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Abstract

In this paper we study the post-processing pipeline to re-

cover the views (light-field) from the raw data of a plenoptic

camera such as Lytro. First, the microlens centers are es-

timated and then the raw image is demultiplexed without

demosaicing it beforehand. This avoids image artifacts due

to view cross-talk. Furthermore, we present a new block-

matching algorithm to estimate disparities for plenoptic

views that have not been demosaiced. Our algorithm en-

forces the coherence through the views thanks to the view

configuration given by the plenoptic camera: (i) the views

are horizontally and vertically rectified and have the same

baseline, and therefore (ii) at each point, the vertical and

horizontal disparities are the same. Finally, we show that

disparity estimation is more accurate when the raw image is

demultiplexed without demosaicing the raw image. In par-

ticular, we show that our algorithm outperforms the dispa-

rity estimation method in [17].

1. Introduction

Plenoptic cameras are gaining a lot of popularity in the

field of computational photography because of the addi-

tional information they capture compared to traditional

cameras. Indeed, they are able to measure the amount of

light traveling along each ray bundle that intersects the sen-

sor, thanks to a microlens array placed between the main

lens and the sensor. As a result, such cameras have novel

post-capture processing capabilities. For example, after the

image acquisition, the point of view, the focus or the depth

of field can be modified. Also, from the obtained sampling

of the light-field the scene depth can be estimated from a

single snapshot.

There are several optical designs for plenoptic cameras.

In particular, plenoptic cameras including a microlens array

are divided in two types depending on the distance between

the microlens array and the sensor: either the distance is

equal to the microlenses focal length (as presented by Ng et

al. in [13]) or it differs from it (as presented by Lumsdaine

and Georgiev in [12]). In the first case the number of pixels

per rendered view is equal to the number of microlenses. In

the second case, the rendered views have a higher spatial

resolution but at the cost of decreasing the angular resolu-

tion. Depending on the application, one type of camera or

another would be preferred.

The concept of integral photography, which is the under-

lying technology in plenoptic cameras, was introduced by

Lippmann [11] and then brought up to computer vision by

Adelson and Wang [2], but it has recently become practical

with the hand-held cameras that Lytro1 and Raytrix2 have

put on the market for the mass market and professionals

respectively. Since then, the scientific community has taken

an interest in the light-field technology. In particular the

computational photography literature is mostly expanding

on image processing rather than hardware improvements re-

garding plenoptic cameras. Above all, the recent studies in

the field address the bottleneck of the plenoptic cameras,

namely the resolution problem [8, 4, 14, 18]. Besides super-

resolution, depth estimation has also been investigated as

a natural application of plenoptic images [4, 18, 17]. In-

deed, the intrinsic information of the light-field has the ad-

vantage to allow disparity computation without the image

calibration and rectification steps required on classic stereo

or multi-view algorithms, making it an enormous advantage

for 3D applications. However, the last cited works consider

the light-field (the set of demultiplexed views) as input for

their disparity estimation methods, meaning that they do not

study the process that converts the raw data acquired by the

plenoptic camera into the light-field. In this paper we show

that such processing called demultiplexing is of paramount

importance for depth estimation.

The contributions of this paper are twofold. First, we

model the demultiplexing process of images acquired with

a plenoptic camera such as the Lytro [13] and then we

present a novel algorithm for disparity estimation specially

designed for the singular qualities of plenoptic images: a

matrix of views horizontally and vertically rectified with

1http://www.lytro.com
2http://www.raytrix.de



same baseline, where each view captures the scene under a

different angle of incidence. This matrix of views is also

called Ligh-field. In particular, we show that estimating

disparities from undemosaiced views is preferred to using

views obtained through conventional linear demosaicing on

the raw data. Fig. 1 illustrates the pipeline of our method.

Figure 1. Pipeline of our method. For visualization purposes only

a part of the subimages and the views on the matrix are shown.

The light-field (matrix of views) is obtained demultiplexing unde-

mosaiced data and using the center subimage positions. Then the

disparity map for a reference view is estimated from the light-field.

2. Related Work

The closest works to our demultiplexing method have

been published recently [6, 5]. On the one hand, Dansereau

et al. [6] propose a demultiplexing algorithm followed by a

rectification step where lens distortions are corrected using

a 15-parameter camera model. On the other hand, Cho et al.

[5] also propose a demultiplexing algorithm for the Lytro

camera and study several interpolation methods to superre-

solve the reconstructed images. The main difference of our

approach compared to [6] and [5] is that the raw data is not

demosaiced which avoids view cross-talk artifacts.

Considering disparity estimation for plenoptic images, a

variational method is described using the epipolar plane im-

age (EPI) in [18]. [3] and [4] propose a variational method

too, coupled with an antialiasing filtering to avoid cross-talk

image artifacts. [10] estimates disparity maps from high

spatio-angular light-fields with a fine-to-coarse algorithm

where disparities around objet boundaries are first estimated

using an EPI-based method and then propagated. Finally,

[17] proposes an interesting approach that combines defo-

cus and correspondence to estimate the scene depth. In this

paper, we present a different disparity estimation method

based on block-matching. Our method is generic for any

plenoptic data, but it is particularly useful for Lytro data as

we will see in the experiments. In fact, we have observed

that EPI’s from Lytro images are highly noisy and in that

case the disparity is only reliable on a small number of pix-

els (object edges).

Finally, image demosaicing has barely been treated in

the literature and most of the cited works, with the excep-

tion of Yu et al [19], propose to perform the demosaicing on

the raw image using any state-of-the art method. However,

this simple solution creates image artifacts on the rendered

views due to image cross-talk as pointed out by [8]. In ad-

dition we have observed that demosaicing the raw image

causes tremendous errors on the disparity maps. Therefore,

for the sake of accurate disparity estimation, we propose to

demultiplex directly the undemosaiced raw image and es-

timate the disparity with the incomplete but reliable views.

To the best of our knowledge this approach has never been

proposed for plenoptic disparity estimation.

3. Demultiplexing RAW data

Demultiplexing (also called decoding in [6] or ca-

libration and decoding in [5]) is the data conversion from

the 2D raw image to the 4D light-field, usually represented

by the two-plane parametrization [9]. Concerning Lytro,

the raw data is not provided with its software, therefore

we have used the tool from [1] to convert the data with the

Lytro file format to raw data. Then, the demultiplexing

process consists in reorganizing the pixels of the raw image

in such a way that all pixels capturing the light rays with

a certain angle of incidence are stored in the same image

creating the so-called views. Each view is a projection

of the scene under a different angle of view. The set of

views create a block matrix where the central view store

the pixels capturing perpendicuar light rays to the sensor.

In fact, the angular information of the light rays is given by

the relative pixel positions in the subimages3 with respect

to the subimage centers. After demultiplexing, the number

of restored views (entries of the block matrix) corresponds

to the number of pixels covered by one microlens and

each restored view has as many pixels as the number of

microlenses.

Estimating Subimage Centers

The microlens array is placed in front of the sensor but the

microlens centers are not necessarily well aligned with the

pixels of the sensor. Indeed, the microlens diameter do not

cover an integer number of pixels. Furthermore, there is a

rotation offset between the sensor and the microlens plane.

Finally, the microlenses are arranged on a quincunx grid

to efficiently cover the space. Thus, in order to robustly

estimate the microlens centers, we estimate the transforma-

tion between two coordinate systems (CS), the Cartesian CS

given by the sensor pixels and K the microlens center CS

defined as follows: the origin is given by the center of the

topmost and leftmost microlens and the basis vectors are

the two vectors from the origin to the adjacent microlens

centers (see Fig.2). Formally, if x and k are respectively

3The image that is formed under a microlens and on the sensor is called

a subimage of the scene.



the coordinates on the sensor and microlens CS, then, we

aim to estimate the system transformation matrix T and the

offset vector between the origins c such that

x = Tk+ c . (1)

More precisely,

T =

(

1 1/2

0
√
3/2

)(

dh 0
0 dv

)(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

, (2)

where the first matrix accounts for the orthogonal to

hexagonal grid conversion due to the quincunx microlens

configuration, the second matrix deals with the vertical

and horizontal shears and the third matrix is the rotation

matrix. Thus, estimating the microlenses model parameters

{c, dh, dv, θ} gives the microlenses center positions.

Figure 2. Microlenses projected on the sensor plane in a quin-

cunx configuration. The green and blue axes represent the two

coordinate systems. There is a rotational (θ) and a translational

(c = O− o) offset.

In practice, the subimage centers are computed from

a white image depicted in Fig. 3-(a), this is an image

(a) (b) (c)

Figure 3. (a) Lytro raw image of a white scene. (b) Mask used to

locally estimate subimage center positions. (c) Estimated center

positions. They coincide when estimated from the red, green, or

blue pixels only or from all the pixels in the raw image (gray).

taken through a white Lambertian diffuser. Actually, the

subimage centers xi in the raw image are computed as

the local maximum positions of the convolution between

the white image and the mask shown in Fig. 3-(b). Then,

given xi and the integer positions in the K coordinate

system ki, the model parameters (and consequently T and

c) are estimated via least square errors from the equations

xi = Tki + c. Thus, the final center positions used in

the demultiplexing step are the pixel positions given by

ci := round(Tki + c). Fig. 3-(c) shows the subimage

center estimation obtained with the method described

above. Since the raw white image has a Bayern pattern,

we have compared the results when estimating the centers

using only red, blue or green pixels or using all color pixels

at the same time. We observe that the results are essentially

the same. Indeed, demosaicing the raw white image does

not create image cross-talk since the three color channels

are the same for all pixels in the center of the subimages.

Reordering pixels

In the following, we assume that the raw image has been

divided by the white image. This division corrects consi-

derably the vignetting4 and is enough for our purposes but

we refer to [6] for a precise vignetting modeling for plenop-

tic images. Now, in order to recover the different views, pix-

els in the raw image need to be reorganized. Pixels under

each microlens at the same relative position w.r.t. the mi-

crolens center belong to the same view. In particular, pixels

are organized as illustrated in Fig. 4. In order to preserve

the pixel configuration in the raw image (hexagonal pixel

grid due to the quincunx microlens placement) and alias-

ing, empty spaces are left between pixels on the views as

shown in Fig. 5.

Notice that, since the raw image has not been demulti-

plexed, the views inherit new color patterns. Because of the

shift and rotation of the microlenses w.r.t. the sensor, the

microlens centers (as well as the other relative positions) do

not always correspond to the same color. As a consequence,

each view has its own color pattern (mainly horizontal color

lines in Lytro) as shown in Fig. 5. In fact, the color pattern

of views in odd positions of the matrix are very similar to

each other, as well as the color patterns of views in even

positions. However the color pattern between odd and even

positions are not the same. This is because the Lytro camera

has a microlens diameter close to an even number of pixels

(∼ 10 pixels). As a matter of fact, the color pattern would

be the same for all the views (odd and even) if the microlens

diameter was an exact odd number of pixels.

After demultiplexing, the views could be demosaiced

4Light rays hitting the sensor at an oblique angle produce a weaker

signal than light rays hitting it with a normal angle. Plenoptic cameras

suffer from the main lens vignetting and the microlenses vignetting.



Figure 4. Pixel reordering from the raw image to extract two dif-

ferent raw views. Pixels with the same relative position (same

angular information) w.r.t. the subimage centers are stored in the

same view. In general, the number of recovered views is equal to

the number of pixels per microlens. Color corresponds to sensor

color on original Bayer pattern, and is carried over to assembled

raw views.

without risking to fuse pixel information from different an-

gular light rays. However, classic demosaicing algorithms

are not well adapted to these new color patterns, specially

on high frequencies. Instead we simply fill the empty pix-

els (white pixels in Fig. 4) when the right and left pixels

have the same color information. For example, if an empty

pixel of the raw data has a green pixel on the right and on

the left, then the empty pixel is filled with a green value by

interpolation (1D Piecewise Cubic Hermite interpolation).

Demosaicing the images with this new color pattern is left

for future work but we will show that there is enough infor-

mation to robustly estimate the disparity from the undemo-

saiced views.

Figure 5. Color patterns of three consecutive vertically-aligned

undemosaiced views (even, odd and even positions) for a Lytro

camera with a number of pixels per microlens close to an even

number (∼ 10 pixels). Color patterns from the views at even po-

sitions are very similar while the color pattern at the odd position

is significantly different although there are horizontal color stripes

too. White pixels correspond to empty pixels (no color informa-

tion).

Differences with Cho et al. [5] and Dansereau et al.

[6] methods

The main difference with the demultiplexing method in [6]

is the fact that in their method the raw data of a scene is de-

mosaiced before being demultiplexed. This approach mixes

information from different views and, as we will show in

the next section, it has dramatic consequences on the dispa-

rity estimation step. Besides, the method in [6] estimates

the microlenses centers similarly to us but it does not force

the center positions to be integer as we do in our global

optimization step. Instead, the raw image is interpolated

to satisfy this constraint. Even if theoretically this solution

should provide a more accurate light-field (microlens center

positions have indeed sub-pixel coordinate positions), in-

terpolating the raw data implies again mixing information

from different views (a different pixel has information from

a light rays with a different angle) which is the same prob-

lem pointed out for demosaicing.

The method for estimating the center positions in [5] dif-

fers considerably from ours since the centers are found via

local maxima estimation in the frequency domain. First, the

raw image is demosaiced and converted to gray and the final

center positions are the result of fitting the local estimation

on a Delaunay triangular grid. Moreover, the second step to

render the views is coupled with super-resolution providing

views of size 1080 × 1080 (instead of 328 × 328, which is

the number of microlenses).

4. Disparity Estimation

In this section, we present a new block-matching dispa-

rity estimation algorithm adapted to plenoptic images. In

particular, we assume that a matrix of views is available

(obtained as explained in the previous section) such that the

views are horizontally and vertically rectified, i.e., satisfy-

ing the epipolar constraint. Therefore, given a pixel in a ref-

erence view, its corresponding pixels from the same row of

the matrix are only shifted horizontally. Similar reasoning is

valid for the vertical pixel shifts among views from the same

column of the matrix. Furthermore, consecutive views have

always the same baseline a (horizontally and vertically). As

a consequence, for each point, its horizontal and vertical

disparities with respect to nearest views are equal provided

the point is not occluded. In other words, given a point

in the reference view, the corresponding point in its conse-

cutive right view is displaced horizontally by the same dis-

tance than the corresponding point in its consecutive bottom

view is displaced vertically. By construction, the plenop-

tic camera provides a matrix of views with small baselines,

which means that the possible occlusions are small. In fact,

each point of the scene is seen from different points of views

(even if it is occluded for some of them). Thus, the horizon-

tal and vertical disparity equality is true for almost all the

points of the scene.

Since the available views have a color pattern as in Fig.

5, we propose a block matching method so that only pixels

in the block having the same color information are com-

pared. We propose to use a similarity measure between



blocks based on the ZSSD (Zero-Mean Sum of Squared Dif-

ferences). Formally, let I be a reference view of the matrix

of views and let Ip and Iq be two views belonging to the

same matrix row as I . Let ap and aq be the respective base-

lines with respect to I (multiples of a). Then, the cost func-

tion between Ip and Iq at the center (x0, y0) of a block B0

in I is defined as a function of the disparity d:

CF p,q
B0

(d) =

=

∑

x,y∈B0

W (xp, xq, y)
(

Ip(xp, y)− Ip − Iq(xq, y) + Iq
)2

∑

x,y∈B0

W (xp, xq, y)
,

(3)

where

xp := x+ ap d ,

xq := x+ aq d . (4)

Ip and Iq are the average values of Ip and Iq over the

block centered at (x0 + ap d, y0) and (x0 + aq d, y0) res-

pectively and W is a window function defined as follows

W (xp, xq, y) = G0(x, y) · S(xp, xq, y) ,

where G0 is a Gaussian function centered at (x0, y0) and

supported in B0 and S is the characteristic function con-

trolling that only pixels in the block with same color infor-

mation are taken into account in the cost function:

S(xp, xq, y) =











1 if Ip(xp, y) and Iq(xq, y)

have the same color information,

0 otherwise.

(5)

The cost function is similarly defined when Ip and Iq

are views from the same matrix column. In that case we

define yp := y + ap d and yq := y + aq d. Note that if

Ip = I , then ap = 0 and the cost function defined in Eq.

(3) is similar to a cost function for binocular stereovision

with the particularity that it is adapted to our specific color

pattern.

Now, our algorithm takes advantage of the multitude of

views given by the light-field and estimates the disparity

through all the lines and columns of the matrix. Let Θ be

the set of index-view pairs such that the disparity can be

computed horizontally or vertically w.r.t. the reference view

I . In other words, Θ is the set of index-view pairs from the

same row and column than I . In fact, consecutive views are

not considered in Θ since consecutive color patterns are es-

sentially different as explained above for the Lytro camera.

Besides, views on the borders of the matrix of views do not

capture as much light as the views in the center. So, it is

reasonable to only consider the 8 × 8 or 6 × 6 matrix of

views placed in the center for the Lytro camera. Fig. 6 de-

picts the pairs of considered images for disparity estimation

in a matrix line. In this figure, only the 6× 6 matrix is used

for disparity estimation.

Finally, given a reference view I the disparity at (x0, y0)
is given by

d(x0, y0) = Med(p,q)∈Θ

{

argmin
d

CF p,q
B0

(d)
}

, (6)

where Med stands for the 1D median filter. This median

filter is used to remove outliers that may appear on a

disparity map computed for a single pair of views, specially

in low-textured areas.

Figure 6. On the left: light-field (matrix of views). Views in the

center get more radiance than views of the border of the matrix

(pixels coming from the border of the microlenses). Usually the

central 6 × 6 matrix is used. On the right: 6 central views from

the same line of the matrix. Odd and even views have different

color patterns between them (but very similar patterns between

odd views and even views). This is represented with a red circle

and a blue triangle. The index-view pairs in Θ corresponding to

this matrix line are represented with the red and blue arrows.

Removing outliers

Block-matching methods tend to provide noisy disparity

maps when there is a matching ambiguity, e.g., for re-

peated structures in the images or on poorly textured ar-

eas. Inspired by the well-known cross-checking in binocu-

lar stereovision [16] (i.e., comparing let-to-right and right-

to-left disparity maps), our method can also remove unreli-

able estimations comparing all possible estimations. Since

a large amount of views are available from a light-field, it

is straightforward to rule out inconsistent disparities. More

precisely, points (x0, y0) are considered unreliable if



Std(p,q)∈Θ

{

argmin
d

CF p,q
x0,y0

(d)
}

> ε , (7)

where Std stands for standard deviation and ε is the

accuracy in pixels. In practice, we consider an accuracy of

an eight of a pixel, ε = 1
8 , and a block size of 13× 13.

Sub-pixel disparity estimation

The baseline between the views is small, specially between

views with close positions in the matrix. So the disparity

estimation for plenoptic images must achieve sub-pixel

accuracy. Such precision can be achieved in two different

ways: either by upsampling the views or by interpolating

the cost function. Usually the first method achieves better

accuracy but at a higher complexity burden, unless GPU

implementations are used [7]. For this reason, the second

method (cost function interpolation) is usually used.

However, it has been proved [15] that block-matching

algorithms with a quadratic cost function as in Eq. (3)

achieve the best trade-off between complexity and accuracy

only by firstly upsampling the images by a factor of 2 and

then interpolating the cost function. We follow this rule in

our disparity estimation algorithm.

Differences with Bishop and Favaro [4] and Tao et al.

[17] methods

The closest disparity estimation method for plenoptic im-

ages compared to ours is the method presented by Bishop

and Favaro [4] but there are several differences between

both methods. First, our method properly demultiplexes the

views before estimating the disparity, whereas the method

in [4] considers full RGB views and proposes an antialias-

ing filter to cope with image cross-talk artifacts. Then, the

energy in [4] (compare Eq. (6) of this paper with Eq. (3) in

[4]) considers all the possible pairs of views even if in prac-

tice, for complexity reasons, only a subset of view pairs can

be considered. In [4], no criteria is given to define such sub-

set of view pairs while a reasonable subset is given by the

color pattern in our views. Finally, the proposed energy in

[4] considers a regularization term in addition to the data

term and the energy is minimized iteratively using conju-

gate gradients. Unfortunately, a qualitative disparity map

between both methods is not possible since the considered

input data is not the same.

On the other hand, [17] combines spatial correspondence

with defocus. More precisely, the algorithm uses the 4D

EPI and estimates correspondence cues by computing angu-

lar variance and defocus cues by computing spatial variance

after angular integration. Both cues are combined in a

MRF global optimization process. This approach exploits

nicely the benefits of each cue and the source code has

been published by the authors. Nevertheless their disparity

estimation method does not take care accurately of the de-

(a)

(b)

(c)

Figure 7. (a) Reference view (for visualization purposes we show

the Lytro output). (b) Disparity estimation from two horizontal

views without raw image demosaicing (c) Disparity estimation

from two horizontal views with raw image demosaicing.

multiplexing step. Their algorithm not only demosaices the

raw image but it stores it using JPEG compression. So, the

resulting light-field is affected by image cross-talk artifacts

and compression artifacts. In next section we compare our

results with the disparity map obtained with their algorithm.

5. Experimental Results

In this section we show the results obtained with our

algorithm. First of all we have compared the disparity maps

obtained with and without demosaicing the raw image.

Intuitivelly one can think that demosaicing the raw image

will get better results since more information is available

on the views. However we observe in Fig. 7 that this is

not the case. The disparity map in Fig. 7-(b) is obtained

by minimizing the cost function in Eq. (3) between two

consecutive even views of the same row and in the center

of the matrix of views with color pattern as in Fig. 5.

Similarly Fig. 7-(c) is obtained with the same cost function

but the characteristic function is equal to one for all the

points since the views are in full RGB.

Fig. 8 shows the demultiplexing and disparity estimation

results for a Lytro image (Fig. 8-(a)). Fig. 8-(b) shows one

view with the obtained color pattern when demultiplexing

directly the raw data without demosaicing it beforehand.

In a zoomed version of this image, Fig. 8-(c) shows the

result of horizontally interpolating empty pixels when

the neighbor pixels have same color information. This

simple processing does not cause any image artifact. In

Fig. 8-(d,e,f), we also compare the different disparity maps

when using our algorithm only with the views of the same

column, the views of the same row or all the views in Θ
respectively. Note that the computed disparities from views



of the same column (Fig. 8-(d)) are more prone to errors

compared to disparities views of the same row (Fig. 8-(e)).

This is because the color pattern between two blocks in the

same row are more similar than in the same column (color

patterns on the views tend to have horizontal color lines).

However, it is clear that considering all the views gives the

best disparity map (Fig. 8-(f)).

Fig. 9 shows the disparity map obtained with the method

by Tao et al. [17] using the same raw data than in Fig.

8. We have used the code and parameters provided by the

authors which means that the raw image is demosaiced and

compressed (JPEG) before depth is estimated. In this figure

the correspondence and defocus cues are also shown with

the final depth map. It is obvious that the results obtained

with our algorithm are more accurate.

Finally, Fig. 10 shows the disparity map of a ”simple”

scene of a slanted surface. In this case it is straightforward

to compare our results with the known ground-truth for a

quantitative evaluation of the method: the RMSE (Root

Mean Squared Error) is equal to 0.0179. Fig. 10-(c) shows

a horizontal profile plot of the disparity map in blue and

the ground-truth profile in red. Results are more accurate

for pixels in the center of the image. All in all, our method

has been tested on a considerably number of images from

Lytro with different conditions and provides more accurate

results than state-of-the-art disparity estimation method for

plenoptic images (Tao et al. method [17]).

6. Conclusion

Plenoptic cameras are promising tools to expand the ca-

pabilities of conventional cameras because they capture the

4D light-field of a scene. However, specific image process-

ing algorithms should be developed to make the most of

this new technology. In this work we have addressed the

disparity estimation problem for plenoptic images and we

have seen that this problem should be studied together with

the demultiplexing problem. In particular, we have seen

that accurate disparity estimation should be done without

demosaicing the raw data to avoid image cross-talk arti-

facts. Throughout this work, the rendered views have a

color pattern obtained when demultiplexing a Bayer raw

image which depends on the camera features (number of

pixels per microlens, rotation and translation offset between

microlenses and sensor, quincunx microlens configuration,

etc...). This raises the question of demosaicing the views

with the new color patterns which is one of our perspectives

for future work.
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(a) (b)

(c)

(d) (e) (f)

Figure 8. (a) Lytro image (for visualization purposes). (b) Undemosaiced view. (c) Top: red rectangle in view (b) zoomed. Bottom: same

zoom with horizontal interpolation of empty pixels (black). (d) Disparity obtained with horizontally aligned views. (e) Disparity obtained

with vertically aligned views. (f) Final disparity obtained with all the views aligned (horizontally and vertically).

Figure 9. From left to right: Disparity map from defocus cues, disparity map from correspondence cues and final regularized disparity map

combining defocus and correspondence cues. Disparity values are represented here with gray values.

(a) (b) (c)

Figure 10. (a) Lytro image (for visualization purposes). (b) Disparity map. (c) Plot of the disparity map profile (blue) and ground-truth

profile (red).


