
dynamically.

6 Conclusion

We proposed a new algorithm for the graph coloring problem, called HEAD. This memetic
algorithm combines the local search algorithm TabuCol as an intensification operator with the
crossover operator GPX as a way to escape from local minima. Its originality is that it works
with a simple population of only two individuals. In order to prevent premature convergence,
the proposed approach introduces an innovative way for managing the diversification based
on elite solutions.

The computational experiments, carried out on a set of challenging DIMACS graphs,
show that HEAD produces accurate results, such as 222-colorings for <dsjc1000.9>, 81-
colorings for <flat1000_76_0> and even 47-colorings for <dsjc500.5> and 82-colorings for
<dsjc1000.5>, which have up to this point only been found by quantum annealing [21] with
a massive multi-CPU. The results achieved by HEAD let us think that this scheme could
be successfully applied to other problems, where a stochastic or asymmetric crossover can be
defined.

We performed an in-depth analysis on the crossover operator in order to better understand

18

Figure 8: Average number of iterations required to find a legal 48-coloring for <dsjc500.5>
graph in function of the parents’ replacement policy; abscissa: parent replacement probability;
ordinate: average number of iterations

its role in the diversification process. Some interesting criteria have been identified, such as
the crossover’s levels of randomness and imbalance. Those criteria pave the way for further
researches.

Acknowledgement

Authors gratefully acknowledge Jéremy Omer (INSA, Rennes, France) and the anonymous
reviewers for their useful comments and constructive suggestions which helped to improve the
paper.

References

[1] K. Aardal, S. Hoesel, A. Koster, C. Mannino, A. Sassano, Models and solution techniques
for frequency assignment problems, Quarterly Journal of the Belgian, French and Italian
Operations Research Societies 1 (4) (2003) 261–317.

[2] M. Dib, A. Caminada, H. Mabed, Frequency management in Radio military Networks,
in: INFORMS Telecom 2010, 10th INFORMS Telecommunications Conference, Montreal,
Canada, 2010.

[3] F. T. Leighton, A Graph Coloring Algorithm for Large Scheduling Problems, Journal of
Research of the National Bureau of Standards 84 (6) (1979) 489–506.

[4] N. Zufferey, P. Amstutz, P. Giaccari, Graph Colouring Approaches for a Satellite Range
Scheduling Problem, Journal of Scheduling 11 (4) (2008) 263 – 277.

[5] D. C. Wood, A Technique for Coloring a Graph Applicable to Large-Scale Timetabling
Problems, Computer Journal 12 (1969) 317–322.

19

[6] N. Barnier, P. Brisset, Graph Coloring for Air Traffic Flow Management, Annals of Op-
erations Research 130 (1-4) (2004) 163–178.

[7] C. Allignol, N. Barnier, A. Gondran, Optimized Flight Level Allocation at the Continental
Scale, in: International Conference on Research in Air Transportation (ICRAT 2012),
Berkeley, California, USA, 22-25/05/2012, 2012.

[8] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, CA, USA, 1979.

[9] R. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. Thatcher
(Eds.), Complexity of Computer Computations, Plenum Press, New York, USA, 1972,
pp. 85–103.

[10] D. S. Johnson, C. R. Aragon, L. A. McGeoch, C. Schevon, Optimization by Simulated An-
nealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning,
Operations Research 39 (3) (1991) 378–406.

[11] N. Dubois, D. de Werra, Epcot: An efficient procedure for coloring optimally with Tabu
Search, Computers & Mathematics with Applications 25 (10–11) (1993) 35–45.

[12] E. Malaguti, M. Monaci, P. Toth, An Exact Approach for the Vertex Coloring Problem,
Discrete Optimization 8 (2) (2011) 174–190.

[13] S. Held, W. Cook, E. Sewell, Safe lower bounds for graph coloring, Integer Programming
and Combinatoral Optimization (2011) 261–273.

[14] P. Galinier, J.-K. Hao, Hybrid evolutionary algorithms for graph coloring, Journal of
Combinatorial Optimization 3 (4) (1999) 379–397.

[15] P. Galinier, A. Hertz, A survey of local search methods for graph coloring, Computers &
Operations Research 33 (2006) 2547–2562.

[16] P. Galinier, J.-P. Hamiez, J.-K. Hao, D. C. Porumbel, Recent Advances in Graph Vertex
Coloring, in: I. Zelinka, V. Snásel, A. Abraham (Eds.), Handbook of Optimization, Vol. 38
of Intelligent Systems Reference Library, Springer, 2013, pp. 505–528.

[17] E. Malaguti, P. Toth, A survey on vertex coloring problems, International Transactions
in Operational Research 17 (1) (2010) 1–34.

[18] A. Hertz, M. Plumettaz, N. Zufferey, Variable Space Search for Graph Coloring, Discrete
Applied Mathematics 156 (13) (2008) 2551 – 2560.

[19] O. Titiloye, A. Crispin, Graph Coloring with a Distributed Hybrid Quantum Annealing
Algorithm, in: J. O’Shea, N. Nguyen, K. Crockett, R. Howlett, L. Jain (Eds.), Agent
and Multi-Agent Systems: Technologies and Applications, Vol. 6682 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2011, pp. 553–562.

[20] O. Titiloye, A. Crispin, Quantum annealing of the graph coloring problem, Discrete Op-
timization 8 (2) (2011) 376–384.

[21] O. Titiloye, A. Crispin, Parameter Tuning Patterns for Random Graph Coloring with
Quantum Annealing, PLoS ONE 7 (11) (2012) e50060.

20

[22] A. Hertz, D. de Werra, Using Tabu Search Techniques for Graph Coloring, Computing
39 (4) (1987) 345–351.

[23] P. Galinier, A. Hertz, N. Zufferey, An adaptive memory algorithm for the k-coloring
problem, Discrete Applied Mathematics 156 (2) (2008) 267–279.

[24] C. Fleurent, J. Ferland, Genetic and Hybrid Algorithms for Graph Coloring, Annals of
Operations Research 63 (1996) 437–464.

[25] J.-K. Hao, Memetic Algorithms in Discrete Optimization, in: F. Neri, C. Cotta,
P. Moscato (Eds.), Handbook of Memetic Algorithms, Vol. 379 of Studies in Compu-
tational Intelligence, Springer, 2012, pp. 73–94.

[26] D. S. Johnson, M. Trick (Eds.), Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, 1993, Vol. 26 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, American Mathematical Society, Providence, RI, USA,
1996.

[27] Z. Lü, J.-K. Hao, A memetic algorithm for graph coloring, European Journal of Opera-
tional Research 203 (1) (2010) 241–250.

[28] Q. Wu, J.-K. Hao, Coloring large graphs based on independent set extraction, Computers
& Operations Research 39 (2) (2012) 283–290.

[29] J.-K. Hao, Q. Wu, Improving the extraction and expansion method for large graph col-
oring, Discrete Applied Mathematics 160 (16–17) (2012) 2397–2407.

[30] D. C. Porumbel, J.-K. Hao, P. Kuntz, An evolutionary approach with diversity guarantee
and well-informed grouping recombination for graph coloring, Computers & Operations
Research 37 (2010) 1822–1832.

[31] R. Lewis, Graph Coloring and Recombination, in: J. Kacprzyk, W. Pedrycz (Eds.), Hand-
book of Computational Intelligence, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015,
Ch. Graph Coloring and Recombination, pp. 1239–1254.

[32] D. Gusfield, Partition-distance: A problem and class of perfect graphs arising in cluster-
ing, Information Processing Letters 82 (3) (2002) 159–164.

21

